kernel ACL interfaces and system call names.
Break out UFS2 and FFS extattr delete and list vnode operations from
setextattr and getextattr to deleteextattr and listextattr, which
cleans up the implementations, and makes the results more readable,
and makes the APIs more clear.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
attribute name of "" from ffs_getextattr(). Invoking VOP_GETETATTR()
with an empty name is now no longer supported; user application
compatibility is provided by a system call level compatibility
wrapper. We make sure to explicitly reject attempts to set an EA
with the name "".
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
if we permit them to occur, the kernel panics due to our performing
EA operations using VOP_STRATEGY on the vnode. This went unnoticed
previously because there are very for users of device nodes on UFS2
due to the introduction of devfs. However, this can come up with
the Linux compat directories and its hard-coded dev nodes (which will
need to go away as we move away from hard-coded device numbers).
This can come up if you use EA-intensive features such as ACLs and
MAC.
The proper fix is pretty complicated, but this band-aid would be
an excellent MFC candidate for the release.
requiring locked bufs in vfs_bio_awrite(). Previously the buf could
have been written out by fsync before we acquired the buf lock if it
weren't for giant. The cluster_wbuild() handles this race properly but
the single write at the end of vfs_bio_awrite() would not.
- Modify flushbufqueues() so there is only one copy of the loop. Pass a
parameter in that says whether or not we should sync bufs with deps.
- Call flushbufqueues() a second time and then break if we couldn't find
any bufs without deps.
- Remove the buftimelock mutex and acquire the buf's interlock to protect
these fields instead.
- Hold the vnode interlock while locking bufs on the clean/dirty queues.
This reduces some cases from one BUF_LOCK with a LK_NOWAIT and another
BUF_LOCK with a LK_TIMEFAIL to a single lock.
Reviewed by: arch, mckusick
that is protected by the vnode lock.
- Move B_SCANNED into b_vflags and call it BV_SCANNED.
- Create a vop_stdfsync() modeled after spec's sync.
- Replace spec_fsync, msdos_fsync, and hpfs_fsync with the stdfsync and some
fs specific processing. This gives all of these filesystems proper
behavior wrt MNT_WAIT/NOWAIT and the use of the B_SCANNED flag.
- Annotate the locking in buf.h
of a file in chunks that are less then the filesystem block size, if the
data is not already cached the system will perform a read-before-write.
The problem is that it does this on a block-by-block basis, breaking up the
I/Os and making clustering impossible for the writes. Programs such
as INN using cyclic file buffers suffer greatly. This problem is only going
to get worse as we use larger and larger filesystem block sizes.
The solution is to extend the sequential heuristic so UFS[2] can perform
a far larger read and readahead when dealing with this case.
(note: maximum disk write bandwidth is 27MB/sec thru filesystem)
(note: filesystem blocksize in test is 8K (1K frag))
dd if=/dev/zero of=test.dat bs=1k count=2m conv=notrunc
Before: (note half of these are reads)
tty da0 da1 acd0 cpu
tin tout KB/t tps MB/s KB/t tps MB/s KB/t tps MB/s us ni sy in id
0 76 14.21 598 8.30 0.00 0 0.00 0.00 0 0.00 0 0 7 1 92
0 76 14.09 813 11.19 0.00 0 0.00 0.00 0 0.00 0 0 9 5 86
0 76 14.28 821 11.45 0.00 0 0.00 0.00 0 0.00 0 0 8 1 91
After: (note half of these are reads)
tty da0 da1 acd0 cpu
tin tout KB/t tps MB/s KB/t tps MB/s KB/t tps MB/s us ni sy in id
0 76 63.62 434 26.99 0.00 0 0.00 0.00 0 0.00 0 0 18 1 80
0 76 63.58 424 26.30 0.00 0 0.00 0.00 0 0.00 0 0 17 2 82
0 76 63.82 438 27.32 0.00 0 0.00 0.00 0 0.00 1 0 19 2 79
Reviewed by: mckusick
Approved by: re
X-MFC after: immediately (was heavily tested in -stable for 4 months)
or fifo in UFS2, the normal ufs_strategy routine needs to be used
rather than the spec_strategy or fifo_strategy routine. Thus the
ffsext_strategy routine is interposed in the ffs_vnops vectors for
special devices and fifo's to pick off this special case. Otherwise
it simply falls through to the usual spec_strategy or fifo_strategy
routine.
Submitted by: Robert Watson <rwatson@FreeBSD.org>
Sponsored by: DARPA & NAI Labs.
layers deep in <sys/proc.h> or <sys/vnode.h>.
Include <sys/vmmeter.h> instead of depending on namespace pollution in
<sys/pcpu.h>.
Sorted includes as much as possible.
pmap_zero_page() and pmap_zero_page_area() were modified to accept
a struct vm_page * instead of a physical address, vm_page_zero_fill()
and vm_page_zero_fill_area() have served no purpose.
parts rather than use vop_{read,write}_args. Access to these
functions will ultimately not be available through the
"vop_{read,write}+IO_EXT" API but this functionality is retained
for debugging purposes for now.
Sponsored by: DARPA & NAI Labs.
UFS only thing, and FFS should in principle not know if it is enabled
or not.
This commit cleans ffs_vnops.c for such knowledge, but not ffs_vfsops.c
Sponsored by: DARPA and NAI Labs.
- v_vflag is protected by the vnode lock and is used when synchronization
with VOP calls is needed.
- v_iflag is protected by interlock and is used for dealing with vnode
management issues. These flags include X/O LOCK, FREE, DOOMED, etc.
- All accesses to v_iflag and v_vflag have either been locked or marked with
mp_fixme's.
- Many ASSERT_VOP_LOCKED calls have been added where the locking was not
clear.
- Many functions in vfs_subr.c were restructured to provide for stronger
locking.
Idea stolen from: BSD/OS
filesystem expands the inode to 256 bytes to make space for 64-bit
block pointers. It also adds a file-creation time field, an ability
to use jumbo blocks per inode to allow extent like pointer density,
and space for extended attributes (up to twice the filesystem block
size worth of attributes, e.g., on a 16K filesystem, there is space
for 32K of attributes). UFS2 fully supports and runs existing UFS1
filesystems. New filesystems built using newfs can be built in either
UFS1 or UFS2 format using the -O option. In this commit UFS1 is
the default format, so if you want to build UFS2 format filesystems,
you must specify -O 2. This default will be changed to UFS2 when
UFS2 proves itself to be stable. In this commit the boot code for
reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c)
as there is insufficient space in the boot block. Once the size of the
boot block is increased, this code can be defined.
Things to note: the definition of SBSIZE has changed to SBLOCKSIZE.
The header file <ufs/ufs/dinode.h> must be included before
<ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and
ufs_lbn_t.
Still TODO:
Verify that the first level bootstraps work for all the architectures.
Convert the utility ffsinfo to understand UFS2 and test growfs.
Add support for the extended attribute storage. Update soft updates
to ensure integrity of extended attribute storage. Switch the
current extended attribute interfaces to use the extended attribute
storage. Add the extent like functionality (framework is there,
but is currently never used).
Sponsored by: DARPA & NAI Labs.
Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
options UFS_EXTATTR and UFS_EXTATTR_AUTOSTART respectively. This change
reflects the fact that our EA support is implemented entirely at the
UFS layer (modulo FFS start/stop/autostart hooks for mount and unmount
events). This also better reflects the fact that [shortly] MFS will also
support EAs, as well as possibly IFS.
o Consumers of the EA support in FFS are reminded that as a result, they
must change kernel config files to reflect the new option names.
Obtained from: TrustedBSD Project
structure rather than assuming that the device vnode would reside
in the FFS filesystem (which is obviously a broken assumption with
the device filesystem).
description:
How it works:
--
Basically ifs is a copy of ffs, overriding some vfs/vnops. (Yes, hack.)
I didn't see the need in duplicating all of sys/ufs/ffs to get this
off the ground.
File creation is done through a special file - 'newfile' . When newfile
is called, the system allocates and returns an inode. Note that newfile
is done in a cloning fashion:
fd = open("newfile", O_CREAT|O_RDWR, 0644);
fstat(fd, &st);
printf("new file is %d\n", (int)st.st_ino);
Once you have created a file, you can open() and unlink() it by its returned
inode number retrieved from the stat call, ie:
fd = open("5", O_RDWR);
The creation permissions depend entirely if you have write access to the
root directory of the filesystem.
To get the list of currently allocated inodes, VOP_READDIR has been added
which returns a directory listing of those currently allocated.
--
What this entails:
* patching conf/files and conf/options to include IFS as a new compile
option (and since ifs depends upon FFS, include the FFS routines)
* An entry in i386/conf/NOTES indicating IFS exists and where to go for
an explanation
* Unstaticize a couple of routines in src/sys/ufs/ffs/ which the IFS
routines require (ffs_mount() and ffs_reload())
* a new bunch of routines in src/sys/ufs/ifs/ which implement the IFS
routines. IFS replaces some of the vfsops, and a handful of vnops -
most notably are VFS_VGET(), VOP_LOOKUP(), VOP_UNLINK() and VOP_READDIR().
Any other directory operation is marked as invalid.
What this results in:
* an IFS partition's create permissions are controlled by the perm/ownership of
the root mount point, just like a normal directory
* Each inode has perm and ownership too
* IFS does *NOT* mean an FFS partition can be opened per inode. This is a
completely seperate filesystem here
* Softupdates doesn't work with IFS, and really I don't think it needs it.
Besides, fsck's are FAST. (Try it :-)
* Inodes 0 and 1 aren't allocatable because they are special (dump/swap IIRC).
Inode 2 isn't allocatable since UFS/FFS locks all inodes in the system against
this particular inode, and unravelling THAT code isn't trivial. Therefore,
useful inodes start at 3.
Enjoy, and feedback is definitely appreciated!
the gating of system calls that cause modifications to the underlying
filesystem. The gating can be enabled by any filesystem that needs
to consistently suspend operations by adding the vop_stdgetwritemount
to their set of vnops. Once gating is enabled, the function
vfs_write_suspend stops all new write operations to a filesystem,
allows any filesystem modifying system calls already in progress
to complete, then sync's the filesystem to disk and returns. The
function vfs_write_resume allows the suspended write operations to
begin again. Gating is not added by default for all filesystems as
for SMP systems it adds two extra locks to such critical kernel
paths as the write system call. Thus, gating should only be added
as needed.
Details on the use and current status of snapshots in FFS can be
found in /sys/ufs/ffs/README.snapshot so for brevity and timelyness
is not included here. Unless and until you create a snapshot file,
these changes should have no effect on your system (famous last words).