specific privilege names to a broad range of privileges. These may
require some future tweaking.
Sponsored by: nCircle Network Security, Inc.
Obtained from: TrustedBSD Project
Discussed on: arch@
Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri,
Alex Lyashkov <umka at sevcity dot net>,
Skip Ford <skip dot ford at verizon dot net>,
Antoine Brodin <antoine dot brodin at laposte dot net>
to use the "year1-year3" format, as opposed to "year1, year2, year3".
This seems to make lawyers more happy, but also prevents the
lines from getting excessively long as the years start to add up.
Suggested by: imp
and the mpo_create_cred() MAC policy entry point to
mpo_copy_cred_label(). This is more consistent with similar entry
points for creation and label copying, as mac_create_cred() was
called from crdup() as opposed to during process creation. For
a number of policies, this removes the requirement for special
handling when copying credential labels, and improves consistency.
Approved by: re (scottl)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
the MAC policy modules to improve robustness against C string
bugs and vulnerabilities. Following these revisions, all
string construction of labels for export to userspace (or
elsewhere) is performed using the sbuf API, which prevents
the consumer from having to perform laborious and intricate
pointer and buffer checks. This substantially simplifies
the externalization logic, both at the MAC Framework level,
and in individual policies; this becomes especially useful
when policies export more complex label data, such as with
compartments in Biba and MLS.
Bundled in here are some other minor fixes associated with
externalization: including avoiding malloc while holding the
process mutex in mac_lomac, and hence avoid a failure mode
when printing labels during a downgrade operation due to
the removal of the M_NOWAIT case.
This has been running in the MAC development tree for about
three weeks without problems.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
the vendor is only included in the long name currently, reducing
verbosity when modules are registered and unregistered.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
the partition once a partition has been set. This is required for correct
operation of sendmail between partitions.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
This policy can be loaded dynamically, and assigns each process a
partition number, as well as permitting processes to operate outside
the partition. Processes contained in a partition can only "see"
processes inside the same partition, so it's a little like jail.
The partition of a user can be set using the label mechanisms in
login.conf. This sample policy is a good starting point for developers
wanting to learn about how to produce labeled policies, as it labels
only one kernel object, the process credential.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories