forever in vm_handle_hlt().
This is usually not an issue as long as one of the other vcpus properly resets
or powers off the virtual machine. However, if the bhyve(8) process is killed
with a signal the halted vcpu cannot be woken up because it's sleep cannot be
interrupted.
Fix this by waking up periodically and returning from vm_handle_hlt() if
TDF_ASTPENDING is set.
Reported by: Leon Dang
Sponsored by: Nahanni Systems
The faulting instruction needs to be restarted when the exception handler
is done handling the fault. bhyve now does this correctly by setting
'vmexit[vcpu].inst_length' to zero so the %rip is not advanced.
A minor complication is that the fault injection APIs are used by instruction
emulation code that is shared by vmm.ko and bhyve. Thus the argument that
refers to 'struct vm *' in kernel or 'struct vmctx *' in userspace needs to
be loosely typed as a 'void *'.
A nested exception condition arises when a second exception is triggered while
delivering the first exception. Most nested exceptions can be handled serially
but some are converted into a double fault. If an exception is generated during
delivery of a double fault then the virtual machine shuts down as a result of
a triple fault.
vm_exit_intinfo() is used to record that a VM-exit happened while an event was
being delivered through the IDT. If an exception is triggered while handling
the VM-exit it will be treated like a nested exception.
vm_entry_intinfo() is used by processor-specific code to get the event to be
injected into the guest on the next VM-entry. This function is responsible for
deciding the disposition of nested exceptions.
instruction emulation [1].
Fix bug in emulation of opcode 0x8A where the destination is a legacy high
byte register and the guest vcpu is in 32-bit mode. Prior to this change
instead of modifying %ah, %bh, %ch or %dh the emulation would end up
modifying %spl, %bpl, %sil or %dil instead.
Add support for moffsets by treating it as a 2, 4 or 8 byte immediate value
during instruction decoding.
Fix bug in verify_gla() where the linear address computed after decoding
the instruction was not being truncated to the effective address size [2].
Tested by: Leon Dang [1]
Reported by: Peter Grehan [2]
Sponsored by: Nahanni Systems
These changes prevent sysctl(8) from returning proper output,
such as:
1) no output from sysctl(8)
2) erroneously returning ENOMEM with tools like truss(1)
or uname(1)
truss: can not get etype: Cannot allocate memory
there is an environment variable which shall initialize the SYSCTL
during early boot. This works for all SYSCTL types both statically and
dynamically created ones, except for the SYSCTL NODE type and SYSCTLs
which belong to VNETs. A new flag, CTLFLAG_NOFETCH, has been added to
be used in the case a tunable sysctl has a custom initialisation
function allowing the sysctl to still be marked as a tunable. The
kernel SYSCTL API is mostly the same, with a few exceptions for some
special operations like iterating childrens of a static/extern SYSCTL
node. This operation should probably be made into a factored out
common macro, hence some device drivers use this. The reason for
changing the SYSCTL API was the need for a SYSCTL parent OID pointer
and not only the SYSCTL parent OID list pointer in order to quickly
generate the sysctl path. The motivation behind this patch is to avoid
parameter loading cludges inside the OFED driver subsystem. Instead of
adding special code to the OFED driver subsystem to post-load tunables
into dynamically created sysctls, we generalize this in the kernel.
Other changes:
- Corrected a possibly incorrect sysctl name from "hw.cbb.intr_mask"
to "hw.pcic.intr_mask".
- Removed redundant TUNABLE statements throughout the kernel.
- Some minor code rewrites in connection to removing not needed
TUNABLE statements.
- Added a missing SYSCTL_DECL().
- Wrapped two very long lines.
- Avoid malloc()/free() inside sysctl string handling, in case it is
called to initialize a sysctl from a tunable, hence malloc()/free() is
not ready when sysctls from the sysctl dataset are registered.
- Bumped FreeBSD version to indicate SYSCTL API change.
MFC after: 2 weeks
Sponsored by: Mellanox Technologies
This is different than the amount shown for the process e.g. by
/usr/bin/top - that is the mappings faulted in by the mmap'd region
of guest memory.
The values can be fetched with bhyvectl
# bhyvectl --get-stats --vm=myvm
...
Resident memory 413749248
Wired memory 0
...
vmm_stat.[ch] -
Modify the counter code in bhyve to allow direct setting of a counter
as opposed to incrementing, and providing a callback to fetch a
counter's value.
Reviewed by: neel
it implicitly in vmm.ko.
Add ioctl VM_GET_CPUS to get the current set of 'active' and 'suspended' cpus
and display them via /usr/sbin/bhyvectl using the "--get-active-cpus" and
"--get-suspended-cpus" options.
This is in preparation for being able to reset virtual machine state without
having to destroy and recreate it.
'struct vm_guest_paging'.
Check for canonical addressing in vmm_gla2gpa() and inject a protection
fault into the guest if a violation is detected.
If the page table walk is restarted in vmm_gla2gpa() then reset 'ptpphys' to
point to the root of the page tables.
indicate the faulting linear address.
If the guest PML4 entry has the PG_PS bit set then inject a page fault into
the guest with the PGEX_RSV bit set in the error_code.
Get rid of redundant checks for the PG_RW violations when walking the page
tables.
the UART FIFO.
The emulation is constrained in a number of ways: 64-bit only, doesn't check
for all exception conditions, limited to i/o ports emulated in userspace.
Some of these constraints will be relaxed in followup commits.
Requested by: grehan
Reviewed by: tychon (partially and a much earlier version)
to a guest physical address.
PG_PS (page size) field is valid only in a PDE or a PDPTE so it is now
checked only in non-terminal paging entries.
Ignore the upper 32-bits of the CR3 for PAE paging.
to sleep permanently by executing a HLT with interrupts disabled.
When this condition is detected the guest with be suspended with a reason of
VM_SUSPEND_HALT and the bhyve(8) process will exit.
Tested by executing "halt" inside a RHEL7-beta guest.
Discussed with: grehan@
Reviewed by: jhb@, tychon@
the 'HLT' instruction. This condition was detected by 'vm_handle_hlt()' and
converted into the SPINDOWN_CPU exitcode . The bhyve(8) process would exit
the vcpu thread in response to a SPINDOWN_CPU and when the last vcpu was
spun down it would reset the virtual machine via vm_suspend(VM_SUSPEND_RESET).
This functionality was broken in r263780 in a way that made it impossible
to kill the bhyve(8) process because it would loop forever in
vm_handle_suspend().
Unbreak this by removing the code to spindown vcpus. Thus a 'halt' from
a Linux guest will appear to be hung but this is consistent with the
behavior on bare metal. The guest can be rebooted by using the bhyvectl
options '--force-reset' or '--force-poweroff'.
Reviewed by: grehan@
by adding an argument to the VM_SUSPEND ioctl that specifies how the virtual
machine should be suspended, viz. VM_SUSPEND_RESET or VM_SUSPEND_POWEROFF.
The disposition of VM_SUSPEND is also made available to the exit handler
via the 'u.suspended' member of 'struct vm_exit'.
This capability is exposed via the '--force-reset' and '--force-poweroff'
arguments to /usr/sbin/bhyvectl.
Discussed with: grehan@
from any context i.e., it is not required to be called from a vcpu thread. The
ioctl simply sets a state variable 'vm->suspend' to '1' and returns.
The vcpus inspect 'vm->suspend' in the run loop and if it is set to '1' the
vcpu breaks out of the loop with a reason of 'VM_EXITCODE_SUSPENDED'. The
suspend handler waits until all 'vm->active_cpus' have transitioned to
'vm->suspended_cpus' before returning to userspace.
Discussed with: grehan
blocked on it.
This is done by issuing a wakeup after clearing the 'vcpuid' from 'active_cpus'.
Also, use CPU_CLR_ATOMIC() to guarantee visibility of the updated 'active_cpus'
across all host cpus.
attributed if an ExtINT arrives during interrupt injection.
Also, fix a spurious interrupt if the PIC tries to raise an interrupt
before the outstanding one is accepted.
Finally, improve the PIC interrupt latency when another interrupt is
raised immediately after the outstanding one is accepted by creating a
vmexit rather than waiting for one to occur by happenstance.
Approved by: neel (co-mentor)
New ioctls VM_ISA_ASSERT_IRQ, VM_ISA_DEASSERT_IRQ and VM_ISA_PULSE_IRQ
can be used to manipulate the pic, and optionally the ioapic, pin state.
Reviewed by: jhb, neel
Approved by: neel (co-mentor)
being updated outside of the vcpu_lock(). The race is benign and could
potentially result in a missed notification about a pending interrupt to
a vcpu. The interrupt would not be lost but rather delayed until the next
VM exit.
The vcpu's hostcpu is now updated concurrently with the vcpu state change.
When the vcpu transitions to the RUNNING state the hostcpu is set to 'curcpu'.
It is set to 'NOCPU' in all other cases.
Reviewed by: grehan
processor-specific VMCS or VMCB. The pending exception will be delivered right
before entering the guest.
The order of event injection into the guest is:
- hardware exception
- NMI
- maskable interrupt
In the Intel VT-x case, a pending NMI or interrupt will enable the interrupt
window-exiting and inject it as soon as possible after the hardware exception
is injected. Also since interrupts are inherently asynchronous, injecting
them after the hardware exception should not affect correctness from the
guest perspective.
Rename the unused ioctl VM_INJECT_EVENT to VM_INJECT_EXCEPTION and restrict
it to only deliver x86 hardware exceptions. This new ioctl is now used to
inject a protection fault when the guest accesses an unimplemented MSR.
Discussed with: grehan, jhb
Reviewed by: jhb
simplify the implementation of the x2APIC virtualization assist in VT-x.
Prior to this change the vlapic allowed the guest to change its mode from
xAPIC to x2APIC. We don't allow that any more and the vlapic mode is locked
when the virtual machine is created. This is not very constraining because
operating systems already have to deal with BIOS setting up the APIC in
x2APIC mode at boot.
Fix a bug in the CPUID emulation where the x2APIC capability was leaking
from the host to the guest.
Ignore MMIO reads and writes to the vlapic in x2APIC mode. Similarly, ignore
MSR accesses to the vlapic when it is in xAPIC mode.
The default configuration of the vlapic is xAPIC. The "-x" option to bhyve(8)
can be used to change the mode to x2APIC instead.
Discussed with: grehan@
XSAVE-enabled features like AVX.
- Store a per-cpu guest xcr0 register. When switching to the guest FPU
state, switch to the guest xcr0 value. Note that the guest FPU state is
saved and restored using the host's xcr0 value and xcr0 is saved/restored
"inside" of saving/restoring the guest FPU state.
- Handle VM exits for the xsetbv instruction by updating the guest xcr0.
- Expose the XSAVE feature to the guest only if the host has enabled XSAVE,
and only advertise XSAVE features enabled by the host to the guest.
This ensures that the guest will only adjust FPU state that is a subset
of the guest FPU state saved and restored by the host.
Reviewed by: grehan
- Similar to the hack for bootinfo32.c in userboot, define
_MACHINE_ELF_WANT_32BIT in the load_elf32 file handlers in userboot.
This allows userboot to load 32-bit kernels and modules.
- Copy the SMAP generation code out of bootinfo64.c and into its own
file so it can be shared with bootinfo32.c to pass an SMAP to the i386
kernel.
- Use uint32_t instead of u_long when aligning module metadata in
bootinfo32.c in userboot, as otherwise the metadata used 64-bit
alignment which corrupted the layout.
- Populate the basemem and extmem members of the bootinfo struct passed
to 32-bit kernels.
- Fix the 32-bit stack in userboot to start at the top of the stack
instead of the bottom so that there is room to grow before the
kernel switches to its own stack.
- Push a fake return address onto the 32-bit stack in addition to the
arguments normally passed to exec() in the loader. This return
address is needed to convince recover_bootinfo() in the 32-bit
locore code that it is being invoked from a "new" boot block.
- Add a routine to libvmmapi to setup a 32-bit flat mode register state
including a GDT and TSS that is able to start the i386 kernel and
update bhyveload to use it when booting an i386 kernel.
- Use the guest register state to determine the CPU's current instruction
mode (32-bit vs 64-bit) and paging mode (flat, 32-bit, PAE, or long
mode) in the instruction emulation code. Update the gla2gpa() routine
used when fetching instructions to handle flat mode, 32-bit paging, and
PAE paging in addition to long mode paging. Don't look for a REX
prefix when the CPU is in 32-bit mode, and use the detected mode to
enable the existing 32-bit mode code when decoding the mod r/m byte.
Reviewed by: grehan, neel
MFC after: 1 month
The VMCS field EOI_bitmap[] is an array of 256 bits - one for each vector.
If a bit is set to '1' in the EOI_bitmap[] then the processor will trigger
an EOI-induced VM-exit when it is doing EOI virtualization.
The EOI-induced VM-exit results in the EOI being forwarded to the vioapic
so that level triggered interrupts can be properly handled.
Tested by: Anish Gupta (akgupt3@gmail.com)
can be initiated in the context of a vcpu thread or from the bhyve(8) control
process.
The first use of this functionality is to update the vlapic trigger-mode
register when the IOAPIC pin configuration is changed.
Prior to this change we would update the TMR in the virtual-APIC page at
the time of interrupt delivery. But this doesn't work with Posted Interrupts
because there is no way to program the EOI_exit_bitmap[] in the VMCS of
the target at the time of interrupt delivery.
Discussed with: grehan@
hardware. It is possible to turn this feature off and fall back to software
emulation of the APIC by setting the tunable hw.vmm.vmx.use_apic_vid to 0.
We now start handling two new types of VM-exits:
APIC-access: This is a fault-like VM-exit and is triggered when the APIC
register access is not accelerated (e.g. apic timer CCR). In response to
this we do emulate the instruction that triggered the APIC-access exit.
APIC-write: This is a trap-like VM-exit which does not require any instruction
emulation but it does require the hypervisor to emulate the access to the
specified register (e.g. icrlo register).
Introduce 'vlapic_ops' which are function pointers to vector the various
vlapic operations into processor-dependent code. The 'Virtual Interrupt
Delivery' feature installs 'ops' for setting the IRR bits in the virtual
APIC page and to return whether any interrupts are pending for this vcpu.
Tested on an "Intel Xeon E5-2620 v2" courtesy of Allan Jude at ScaleEngine.
the vcpu should be kicked to process a pending interrupt. This will be useful
in the implementation of the Posted Interrupt APICv feature.
Change the return value of 'vlapic_pending_intr()' to indicate whether or not
an interrupt is available to be delivered to the vcpu depending on the value
of the PPR.
Add KTR tracepoints to debug guest IPI delivery.
emulation.
The vlapic initialization and cleanup is done via processor specific vmm_ops.
This will allow the VT-x/SVM modules to layer any hardware-assist for APIC
emulation or virtual interrupt delivery on top of the vlapic device model.
Add a parameter to 'vcpu_notify_event()' to distinguish between vlapic
interrupts versus other events (e.g. NMI). This provides an opportunity to
use hardware-assists like Posted Interrupts (VT-x) or doorbell MSR (SVM)
to deliver an interrupt to a guest without causing a VM-exit.
Get rid of lapic_pending_intr() and lapic_intr_accepted() and use the
vlapic_xxx() counterparts directly.
Associate an 'Apic Page' with each vcpu and reference it from the 'vlapic'.
The 'Apic Page' is intended to be referenced from the Intel VMCS as the
'virtual APIC page' or from the AMD VMCB as the 'vAPIC backing page'.
state before the requested state transition. This guarantees that there is
exactly one ioctl() operating on a vcpu at any point in time and prevents
unintended state transitions.
More details available here:
http://lists.freebsd.org/pipermail/freebsd-virtualization/2013-December/001825.html
Reviewed by: grehan
Reported by: Markiyan Kushnir (markiyan.kushnir at gmail.com)
MFC after: 3 days
When the guest is bringing up the APs in the x2APIC mode a write to the
ICR register will now trigger a return to userspace with an exitcode of
VM_EXITCODE_SPINUP_AP. This gets SMP guests working again with x2APIC.
Change the vlapic timer lock to be a spinlock because the vlapic can be
accessed from within a critical section (vm run loop) when guest is using
x2apic mode.
Reviewed by: grehan@
This decouples the guest's 'hz' from the host's 'hz' setting. For e.g. it is
now possible to have a guest run at 'hz=1000' while the host is at 'hz=100'.
Discussed with: grehan@
Tested by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com)
vcpu and destroy its thread context. Also modify the 'HLT' processing to ignore
pending interrupts in the IRR if interrupts have been disabled by the guest.
The interrupt cannot be injected into the guest in any case so resuming it
is futile.
With this change "halt" from a Linux guest works correctly.
Reviewed by: grehan@
Tested by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com)
has outgrown its original name. Originally this function simply sent an IPI
to the host cpu that a vcpu was executing on but now it does a lot more than
just that.
Reviewed by: grehan@
bhyve supports a single timer block with 8 timers. The timers are all 32-bit
and capable of being operated in periodic mode. All timers support interrupt
delivery using MSI. Timers 0 and 1 also support legacy interrupt routing.
At the moment the timers are not connected to any ioapic pins but that will
be addressed in a subsequent commit.
This change is based on a patch from Tycho Nightingale (tycho.nightingale@pluribusnetworks.com).
upcoming in-kernel device emulations like the HPET.
The ioctls VM_IOAPIC_ASSERT_IRQ and VM_IOAPIC_DEASSERT_IRQ are used to
manipulate the ioapic pin state.
Discussed with: grehan@
Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com)