cninit. This allows a console driver to replace the existing console
by calling cninit again, eg during the device probe. Otherwise the
multiple console code sends output to both, which is unfortunate if
they're using the same hardware.
about calls to SYSCTL_OUT() made with locks held if the buffer has not
been pre-wired. SYSCTL_OUT() should not be called while holding locks,
but if this is not possible, the buffer should be wired by calling
sysctl_wire_old_buffer() before grabbing any locks.
that LIO_READ and LIO_WRITE were requests for kevent()-based
notification of completion. Modify _aio_aqueue() to recognize LIO_READ
and LIO_WRITE.
Notes: (1) The patch provided by the PR perpetuates a second bug in this
code, a direct access to user-space memory. This change fixes that bug
as well. (2) This change is to code that implements a deprecated interface.
It should probably be removed after an MFC.
PR: kern/39556
investigate the problem described below.
I am seeing some strange livelock on recent -current sources with
a slow box under heavy load, which disappears with this change.
This might suggest some kind of problem (either insufficient locking,
or mishandling of priorities) in the poll_idle thread.
- v_vflag is protected by the vnode lock and is used when synchronization
with VOP calls is needed.
- v_iflag is protected by interlock and is used for dealing with vnode
management issues. These flags include X/O LOCK, FREE, DOOMED, etc.
- All accesses to v_iflag and v_vflag have either been locked or marked with
mp_fixme's.
- Many ASSERT_VOP_LOCKED calls have been added where the locking was not
clear.
- Many functions in vfs_subr.c were restructured to provide for stronger
locking.
Idea stolen from: BSD/OS
linker_load_module() instead.
This fixes a bug where the kernel was unable to properly locate and
load a kernel module in vfs_mount() (and probably in the netgraph
code as well since it was using the same function). This is because
the linker_load_file() does not properly search the module path.
Problem found by: peter
Reviewed by: peter
Thanks to: peter
kernel access control.
Invoke appropriate MAC framework entry points to authorize readdir()
operations in the native ABI.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
Make idle process state more consistant.
Add an assert on thread state.
Clean up idleproc/mi_switch() interaction.
Use a local instead of referencing curthread 7 times in a row
(I've been told curthread can be expensive on some architectures)
Remove some commented out code.
Add a little commented out code (completion coming soon)
Reviewed by: jhb@freebsd.org
kernel access control
Invoke appropriate MAC framework entry points to authorize a number
of vnode operations, including read, write, stat, poll. This permits
MAC policies to revoke access to files following label changes,
and to limit information spread about the file to user processes.
Note: currently the file cached credential is used for some of
these authorization check. We will need to expand some of the
MAC entry point APIs to permit multiple creds to be passed to
the access control check to allow diverse policy behavior.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Restructure the vn_open_cred() access control checks to invoke
the MAC entry point for open authorization. Note that MAC can
reject open requests where existing DAC code skips the open
authorization check due to O_CREAT. However, the failure mode
here is the same as other failure modes following creation,
wherein an empty file may be left behind.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke an appropriate MAC entry point to authorize execution of
a file by a process. The check is placed slightly differently
than it appears in the trustedbsd_mac tree so that it prevents
a little more information leakage about the target of the execve()
operation.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
the inits/destroys are done without the cache locks held even in the
persistent-lock calls. I may be cheating a little by using the MAC
"already initialized" flag for now.
other references to that vnode as a trace vnode in other processes as well
as in any pending requests on the todo list. Thus, it is possible for a
ktrace request structure to have a NULL ktr_vp when it is destroyed in
ktr_freerequest(). We shouldn't call vrele() on the vnode in that case.
Reported by: bde
kernel access control.
Instrument chdir() and chroot()-related system calls to invoke
appropriate MAC entry points to authorize the two operations.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Implement two IOCTLs at the socket level to retrieve the primary
and peer labels from a socket. Note that this user process interface
will be changing to improve multi-policy support.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Authorize vop_readlink() and vop_lookup() activities during recursive
path lookup via namei() via calls to appropriate MAC entry points.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Authorize the creation of UNIX domain sockets in the file system
namespace via an appropriate invocation a MAC framework entry
point.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Instrument ctty driver invocations of various vnode operations on the
terminal controlling tty to perform appropriate MAC framework
authorization checks.
Note: VOP_IOCTL() on the ctty appears to be authorized using NOCRED in
the existing code rather than td->td_ucred. Why?
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Instrument the ktrace write operation so that it invokes the MAC
framework's vnode write authorization check.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Instrument the kernel ACL retrieval and modification system calls
to invoke MAC framework entry points to authorize these operations.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Instrument connect(), listen(), and bind() system calls to invoke
MAC framework entry points to permit policies to authorize these
requests. This can be useful for policies that want to limit
the activity of processes involving particular types of IPC and
network activity.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
sysctl purposes. Also add two fields to struct vnode, v_cachedfs and
v_cachedid, which hold the vnode's device and file id and are filled in
by vn_open_cred() and vn_stat().
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke the necessary MAC entry points to maintain labels on sockets.
In particular, invoke entry points during socket allocation and
destruction, as well as creation by a process or during an
accept-scenario (sonewconn). For UNIX domain sockets, also assign
a peer label. As the socket code isn't locked down yet, locking
interactions are not yet clear. Various protocol stack socket
operations (such as peer label assignment for IPv4) will follow.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke the necessary MAC entry points to maintain labels on vnodes.
In particular, initialize the label when the vnode is allocated or
reused, and destroy the label when the vnode is going to be released,
or reused. Wow, an object where there really is exactly one place
where it's allocated, and one other where it's freed. Amazing.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke additional MAC entry points when an mbuf packet header is
copied to another mbuf: release the old label if any, reinitialize
the new header, and ask the MAC framework to copy the header label
data. Note that this requires a potential allocation operation,
but m_copy_pkthdr() is not permitted to fail, so we must block.
Since we now use interrupt threads, this is possible, but not
desirable.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke the necessary MAC entry points to maintain labels on header
mbufs. In particular, invoke entry points during the two mbuf
header allocation cases, and the mbuf freeing case. Pass the "how"
argument at allocation time to the MAC framework so that it can
determine if it is permitted to block (as with policy modules),
and permit the initialization entry point to fail if it needs to
allocate memory but is not permitted to, failing the mbuf
allocation.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Implement MAC framework access control entry points relating to
operations on mountpoints. Currently, this consists only of
access control on mountpoint listing using the various statfs()
variations. In the future, it might also be desirable to
implement checks on mount() and unmount().
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke the necessary MAC entry points to maintain labels on
mount structures. In particular, invoke entry points for
intialization and destruction in various scenarios (root,
non-root). Also introduce an entry point in the boot procedure
following the mount of the root file system, but prior to the
start of the userland init process to permit policies to
perform further initialization.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Implement inter-process access control entry points for the MAC
framework. This permits policy modules to augment the decision
making process for process and socket visibility, process debugging,
re-scheduling, and signaling.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke the necessary MAC entry points to maintain labels on
process credentials. In particular, invoke entry points for
the initialization and destruction of struct ucred, the copying
of struct ucred, and permit the initial labels to be set for
both process 0 (parent of all kernel processes) and process 1
(parent of all user processes).
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Replace 'void *' with 'struct mac *' now that mac.h is in the base
tree. The current POSIX.1e-derived userland MAC interface is
schedule for replacement, but will act as a functional placeholder
until the replacement is done. These system calls allow userland
processes to get and set labels on both the current process, as well
as file system objects and file descriptor backed objects.
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the operating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
Introduce two node vnode operations required to support MAC. First,
VOP_REFRESHLABEL(), which will be invoked by callers requiring that
vp->v_label be sufficiently "fresh" for access control purposes.
Second, VOP_SETLABEL(), which be invoked by callers requiring that
the passed label contents be updated. The file system is responsible
for updating v_label if appropriate in coordination with the MAC
framework, as well as committing to disk. File systems that are
not MAC-aware need not implement these VOPs, as the MAC framework
will default to maintaining a single label for all vnodes based
on the label on the file system mount point.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
While I don't think this is the best solution, it certainly is the
fastest and in trying to find bottlenecks in network related code
I want this out of the way, so that I don't have to think about it.
What this means, for mbuf clusters anyway is:
- one less malloc() to do for every cluster allocation (replaced with
a relatively quick calculation + assignment)
- no more free() in the cluster free case (replaced with empty space) :-)
This can offer a substantial throughput improvement, but it may not for
all cases. Particularly noticable for larger buffer sends/recvs.
See http://people.freebsd.org/~bmilekic/code/measure2.txt for a rough
idea.
function. This permits conditionally compiled extensions to the
packet header copying semantic, such as extensions to copy MAC
labels.
Reviewed by: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
with a general purpose front end entry point for user applications
to invoke. The MAC framework will route the system call to the
appropriate policy by name.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
special actions for safety. One of these is to make sure that file descriptors
0..2 are in use, by opening /dev/null for those that are not already open.
Another is to close any file descriptors 0..2 that reference procfs. However,
these checks were made out of order, so that it was still possible for a
set-user-ID or set-group-ID process to be started with some of the file
descriptors 0..2 unused.
Submitted by: Georgi Guninski <guninski@guninski.com>
be swapped out. Do not put such the thread directly back to the run
queue.
Spotted by: David Xu <davidx@viasoft.com.cn>
While I am here, s/PS_TIMEOUT/TDF_TIMEOUT/.
swapped in, we do not have to ask for the scheduler thread to do
that.
- Assert that a process is not swapped out in runq functions and
swapout().
- Introduce thread_safetoswapout() for readability.
- In swapout_procs(), perform a test that may block (check of a
thread working on its vm map) first. This lets us call swapout()
with the sched_lock held, providing a better atomicity.
except for the fact tha they are presently swapped out. Also add a process
flag to indicate that the process has started the struggle to swap
back in. This will be needed for the case where multiple threads
start the swapin action top a collision. Also add code to stop
a process fropm being swapped out if one of the threads in this
process is actually off running on another CPU.. that might hurt...
Submitted by: Seigo Tanimura <tanimura@r.dl.itc.u-tokyo.ac.jp>
so that the data is less likely to be inconsistent if SYSCTL_OUT() blocks.
If the data is large, wire the output buffer instead.
This is somewhat less than optimal, since the handler could skip the copy
if it knew that the data was static.
If the data is dynamic, we are still not guaranteed to get a consistent
copy since another processor could change the data while the copy is in
progress because the data is not locked. This problem could be solved if
the generic handlers had the ability to grab the proper lock before the
copy and release it afterwards.
This may duplicate work done in other sysctl handlers in the kernel which
also copy the data, possibly while a lock is held, before calling they call
a generic handler to output the data. These handlers should probably call
SYSCTL_OUT() directly.
SYSCTL_OUT() from blocking while locks are held. This should
only be done when it would be inconvenient to make a temporary copy of
the data and defer calling SYSCTL_OUT() until after the locks are
released.
not responding) then drop any data on the outgoing queue in
soisdisconnected because there is no way to get it to its destination
any longer.
The only objection to this patch I got on -net was from Terry, who
wasn't sure that the condition in question could arise, so I provided
some example code.
during execve() to use a 'credential_changing' variable. This makes it
easier to have outstanding patchsets against this code, as well as to
add conditionally defined clauses.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
since it breaks mtx_owned() on spin mutexes when used outside of
mtx_assert(). Unfortunately we currently use it in the i386 MD code
and in the sio(4) driver.
Reported by: bde
'single threading thread' when the last other thread suspends.
I had this code in there before but it seems to have been
accidentally deleted somewhere along the way. This would only affect
multithreaded processes.
Reviewed by: David Xu <bsddiy@yahoo.com>
pnbuf to increase the chances of detecting use of a free'd name buffer
if SAVENAME or SAVESTART wasn't passed in. Curiously, running with these
changes doesn't panic the kernel, and should.
of the inlines, like its cousin, m_free(). Also, make a small (first
step?) optimisation of m_free() to use the MBP_PERSIST{,ENT} interface
to hold the lock across frees when possible. The thing is that right
now, we can only do this easily for at most across one mbuf + one
cluster free, as the comment mentions (it also explains why). Anyway,
some basic tests revealed a 5-10% overall improvement. Some of the
results can be found here:
http://people.freebsd.org/~bmilekic/code/measure.txt
non-default but reasonable values of hz this member overflowed,
breaking NFS over UDP.
Also, as long as I'm plowing up struct sockbuf ... Change certain
members from u_long/long to u_int/int in order to reduce wasted
space on 64-bit machines. This change was requested by Andrew
Gallatin.
Netstat and systat need to be rebuilt. I am incrementing
__FreeBSD_version in case any ports need to change.
is that grouped frees will be done as most often as possible without
dropping the cache lock in between. So, for the most part, they'll be
done without the lock being dropped. This is particularly true if you
have something that does a grouped m_getm() or m_getcl() (a cluster and
mbuf at the same time) - most likely getting the buffers from the
same per-CPU cache - and then frees them with m_free{,m}(). Unless
the buffers' underlying buckets were moved, the free will be done without
the lock getting dropped in between. So far, only m_free() has been
shown how to do this, and m_freem() will shortly follow.
Since I'm here, I also fixed a small (but mostly harmless) type-mismatch
introduced in the last commit.
disk devices. This fixes the problem with these ioctls returning
EINVAL for plain slice devices with no disklabel on them.
The patch incorporates improvements and style fixes from BDE.
Reviewed by: bde
Approved by: obrien (mentor)
do_sendfile(). This allows us to rearrange an if statement in order to
avoid doing an unnecesary call to vm_page_lock_queues(), and an attempt
at re-wiring the pages (which were wired in the vm_page_alloc() call).
Reviewed by: alc, jhb
open() of fhopen(). Currently this has no actual affect due to the
treatment of VAPPEND in vaccess() and vaccess_acl() as a subset of
VWRITE, but when MAC comes in, MAC will distinguish the two. Note:
if any file systems are cutting their own permission models, they
may wish to now take this into account.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
handler in the kernel at the same time. Also, allow for the
exec_new_vmspace() code to build a different sized vmspace depending on
the executable environment. This is a big help for execing i386 binaries
on ia64. The ELF exec code grows the ability to map partial pages when
there is a page size difference, eg: emulating 4K pages on 8K or 16K
hardware pages.
Flesh out the i386 emulation support for ia64. At this point, the only
binary that I know of that fails is cvsup, because the cvsup runtime
tries to execute code in pages not marked executable.
Obtained from: dfr (mostly, many tweaks from me).
- Sanity check the mount options list (remove duplicates) with
vfs_sanitizeopts().
- Fix some malloc(0)/free(NULL) bugs.
Reviewed by: rwatson (some time ago)
As this code is not actually used by any of the existing
interfaces, it seems unlikely to break anything (famous
last words).
The internal kernel interface to manipulate these attributes
is invoked using two new IO_ flags: IO_NORMAL and IO_EXT.
These flags may be specified in the ioflags word of VOP_READ,
VOP_WRITE, and VOP_TRUNCATE. Specifying IO_NORMAL means that
you want to do I/O to the normal data part of the file and
IO_EXT means that you want to do I/O to the extended attributes
part of the file. IO_NORMAL and IO_EXT are mutually exclusive
for VOP_READ and VOP_WRITE, but may be specified individually
or together in the case of VOP_TRUNCATE. For example, when
removing a file, VOP_TRUNCATE is called with both IO_NORMAL
and IO_EXT set. For backward compatibility, if neither IO_NORMAL
nor IO_EXT is set, then IO_NORMAL is assumed.
Note that the BA_ and IO_ flags have been `merged' so that they
may both be used in the same flags word. This merger is possible
by assigning the IO_ flags to the low sixteen bits and the BA_
flags the high sixteen bits. This works because the high sixteen
bits of the IO_ word is reserved for read-ahead and help with
write clustering so will never be used for flags. This merge
lets us get away from code of the form:
if (ioflags & IO_SYNC)
flags |= BA_SYNC;
For the future, I have considered adding a new field to the
vattr structure, va_extsize. This addition could then be
exported through the stat structure to allow applications to
find out the size of the extended attribute storage and also
would provide a more standard interface for truncating them
(via VOP_SETATTR rather than VOP_TRUNCATE).
I am also contemplating adding a pathconf parameter (for
concreteness, lets call it _PC_MAX_EXTSIZE) which would
let an application determine the maximum size of the extended
atribute storage.
Sponsored by: DARPA & NAI Labs.
so it needs an explicit #include <machine/frame.h> to get 'struct
trapframe'. The fact that it needs this at this level is rather bogus
but it will not compile without it.
the filelist_lock and check nfiles. This closes a race where we had to
unlock the filedesc to re-lock the filelist_lock.
Reported by: David Xu
Reviewed by: bde (mostly)
after a panic which is not an interrupt thread, or the thread which
caused the panic. Also, remove panicstr checks from msleep() and from
cv_wait() in order to allow threads to go to sleep and yeild the cpu
to the panicing thread, or to an interrupt thread which might
be doing the crashdump.
Reviewed by: jhb (and it was mostly his idea too)
support creation times such as UFS2) to the value of the
modification time if the value of the modification time is older
than the current creation time. See utimes(2) for further details.
Sponsored by: DARPA & NAI Labs.
semicolons from the end of macros:
#define FOO() bar(a,b,c);
becomes
#define FOO() bar(a,b,c)
Thus requiring the semicolon in the invocation of FOO. This is much
cleaner syntax and more consistent with expectations when writing
function-like things in source.
With both peril-sensitive sunglasses and flame-proof undies on, tighten
up some types, and work around some warnings generated by this. There
are some _horrible_ const/non-const issues in this code.
and a cluster in one shot.
o Introduce MBP_PERSIST and MBP_PERSISTENT control bits to mb_alloc();
MBP_PERSIST means "if you can allocate, then keep the cache lock
held on exit," and MBP_PERSISTENT means "a cache lock is alredy held
on entry, so allocate from the specified (already locked) cache."
They may be used in combination.
o m_getcl() uses the MBP_PERSIST/MBP_PERSISTENT interface so that it
doesn't drop the cache lock in between the mbuf and cluster allocations.
o m_getm(), which takes a size and allocates an mbuf + cluster "best fit"
chain, has been moved from uipc_mbuf.c to subr_mbuf.c and shown how to
use MBP_PERSIST/MBP_PERSISTENT to attempt to do a grouped allocation
without dropping the cache lock in between.
Why this is good: much less bus-locked lock acquires/drops when they're
not needed. Also, prototype for m_getcl():
struct mbuf * m_getcl(int how, short type, int flags);
"how" and "type" are self-explanatory. "flags" may be M_PKTHDR, in
which case m_getcl() will make the mbuf a pkthdr-mbuf.
While I'm in subr_mbuf.c:
o Every exported routine now has a nice comment with a description of
the expected arguments. Eventually, mbuf(9) needs to be re-vamped
but there's still more code to write/finalize before I get to that.
o internal macros have been changed a bit.
o consistently use 'short' for "type." This somehow slipped through
before (that 'type' was sometimes declared as int).
Alfred has been pushing for the MBP_PERSIST{,ENT} thing for almost a
year now. Luigi asked for m_getcl(), and will probably MFC that
part of this commit.
TODO [Related]: teach mb_free() about MBP_PERSIST{, ENT}.
1/ don't need to set td_state to TDS_RUNNING in fork_return.
it's already set in choosethread().
2/ Set a child process state to "normal" as opposed to "new"
when we allow it to be put on the run queue.
Allows child to receive signals from the parent if the parent
runs first and tries to immediatly signal he child.
Submitted by: (part 2) Thomas Moestl <tmoestl@gmx.net>
formulated. The correct states should be:
IDLE: On the idle KSE list for that KSEG
RUNQ: Linked onto the system run queue.
THREAD: Attached to a thread and slaved to whatever state the thread is in.
This means that most places where we were adjusting kse state can go away
as it is just moving around because the thread is..
The only places we need to adjust the KSE state is in transition to and from
the idle and run queues.
Reviewed by: jhb@freebsd.org
filedesc is already locked rather than having chroot() unlock the
filedesc so chroot_refuse_vdir_fds() can immediately relock it.
- Reorder chroot() a bitso that we do the namei lookup before checking
the process's struct filedesc. This closes at least one potential race
and allows us to only acquire the filedsec lock once in chroot().
- Push down Giant slightly into chroot().
page-zeroing code as well as from the general page-zeroing code and use a
lazy tlb page invalidation scheme based on a callback made at the end
of mi_switch.
A number of people came up with this idea at the same time so credit
belongs to Peter, John, and Jake as well.
Two-way SMP buildworld -j 5 tests (second run, after stabilization)
2282.76 real 2515.17 user 704.22 sys before peter's IPI commit
2266.69 real 2467.50 user 633.77 sys after peter's commit
2232.80 real 2468.99 user 615.89 sys after this commit
Reviewed by: peter, jhb
Approved by: peter
choosethread() in MI C code instead of doing it in in assembly in all the
various cpu_switch() functions. This fixes problems on ia64 and sparc64.
Reviewed by: julian, peter, benno
Tested on: i386, alpha, sparc64
- It actually works this time, honest!
- Fine grained TLB shootdowns for SMP on i386. IPI's are very expensive,
so try and optimize things where possible.
- Introduce ranged shootdowns that can be done as a single IPI.
- PG_G support for i386
- Specific-cpu targeted shootdowns. For example, there is no sense in
globally purging the TLB cache for where we are stealing a page from
the local unshared process on the local cpu. Use pm_active to track
this.
- Add some instrumentation for the tlb shootdown code.
- Rip out SMP code from <machine/cpufunc.h>
- Try and fix some very bogus PG_G and PG_PS interactions that were bad
enough to cause vm86 bios calls to break. vm86 depended on our existing
bugs and this was the cause of the VESA panics last time.
- Fix the silly one-line error that caused the 'panic: bad pte' last time.
- Fix a couple of other silly one-line errors that should have caused more
pain than they did.
Some more work is needed:
- pmap_{zero,copy}_page[_idle]. These can be done without IPI's if we
have a hook in cpu_switch.
- The IPI handlers need some cleanup. I have a bogus %ds load that can
be avoided.
- APTD handling is rather bogus and appears to be a large source of
global TLB IPI shootdowns for no really good reason.
I see speedups of between 1.5% and ~4% on buildworlds in a while 1 loop.
I expect to see a bigger difference when there is significant pageout
activity or the system otherwise has memory shortages.
I have backed out a few optimizations that I had been using over the last
few days in order to be a little more conservative. I'll revisit these
again over the next few days as the dust settles.
New option: DISABLE_PG_G - In case I missed something.
This allows accton(1) to be used with an append-only file.
PR: 7169
Reported by: Joao Carlos Mendes Luis <jonny@jonny.eng.br>
Reviewed by: bde
Approved by: sheldonh (mentor)
MFC after: 2 weeks
methodology similar to the vm_map_entry splay and the VM splay that Alan
Cox is working on. Extensive testing has appeared to have shown no
increase in overhead.
Disadvantages
Dirties more cache lines during lookups.
Not as fast as a hash table lookup (but still N log N and optimal
when there is locality of reference).
Advantages
vnode->v_dirtyblkhd is now perfectly sorted, making fsync/sync/filesystem
syncer operate more efficiently.
I get to rip out all the old hacks (some of which were mine) that tried
to keep the v_dirtyblkhd tailq sorted.
The per-vnode splay tree should be easier to lock / SMPng pushdown on
vnodes will be easier.
This commit along with another that Alan is working on for the VM page
global hash table will allow me to implement ranged fsync(), optimize
server-side nfs commit rpcs, and implement partial syncs by the
filesystem syncer (aka filesystem syncer would detect that someone is
trying to get the vnode lock, remembers its place, and skip to the
next vnode).
Note that the buffer cache splay is somewhat more complex then other splays
due to special handling of background bitmap writes (multiple buffers with
the same lblkno in the same vnode), and B_INVAL discontinuities between the
old hash table and the existence of the buffer on the v_cleanblkhd list.
Suggested by: alc
of being correct. None of the root mountable filesystems
do something at VFS_START().
Shorten a comment to fix a style bug while I'm here.
PR: kern/18505
pmap_swapin_proc/pmap_swapout_proc functions from the MD pmap code
and use a single equivalent MI version. There are other cleanups
needed still.
While here, use the UMA zone hooks to keep a cache of preinitialized
proc structures handy, just like the thread system does. This eliminates
one dependency on 'struct proc' being persistent even after being freed.
There are some comments about things that can be factored out into
ctor/dtor functions if it is worth it. For now they are mostly just
doing statistics to get a feel of how it is working.
Tell vop_strategy_pre() to use this instead.
- Ignore B_CLUSTER bufs. Their components are locked but they don't really
exist so they don't have to be. This isn't ideal but it is safe.
- Cache a pointer to the vnode's object in the buf.
- Hold a reference to that object in addition to the vnode's reference just
to be consistent.
- Cleanup code that got the object indirectly through the vp and VOP calls.
This fixes at least one case where we were calling GETVOBJECT without a lock.
It also avoids an expensive layered call at the cost of another pointer in
struct buf.
- Grab the vnode object early in exec when we still have the vnode lock.
- Cache the object in the image_params.
- Make use of the cached object in imgact_*.c
- Switch to the new vop_strategy_pre for lock validation.
VOP_STRATEGY requires only that the buf is locked UNLESS the block numbers need
to be translated. There may be other reasons, but as long as the underlying
layer uses a VOP to perform the operations they will be caught later.
- Disable original vop_strategy lock specification.
- Switch to the new vop_strategy_pre for lock validation.
VOP_STRATEGY requires only that the buf is locked UNLESS the block numbers need
to be translated. There may be other reasons, but as long as the underlying
layer uses a VOP to perform the operations they will be caught later.
queue lock (revision 1.33 of vm/vm_page.c removed them).
o Make the free queue lock a spin lock because it's sometimes acquired
inside of a critical section.
The file vfs_conf.c which was dealing with root mounting has
been repo-copied into vfs_mount.c to preserve history.
This makes nmount related development easier, and help reducing
the size of vfs_syscalls.c, which is still an enormous file.
Reviewed by: rwatson
Repo-copy by: peter
direct calls for the two places where the kernel calls into soft
updates code. Set up the hooks in softdep_initialize() and NULL
them out in softdep_uninitialize(). This change allows soft updates
to function correctly when ufs is loaded as a module.
Reviewed by: mckusick
close up the continued line after removing the cast made the line.
space before parentheses in indirect function call.
Add an addtional error handler case for the results of callback.
Submitted by: bde
The ability to schedule multiple threads per process
(one one cpu) by making ALL system calls optionally asynchronous.
to come: ia64 and power-pc patches, patches for gdb, test program (in tools)
Reviewed by: Almost everyone who counts
(at various times, peter, jhb, matt, alfred, mini, bernd,
and a cast of thousands)
NOTE: this is still Beta code, and contains lots of debugging stuff.
expect slight instability in signals..
- Add vfs_badlock_print to control whether or not we print lock violations
- Add vfs_badlock_panic to control whether we panic on lock violations
Both default to on to mimic the original behavior if DEBUG_VFS_LOCKS is on.
vnode in the case that the target exists and is the same vnode as
the parent (i.e. "mkdir ."). The namei() call does not leave the
vnode locked in this case even though you might expect it to.
This bug was mostly harmless in practice because unlocking an already
unlocked vnode currently does not trigger any panics or warnings.
Reviewed by: jeff
passed down the VFS stack. While I'm here, replace a '0' with a 'NULL'
to make the code more readable.
Sponsored by: DARPA, NAI Labs
Obtained from: TrustedBSD Project
MAKEDEV: Add MAKEDEV glue for the ti(4) device nodes.
ti.4: Update the ti(4) man page to include information on the
TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS kernel options,
and also include information about the new character
device interface and the associated ioctls.
man9/Makefile: Add jumbo.9 and zero_copy.9 man pages and associated
links.
jumbo.9: New man page describing the jumbo buffer allocator
interface and operation.
zero_copy.9: New man page describing the general characteristics of
the zero copy send and receive code, and what an
application author should do to take advantage of the
zero copy functionality.
NOTES: Add entries for ZERO_COPY_SOCKETS, TI_PRIVATE_JUMBOS,
TI_JUMBO_HDRSPLIT, MSIZE, and MCLSHIFT.
conf/files: Add uipc_jumbo.c and uipc_cow.c.
conf/options: Add the 5 options mentioned above.
kern_subr.c: Receive side zero copy implementation. This takes
"disposable" pages attached to an mbuf, gives them to
a user process, and then recycles the user's page.
This is only active when ZERO_COPY_SOCKETS is turned on
and the kern.ipc.zero_copy.receive sysctl variable is
set to 1.
uipc_cow.c: Send side zero copy functions. Takes a page written
by the user and maps it copy on write and assigns it
kernel virtual address space. Removes copy on write
mapping once the buffer has been freed by the network
stack.
uipc_jumbo.c: Jumbo disposable page allocator code. This allocates
(optionally) disposable pages for network drivers that
want to give the user the option of doing zero copy
receive.
uipc_socket.c: Add kern.ipc.zero_copy.{send,receive} sysctls that are
enabled if ZERO_COPY_SOCKETS is turned on.
Add zero copy send support to sosend() -- pages get
mapped into the kernel instead of getting copied if
they meet size and alignment restrictions.
uipc_syscalls.c:Un-staticize some of the sf* functions so that they
can be used elsewhere. (uipc_cow.c)
if_media.c: In the SIOCGIFMEDIA ioctl in ifmedia_ioctl(), avoid
calling malloc() with M_WAITOK. Return an error if
the M_NOWAIT malloc fails.
The ti(4) driver and the wi(4) driver, at least, call
this with a mutex held. This causes witness warnings
for 'ifconfig -a' with a wi(4) or ti(4) board in the
system. (I've only verified for ti(4)).
ip_output.c: Fragment large datagrams so that each segment contains
a multiple of PAGE_SIZE amount of data plus headers.
This allows the receiver to potentially do page
flipping on receives.
if_ti.c: Add zero copy receive support to the ti(4) driver. If
TI_PRIVATE_JUMBOS is not defined, it now uses the
jumbo(9) buffer allocator for jumbo receive buffers.
Add a new character device interface for the ti(4)
driver for the new debugging interface. This allows
(a patched version of) gdb to talk to the Tigon board
and debug the firmware. There are also a few additional
debugging ioctls available through this interface.
Add header splitting support to the ti(4) driver.
Tweak some of the default interrupt coalescing
parameters to more useful defaults.
Add hooks for supporting transmit flow control, but
leave it turned off with a comment describing why it
is turned off.
if_tireg.h: Change the firmware rev to 12.4.11, since we're really
at 12.4.11 plus fixes from 12.4.13.
Add defines needed for debugging.
Remove the ti_stats structure, it is now defined in
sys/tiio.h.
ti_fw.h: 12.4.11 firmware.
ti_fw2.h: 12.4.11 firmware, plus selected fixes from 12.4.13,
and my header splitting patches. Revision 12.4.13
doesn't handle 10/100 negotiation properly. (This
firmware is the same as what was in the tree previously,
with the addition of header splitting support.)
sys/jumbo.h: Jumbo buffer allocator interface.
sys/mbuf.h: Add a new external mbuf type, EXT_DISPOSABLE, to
indicate that the payload buffer can be thrown away /
flipped to a userland process.
socketvar.h: Add prototype for socow_setup.
tiio.h: ioctl interface to the character portion of the ti(4)
driver, plus associated structure/type definitions.
uio.h: Change prototype for uiomoveco() so that we'll know
whether the source page is disposable.
ufs_readwrite.c:Update for new prototype of uiomoveco().
vm_fault.c: In vm_fault(), check to see whether we need to do a page
based copy on write fault.
vm_object.c: Add a new function, vm_object_allocate_wait(). This
does the same thing that vm_object allocate does, except
that it gives the caller the opportunity to specify whether
it should wait on the uma_zalloc() of the object structre.
This allows vm objects to be allocated while holding a
mutex. (Without generating WITNESS warnings.)
vm_object_allocate() is implemented as a call to
vm_object_allocate_wait() with the malloc flag set to
M_WAITOK.
vm_object.h: Add prototype for vm_object_allocate_wait().
vm_page.c: Add page-based copy on write setup, clear and fault
routines.
vm_page.h: Add page based COW function prototypes and variable in
the vm_page structure.
Many thanks to Drew Gallatin, who wrote the zero copy send and receive
code, and to all the other folks who have tested and reviewed this code
over the years.
obtained, when all other scheduling activity is suspended. This is needed
on sparc64 to deactivate the vmspace of the exiting process on all cpus.
Otherwise if another unrelated process gets the exact same vmspace structure
allocated to it (same address), its address space will not be activated
properly. This seems to fix some spontaneous signal 11 problems with smp
on sparc64.
Add a comment so that people don't forget to keep the
version in src/lib/libmd/md5c.c in sync with this one.
This fixes a warning on sparc64.
Reviewed by: phk
64-bit architectures that was introduced in the UFS2 code
merge two days ago. The stat structure change that caused
the problem was the addition of the file create time.
Submitted by: Bruce Evans <bde@zeta.org.au>
Sponsored by: DARPA & NAI Labs.
improperly clearing more then just the invalid portions of the page. (This
bug is not known to have been triggered by anything).
Submitted by: tegge
MFC after: 7 days
uio now that we don't use uiomove() anymore.
o Enforce stricter checks on the length of the iov's in
nmount(2) since we now malloc() them individually and
corrupted iov's could make the kernel crash in malloc()
with "kmem_map too small".
Reviewed by: phk
filesystem expands the inode to 256 bytes to make space for 64-bit
block pointers. It also adds a file-creation time field, an ability
to use jumbo blocks per inode to allow extent like pointer density,
and space for extended attributes (up to twice the filesystem block
size worth of attributes, e.g., on a 16K filesystem, there is space
for 32K of attributes). UFS2 fully supports and runs existing UFS1
filesystems. New filesystems built using newfs can be built in either
UFS1 or UFS2 format using the -O option. In this commit UFS1 is
the default format, so if you want to build UFS2 format filesystems,
you must specify -O 2. This default will be changed to UFS2 when
UFS2 proves itself to be stable. In this commit the boot code for
reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c)
as there is insufficient space in the boot block. Once the size of the
boot block is increased, this code can be defined.
Things to note: the definition of SBSIZE has changed to SBLOCKSIZE.
The header file <ufs/ufs/dinode.h> must be included before
<ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and
ufs_lbn_t.
Still TODO:
Verify that the first level bootstraps work for all the architectures.
Convert the utility ffsinfo to understand UFS2 and test growfs.
Add support for the extended attribute storage. Update soft updates
to ensure integrity of extended attribute storage. Switch the
current extended attribute interfaces to use the extended attribute
storage. Add the extent like functionality (framework is there,
but is currently never used).
Sponsored by: DARPA & NAI Labs.
Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
a linked list. This is to allow the merging of the mount
options in the MNT_UPDATE case, as the current data structure
is unsuitable for this.
There are no functional differences in this commit.
Reviewed by: phk