modes on a tty structure.
Both the ".init" and the current settings are initialized allowing
the function to be used both at attach and open time.
The function takes an argument to decide if echoing should be enabled.
Echoing should not be enabled for regular physical serial ports
unless they are consoles, in which case they should be configured
by ttyconsolemode() instead.
Use the new function throughout.
the raw values including for child process statistics and only compute the
system and user timevals on demand.
- Fix the various kern_wait() syscall wrappers to only pass in a rusage
pointer if they are going to use the result.
- Add a kern_getrusage() function for the ABI syscalls to use so that they
don't have to play stackgap games to call getrusage().
- Fix the svr4_sys_times() syscall to just call calcru() to calculate the
times it needs rather than calling getrusage() twice with associated
stackgap, etc.
- Add a new rusage_ext structure to store raw time stats such as tick counts
for user, system, and interrupt time as well as a bintime of the total
runtime. A new p_rux field in struct proc replaces the same inline fields
from struct proc (i.e. p_[isu]ticks, p_[isu]u, and p_runtime). A new p_crux
field in struct proc contains the "raw" child time usage statistics.
ruadd() has been changed to handle adding the associated rusage_ext
structures as well as the values in rusage. Effectively, the values in
rusage_ext replace the ru_utime and ru_stime values in struct rusage. These
two fields in struct rusage are no longer used in the kernel.
- calcru() has been split into a static worker function calcru1() that
calculates appropriate timevals for user and system time as well as updating
the rux_[isu]u fields of a passed in rusage_ext structure. calcru() uses a
copy of the process' p_rux structure to compute the timevals after updating
the runtime appropriately if any of the threads in that process are
currently executing. It also now only locks sched_lock internally while
doing the rux_runtime fixup. calcru() now only requires the caller to
hold the proc lock and calcru1() only requires the proc lock internally.
calcru() also no longer allows callers to ask for an interrupt timeval
since none of them actually did.
- calcru() now correctly handles threads executing on other CPUs.
- A new calccru() function computes the child system and user timevals by
calling calcru1() on p_crux. Note that this means that any code that wants
child times must now call this function rather than reading from p_cru
directly. This function also requires the proc lock.
- This finishes the locking for rusage and friends so some of the Giant locks
in exit1() and kern_wait() are now gone.
- The locking in ttyinfo() has been tweaked so that a shared lock of the
proctree lock is used to protect the process group rather than the process
group lock. By holding this lock until the end of the function we now
ensure that the process/thread that we pick to dump info about will no
longer vanish while we are trying to output its info to the console.
Submitted by: bde (mostly)
MFC after: 1 month
need to mask off the page offset bits. (This operation made some sense
prior to i386/i386/pmap.c revision 1.254 when we passed a physical address
rather than a vm_page pointer to pmap_enter().)
uses predate the change in the pmap_enter() interface that replaced the
page's physical address by the address of its vm_page structure. The
PHYS_TO_VM_PAGE() was being used to compute the address of the same vm_page
structure that was being passed in.
a stack trace from ddb, the output will pause with a '--More--' prompt
every 18 lines. If you hit Enter, it will print another line and prompt
again. If you hit space it will output another page and then prompt.
If you hit 'q' or 'x' it will abort the rest of the stack trace.
- Fix the sparc64 userland stack trace to honor the total count of lines
to print. This is useful if your trace happens to walk back onto
0xdeadc0de and gets stuck in an endless loop.
MFC after: 1 month
Tested on: i386, alpha, sparc64
the page table page's wired count rather than its hold count to contain
the reference count. My rationale for this change is based on several
factors:
1. The machine-independent and pmap layers used the same hold count field
in subtly different ways. The machine-independent layer uses the hold
count to implement a form of ephemeral wiring that is used by pipes,
physio, etc. In other words, subsystems where we wish to temporarily
block a page from being swapped out while it is mapped into the kernel's
address space. Such pages are never removed from the page queues.
Instead, the page daemon recognizes a non-zero hold count to mean "hands
off this page." In contrast, page table pages are never in the page
queues; they are wired from birth to death. The hold count was being
used as a kind of reference count, specifically, the number of valid
page table entries within the page. Not surprisingly, these two
different uses imply different synchronization rules: in the machine-
independent layer access to the hold count requires the page queues
lock; whereas in the pmap layer the pmap lock is required. Thus,
continued use by the pmap layer of vm_page_unhold(), which asserts that
the page queues lock is held, made no sense.
2. _pmap_unwire_pte_hold() was too forgiving in its handling of the wired
count. An unexpected wired count on a page table page was ignored and
the underlying page leaked.
3. In a word, microoptimization. Using the wired count exclusively, rather
than a combination of the wired and hold counts, makes the code slightly
smaller and faster.
Reviewed by: tegge@
and which takes a M_WAITOK/M_NOWAIT flag argument.
Add compatibility isa_dmainit() macro which whines loudly if
isa_dma_init() fails.
Problem uncovered by: tegge
branch prediction optimization for LINT, because the kernel was too
large. This commit now removes it altogether since it causes build
failures for GENERIC kernels and the various applicable trends are
such that one can expect that it these failure will cause more
problems than they're worth in the future. These trends include:
1. Alpha was demoted from tier 1 to tier 2 due to lack of active
support. The number of people willing to fix build breakages
is not likely to increase and those developers that do have the
gumption to test MI changes on alpha are not likely to spend
time fixing unexpected build failures first.
2. The kernel will only increase in size. Even though stripped-down
kernels do link without problems now, compiler optimizations (like
inlining) and new (non-optional) functionality will likely cause
stripped-down kernels to break in the future as well.
So, with my asbestos suit on, get rid of potential problems before
they happen.
MT5 candidate.
and was propagated to nearly every platform. The boundary of the child needs
to consider the boundary of the parent and pick the minimum of the two, not
the maximum. However, if either is 0 then pick the appropriate one.
This bug was exposed by a recent change to ATA, which should now be fixed by
this change. The alignment and maxsegsz tag attributes likely also need
a similar review in the near future.
This is a MT5 candidate.
Reviewed by: marcel
Submitted by: sos (in part)
It can be switched back once 5.3 is tested and released. Also turn on
PREEMPTION as many of the stability problems with it have been fixed.
MT5: 3 days.
but with slightly cleaned up interfaces.
The KSE structure has become the same as the "per thread scheduler
private data" structure. In order to not make the diffs too great
one is #defined as the other at this time.
The KSE (or td_sched) structure is now allocated per thread and has no
allocation code of its own.
Concurrency for a KSEGRP is now kept track of via a simple pair of counters
rather than using KSE structures as tokens.
Since the KSE structure is different in each scheduler, kern_switch.c
is now included at the end of each scheduler. Nothing outside the
scheduler knows the contents of the KSE (aka td_sched) structure.
The fields in the ksegrp structure that are to do with the scheduler's
queueing mechanisms are now moved to the kg_sched structure.
(per ksegrp scheduler private data structure). In other words how the
scheduler queues and keeps track of threads is no-one's business except
the scheduler's. This should allow people to write experimental
schedulers with completely different internal structuring.
A scheduler call sched_set_concurrency(kg, N) has been added that
notifies teh scheduler that no more than N threads from that ksegrp
should be allowed to be on concurrently scheduled. This is also
used to enforce 'fainess' at this time so that a ksegrp with
10000 threads can not swamp a the run queue and force out a process
with 1 thread, since the current code will not set the concurrency above
NCPU, and both schedulers will not allow more than that many
onto the system run queue at a time. Each scheduler should eventualy develop
their own methods to do this now that they are effectively separated.
Rejig libthr's kernel interface to follow the same code paths as
linkse for scope system threads. This has slightly hurt libthr's performance
but I will work to recover as much of it as I can.
Thread exit code has been cleaned up greatly.
exit and exec code now transitions a process back to
'standard non-threaded mode' before taking the next step.
Reviewed by: scottl, peter
MFC after: 1 week
FULL_PREEMPTION is defined. Add a runtime warning to ULE if PREEMPTION is
enabled (code inspired by the PREEMPTION warning in kern_switch.c). This
is a possible MT5 candidate.
The removed argument could trivially be derived from the remaining one.
That in turn should be the same as curthread, but it is possible that curthread could be expensive to derive on some syste,s so leave it as an argument.
Having both proc and thread as an argumen tjust gives an opportunity for
them to get out sync.
MFC after: 3 days
in diagnostics. It has outlived its usefulness and has started
causing panics for people who turn on DIAGNOSTIC, in what is otherwise
good code.
MFC after: 2 days
do not set the virtual address to the bus address when the bus
doesn't have either of the PCI_RF_DENSE or PCI_RF_BWX flags set.
The TGA driver uses the virtual address to access the registers,
which on some machines can cause a memory management fault. Map
the bus address as K0SEG virtual memory instead. Note that with
some hardware combinations involving the TGA2 adapter this change
merely results that the memory management fault is replaced by a
machine check.
these two reasons:
1. On ia64 a function pointer does not hold the address of the first
instruction of a functions implementation. It holds the address
of a function descriptor. Hence the user(), btrap(), eintr() and
bintr() prototypes are wrong for getting the actual code address.
2. The logic forces interrupt, trap and exception entry points to
be layed-out contiguously. This can not be achieved on ia64 and is
generally just bad programming.
The MCOUNT_FROMPC_USER macro is used to set the frompc argument to
some kernel address which represents any frompc that falls outside
the kernel text range. The macro can expand to ~0U to bail out in
that case.
The MCOUNT_FROMPC_INTR macro is used to set the frompc argument to
some kernel address to represent a call to a trap or interrupt
handler. This to avoid that the trap or interrupt handler appear to
be called from everywhere in the call graph. The macro can expand
to ~0U to prevent adjusting frompc. Note that the argument is selfpc,
not frompc.
This commit defines the macros on all architectures equivalently to
the original code in sys/libkern/mcount.c. People can take it from
here...
Compile-tested on: alpha, amd64, i386, ia64 and sparc64
Boot-tested on: i386
valid pmap to the pmap functions that require one. Remove the checks for
NULL. (These checks have their origins in the Mach pmap.c that was
integrated into BSD. None of the new code written specifically for
FreeBSD included them.)
compile option. All FreeBSD packet filters now use the PFIL_HOOKS API and
thus it becomes a standard part of the network stack.
If no hooks are connected the entire packet filter hooks section and related
activities are jumped over. This removes any performance impact if no hooks
are active.
Both OpenBSD and DragonFlyBSD have integrated PFIL_HOOKS permanently as well.
directly. This removes a few more users of the stackgap and also marks
the syscalls using these wrappers MP safe where appropriate.
Tested on: i386 with linux acroread5
Compiled on: i386, alpha LINT
contained "sanity" checks that could be violated if another CPU modified
the pmap between the emulation trap and locking the pmap in
pmap_emulate_reference(). As a result, the pte could be inconsistent
with the access that caused the emulation trap. In such cases,
pmap_emulate_reference() now flushes the current CPU's TLB entry and
returns.
- Make pmap_changebit() an inline function, reducing object code size.
to allow dumping per-thread machine specific notes. On ia64 we use this
function to flush the dirty registers onto the backingstore before we
write out the PRSTATUS notes.
Tested on: alpha, amd64, i386, ia64 & sparc64
Not tested on: arm, powerpc
vm_page_sleep_if_busy() and the page table page's busy flag as a
synchronization mechanism on page table pages.
Also, relocate the inline pmap_unwire_pte_hold() so that it can be used
to shorten _pmap_unwire_pte_hold() on alpha and amd64. This places
pmap_unwire_pte_hold() next to a comment that more accurately describes
it than _pmap_unwire_pte_hold().
being defined, define and use a new MD macro, cpu_spinwait(). It only
expands to something on i386 and amd64, so the compiled code should be
identical.
Name of the macro found by: jhb
Reviewed by: jhb
their own directory and module, leaving the MD parts in the MD
area (the MD parts _are_ part of the modules). /dev/mem and /dev/io
are now loadable modules, thus taking us one step further towards
a kernel created entirely out of modules. Of course, there is nothing
preventing the kernel from having these statically compiled.
- Enable recursion on the page queues lock. This allows calls to
vm_page_alloc(VM_ALLOC_NORMAL) and UMA's obj_alloc() with the page
queues lock held. Such calls are made to allocate page table pages
and pv entries.
- The previous change enables a partial reversion of vm/vm_page.c
revision 1.216, i.e., the call to vm_page_alloc() by vm_page_cowfault()
now specifies VM_ALLOC_NORMAL rather than VM_ALLOC_INTERRUPT.
- Add partial locking to pmap_copy(). (As a side-effect, pmap_copy()
should now be faster on i386 SMP because it no longer generates IPIs
for TLB shootdown on the other processors.)
- Complete the locking of pmap_enter() and pmap_enter_quick(). (As of now,
all changes to a user-level pmap on alpha, amd64, and i386 are performed
with appropriate locking.)
dereference curthread. It is called only from critical_{enter,exit}(),
which already dereferences curthread. This doesn't seem to affect SMP
performance in my benchmarks, but improves MySQL transaction throughput
by about 1% on UP on my Xeon.
Head nodding: jhb, bmilekic
somewhat clearer, but more importantly allows for a consistent naming
scheme for suser_cred flags.
The old name is still defined, but will be removed in a few days (unless I
hear any complaints...)
Discussed with: rwatson, scottl
Requested by: jhb
the thread ID and call db_trace_thread().
Since arm has all the logic in db_stack_trace_cmd(), rename the
new DB_COMMAND function to db_stack_trace to avoid conflicts on
arm.
While here, have db_stack_trace parse its own arguments so that
we can use a more natural radix for IDs. If the ID is not a thread
ID, or more precisely when no thread exists with the ID, try if
there's a process with that ID and return the first thread in it.
This makes it easier to print stack traces from the ps output.
requested by: rwatson@
tested on: amd64, i386, ia64