eliminating a second set of identical mutex operations at the bottom.
This allows brief exceeding of the max sockets limit, but only by
sockets in the last stages of being torn down.
PowerPC-based Apple's machines and small utility to do it from
userland modelled after the similar utility in Darwin/OSX.
Only tested on 1.25GHz G4 Mac Mini.
MFC after: 1 month
Originally, I had adopted sparc64's name, pmap_clear_write(), for the
function that is now pmap_remove_write(). However, this function is more
like pmap_remove_all() than like pmap_clear_modify() or
pmap_clear_reference(), hence, the name change.
The higher-level rationale behind this change is described in
src/sys/amd64/amd64/pmap.c revision 1.567. The short version is that I'm
trying to clean up and fix our support for execute access.
Reviewed by: marcel@ (ia64)
vlan tag processing, the code will use bcopy() to remove the vlan
tag field but the code copies 2 bytes too many, which essentially
overwrites the protocol type field.
Also, a tag value of -1 is generated for unrecognized interface type,
which would cause an invalid memory access in the vlans[] array.
In addition, removed a line of dead code and its associated comments.
Reviewed by: sam
- Change the workaround for the autopad/checksum offload bug so that
instead of lying about the map size, we actually create a properly
padded mbuf and map it as usual. The other trick works, but is ugly.
This approach also gives us a chance to zero the pad space to avoid
possibly leaking data.
- With the PCIe devices, it looks issuing a TX command while there's
already a transmission in progress doesn't have any effect. In other
words, if you send two packets in rapid succession, the second one may
end up sitting in the TX DMA ring until another transmit command is
issued later in the future. Basically, if re_txeof() sees that there
are still descriptors outstanding, it needs to manually resume the
TX DMA channel by issuing another TX command to make sure all
transmissions are flushed out. (The PCI devices seem to keep the
TX channel moving until all descriptors have been consumed. I'm not
sure why the PCIe devices behave differently.)
(You can see this issue if you do the following test: plug an re(4)
interface into another host via crossover cable, and from the other
host do 'ping -c 2 <host with re(4) NIC>' to prime the ARP cache,
then do 'ping -c 1 -s 1473 <host with re(4) NIC>'. You're supposed
to see two packets sent in response, but you may only see one. If
you do 'ping -c 1 -s 1473 <host with re(4) NIC>' again, you'll
see two packets, but one will be the missing fragment from the last
ping, followed by one of the fragments from this ping.)
- Add the PCI ID for the US Robotics 997902 NIC, which is based on
the RTL8169S.
- Add a tsleep() of 1 second in re_detach() after the interrupt handler
is disconnected. This should allow any tasks queued up by the ISR
to drain. Now, I know you're supposed to use taskqueue_drain() for
this, but something about the way taskqueue_drain() works with
taskqueue_fast queues doesn't seem quite right, and I refuse to be
tricked into fixing it.
- If we fail to register the system call during MOD_LOAD, then note that
so that we don't try to deregister it or invoke the chained event handler
during the subsequent MOD_UNLOAD event. Doing the deregister when the
register failed could result in trashing system call entries.
- Add a SI_SUB_SYSCALLS just before starting up init and use that to
register syscall modules instead of SI_SUB_DRIVERS. Registering system
calls as late as possible increases the chances that any other module
event handlers or SYSINITs in a module are executed to initialize the
data in a kld before a syscall dependent on that data is able to be
invoked.
MFC after: 3 days
cache when unloading the nfsserver module. This fixes a memory leak and
a stale pointer.
- Use callout_drain() rather than callout_stop() when unloading the
nfsserver module.
MFC after: 3 days
- Right justify 'pid' label.
- Move the uid column to the right 2 columns so that the 3 process id
columns (pid, ppid, pgrp) are grouped together.
- Expand the uid column to 5 chars.
- Don't indent the tid for multithreaded processes.
Requested by: bde (1, 2, 4)
longer referenced by other threads (hence our freeing it), we don't need
to set the can't send and can't receive flags, wake up the consumers,
perform two levels of locking, etc. Implement a fast-path teardown,
sbdestroy(), which flushes and releases each socket buffer. A manual
dom_dispose of the receive buffer is still required explicitly to GC
any in-flight file descriptors, etc, before flushing the buffer.
This results in a 9% UP performance improvement and 16% SMP performance
improvement on a tight loop of socket();close(); in micro-benchmarking,
but will likely also affect CPU-bound macro-benchmark performance.
UNIX domain socket at the same time as the remote host is closing the
new connections as quickly as they open. Since the connect() and
send() paths are non-atomic with respect to another, it is possible
for the second thread's close() call to disconnect the two sockets
as connect() returns, leading to the consumer (which plans to send())
with a NULL kernel pointer to its proposed peer. As a result, after
acquiring the UNIX domain socket subsystem lock, we need to revalidate
the connection pointers even though connect() has technically succeed,
and reurn an error to say that there's no connection on which to
perform the send.
We might want to rethink the specific errno number, perhaps ECONNRESET
would be better.
PR: 100940
Reported by: Young Hyun <youngh at caida dot org>
MFC after: 2 weeks
MFC note: Some adaptation will be required
- Correct the PCI ID for the 8169SC/8110SC in the device list (I added
the macro for it to if_rlreg.h before, but forgot to use it.)
- Remove the extra interrupt spinlock I added previously. After giving it
some more thought, it's not really needed.
- Work around a hardware bug in some versions of the 8169. When sending
very small IP datagrams with checksum offload enabled, a conflict can
occur between the TX autopadding feature and the hardware checksumming
that can corrupt the outbound packet. This is the reason that checksum
offload sometimes breaks NFS: if you're using NFS over UDP, and you're
very unlucky, you might find yourself doing a fragmented NFS write where
the last fragment is smaller than the minimum ethernet frame size (60
bytes). (It's rare, but if you keep NFS running long enough it'll
happen.) If checksum offload is enabled, the chip will have to both
autopad the fragment and calculate its checksum header. This confuses
some revs of the 8169, causing the packet that appears on the wire
to be corrupted. (The IP addresses and the checksum field are mangled.)
This will cause the NFS write to fail. Unfortunately, when NFS retries,
it sends the same write request over and over again, and it keeps
failing, so NFS stays wedged.
(A simple way to provoke the failure is to connect the failing system
to a network with a known good machine and do "ping -s 1473 <badhost>"
from the good system. The ping will fail.)
Someone had previously worked around this using the heavy-handed
approahch of just disabling checksum offload. The correct fix is to
manually pad short frames where the TCP/IP stack has requested
checksum offloading. This allows us to have checksum offload turned
on by default but still let NFS work right.
- Not a bug, but change the ID strings for devices with hardware rev
0x30000000 and 0x38000000 to both be 8168B/8111B. According to RealTek,
they're both the same device, but 0x30000000 is an earlier silicon spin.
perform the reboot action via the reset register instead of our legacy
method. Default is 0 (use legacy). This is needed because some systems
hang on reboot even though they claim to support the reset register.
MFC after: 2 days
and pc98 MD files. Remove nodevice and nooption lines specific
to sio(4) from ia64, powerpc and sparc64 NOTES. There were no
such lines for arm yet.
sio(4) is usable on less than half the platforms, not counting
a future mips platform. Its presence in MI files is therefore
increasingly becoming a burden.
mark system calls as being MPSAFE:
- Stop conditionally acquiring Giant around system call invocations.
- Remove all of the 'M' prefixes from the master system call files.
- Remove support for the 'M' prefix from the script that generates the
syscall-related files from the master system call files.
- Don't explicitly set SYF_MPSAFE when registering nfssvc.
- fix "No sound in KDE":
The problem is related to the implementation of Envy24(1712) hardware
mixer support in the driver. Envy24(1712) has very precise 36bit wide
hardware mixer, which is superior that vchans (software sound mixer in
the kernel). The driver supports Envy24(1712) hardware mixer, so up to
10 channels (5 stereo pairs) can be playback simultaneously.
However, there are problems with the implementation of Envy24(1712)
hardware mixer support in the driver, one of them is the problem with
"no sound in KDE":
When playing back several channels simultaneously and
stoping one of the channels, sound starts to stutter and
plays at very low speed.
Another problem is:
Playing back simultaneously more than one 24bit/32bit
sound file or 16bit sound file and 24bit/32bit sound
file doesn't work as expected.
Submitted by: "Konstantin Dimitrov" <kosio.dimitrov@gmail.com>
except for s_family (which is read-only once after it is set when the
structure is created).
- Mark svr4_sys_ioctl(), svr4_sys_getmsg(), and svr4_sys_putmsg() MPSAFE.
implementations and adjust some of the checks while I'm here:
- Add a new check to make sure we don't return from a syscall in a critical
section.
- Add a new explicit check before userret() to make sure we don't return
with any locks held. The advantage here is that we can include the
syscall number and name in syscall() whereas that info is not available
in userret().
- Drop the mtx_assert()'s of sched_lock and Giant. They are replaced by
the more general checks just added.
MFC after: 2 weeks
a count of all non-spin locks, not just lockmgr locks. This can give us a
much cheaper way to see if we have any locks held (such as when returning
to userland via userret()) without requiring WITNESS.
MFC after: 1 week
poll (i.e. call read_char() method) slave keyboards.
This workaround should fix problem with kbdmux(4) and
atkbd(4) not working in ddb(4) and mid-boot.
MFC after: 1 week
kern_fstatfs() so that it is still held when prison_enforce_statfs() is
called (since that function likes to poke and prod at the mountpoint
structure).
MFC after: 3 days
all other mtx_lock() operations to block. Previously, when the mutex was
destroyed, it would still have a valid value in mtx_lock(): either the
unowned cookie, which would allow a subsequent mtx_lock() to succeed, or a
pointer to the thread who destroyed the mutex if the mutex was locked when
it was destroyed.
MFC after: 3 days
kern_accept() and accept1(). If another thread closed the new file
descriptor and the first thread later got an error trying to copyout the
socket address, then it would attempt to close the wrong file object. To
fix, add a struct file ** argument to kern_accept(). If it is non-NULL,
then on success kern_accept() will store a pointer to the new file object
there and not release any of the references. It is up to the calling code
to drop the references appropriately (including a call to fdclose() in case
of error to safely handle the aforementioned race). While I'm at it, go
ahead and fix the svr4 streams code to not leak the accept fd if it gets an
error trying to copyout the streams structures.
map was obtained from the SMAP. SMAP is trustworthy, and the memory
extending feature is a band-aid for older systems where FreeBSD's methods
of detecting memory were not always trustworthy. This fixes the issue
where using hw.physmem could result in the ACPI tables getting trashed
breaking ACPI.
MFC after: 3 days
Tested on: i386