and release of the global page queues lock required to make the call.
Remove GIANT_REQUIRED from vm_hold_free_pages(). All of its VM operations
are properly synchronized.
count to prevent sockets from being garbage collected during
socket-specific system calls. This is the same approach used in
most VFS-specific system calls, as well as generic file descriptor
system calls such as read() and write().
To do this, add a utility function getsock(), which is logically
identical to getvnode() used for the same purpose in VFS. Unlike
fgetsock(), it returns with the file reference count elevated, but
no bump of the socket reference count. Replace matching calls to
fputsock() with fdrop().
This change is made to all socket system calls other than
sendfile() and accept(), but the approach should be applicable to
those system calls also.
This shaves about four mutex operations off of each of these
system calls, including send() and recv() variants, adding about
1% to pps on minimal UDP packets for UP using netblast, and 4% on
SMP.
Reviewed by: pjd
Extend it with a strategy method.
Add bufstrategy() which do the usual VOP_SPECSTRATEGY/VOP_STRATEGY
song and dance.
Rename ibwrite to bufwrite().
Move the two NFS buf_ops to more sensible places, add bufstrategy
to them.
Add inlines for bwrite() and bstrategy() which calls through
buf->b_bufobj->b_ops->b_{write,strategy}().
Replace almost all VOP_STRATEGY()/VOP_SPECSTRATEGY() calls with bstrategy().
This flag gets set whenever the thread posts an event on the GEOM
event queue, and if the flag is set when the thread is prepared
to return to userland from the kernel, g_waitidle() will be called
to make sure that the posted events have completed.
This can replace an insufficient number of g_waitidle() calls in
various other places, and has the advantage of being failsafe: Any
system call which does a VOP_OPEN()/VOP_CLOSE will now correctly
wait for any geom events it posted as part of spoils or tastes.
Assert that topology and Giant is not held in g_waitidle().
or pru_attach is NULL. With loadable protocols the SPACER dummy protocols
have valid function pointers for all methods to functions returning just
EOPNOTSUPP. Thus the early abort check would not detect immediately that
attach is not supported for this protocol. Instead it would correctly
get the EOPNOTSUPP error later on when it calls the protocol specific
attach function.
Add testing against the pru_attach_notsupp() function pointer to the
early abort check as well.
without a mountpoint. In this scenario, there's no useful source for
a label on the vnode, since we can't query the mountpoint for the
labeling strategy or default label.
jest, of most excellent fancy: he hath taught me lessons a thousand
times; and now, how abhorred in my imagination it is! my gorge rises
at it. Here were those hacks that I have curs'd I know not how
oft. Where be your kludges now? your workarounds? your layering
violations, that were wont to set the table on a roar?
Move the skeleton of specfs into devfs where it now belongs and
bury the rest.
Initialize b_bufobj for all buffers.
Make incore() and gbincore() take a bufobj instead of a vnode.
Make inmem() local to vfs_bio.c
Change a lot of VI_[UN]LOCK(bp->b_vp) to BO_[UN]LOCK(bp->b_bufobj)
also VI_MTX() to BO_MTX(),
Make buf_vlist_add() take a bufobj instead of a vnode.
Eliminate other uses of bp->b_vp where bp->b_bufobj will do.
Various minor polishing: remove "register", turn panic into KASSERT,
use new function declarations, TAILQ_FOREACH_SAFE() etc.
Add bufobj_wref(), bufobj_wdrop() and bufobj_wwait() to handle the write
count on a bufobj. Bufobj_wdrop() replaces vwakeup().
Use these functions all relevant places except in ffs_softdep.c where
the use if interlocked_sleep() makes this impossible.
Rename b_vnbufs to b_bobufs now that we touch all the relevant files anyway.
Initialize the bo_mtx when we allocate a vnode i getnewvnode() For
now we point to the vnodes interlock mutex, that retains the exact
same locking sematics.
Move v_numoutput from vnode to bufobj. Add renaming macro to
postpone code sweep.
is locked when vm_page_io_finish() is called on a page. This is to satisfy
a new, post-RELENG_5 assertion in vm_page_io_finish(). (I am in the
process of transitioning the responsibility for synchronizing access to
various fields/flags on the page from the global page queues lock to the
per-object lock.)
Tripped over by: obrien@
families.
The protosw[] array of any particular protocol family ("domain") is of fixed size
defined at compile time. This made it impossible to dynamically add or remove any
protocols to or from it. We work around this by introducing so called SPACER's
which are embedded into the protosw[] array at compile time. The SPACER's have
a special protocol number (32767) to indicate the fact that they are SPACER's but
are otherwise NULL. Only as many protocols can be dynamically loaded as SPACER's
are provided in the protosw[] structure.
The pr_usrreqs structure is treated more special and contains pointers to dummy
functions only returning EOPNOTSUPP. This is needed because the use of those
functions pointers is usually not checked within the kernel because until now it
was assumed to be a valid function pointer. Instead of fixing all potential
callers we just return a proper error code.
Two new functions provide a clean API to register and unregister a protocol. The
register function expects a pointer to a valid and complete struct protosw including
a pointer to struct pru_usrreqs provided by the caller. Upon successful registration
the pr_init() function will be called to finish initialization of the protocol. The
unregister function restores the SPACER in place of the protocol again. It is the
responseability of the caller to ensure proper closing of all sockets and freeing
of memory allocation by the unloading protocol.
sys/protosw.h
o Define generic PROTO_SPACER to be 32767
o Prototypes for all pru_*_notsupp() functions
o Prototypes for pf_proto_[un]register() functions
kern/uipc_domain.c
o Global struct pr_usrreqs nousrreqs containing valid pointers to the
pru_*_notsupp() functions
o New functions pf_proto_[un]register()
kern/uipc_socket2.c
o New functions bodies for all pru_*_notsupp() functions
(sorele()/sotryfree()):
- This permits the caller to acquire the accept mutex before the socket
mutex, avoiding sofree() having to drop the socket mutex and re-order,
which could lead to races permitting more than one thread to enter
sofree() after a socket is ready to be free'd.
- This also covers clearing of the so_pcb weak socket reference from
the protocol to the socket, preventing races in clearing and
evaluation of the reference such that sofree() might be called more
than once on the same socket.
This appears to close a race I was able to easily trigger by repeatedly
opening and resetting TCP connections to a host, in which the
tcp_close() code called as a result of the RST raced with the close()
of the accepted socket in the user process resulting in simultaneous
attempts to de-allocate the same socket. The new locking increases
the overhead for operations that may potentially free the socket, so we
will want to revise the synchronization strategy here as we normalize
the reference counting model for sockets. The use of the accept mutex
in freeing of sockets that are not listen sockets is primarily
motivated by the potential need to remove the socket from the
incomplete connection queue on its parent (listen) socket, so cleaning
up the reference model here may allow us to substantially weaken the
synchronization requirements.
RELENG_5_3 candidate.
MFC after: 3 days
Reviewed by: dwhite
Discussed with: gnn, dwhite, green
Reported by: Marc UBM Bocklet <ubm at u-boot-man dot de>
Reported by: Vlad <marchenko at gmail dot com>
modes on a tty structure.
Both the ".init" and the current settings are initialized allowing
the function to be used both at attach and open time.
The function takes an argument to decide if echoing should be enabled.
Echoing should not be enabled for regular physical serial ports
unless they are consoles, in which case they should be configured
by ttyconsolemode() instead.
Use the new function throughout.
critical_exit as the process is getting scheduled to run. This is subotimal
but for now avoid the LOR between the scheduler and the sleepq systems.
This is a 5.3 candidate.
Submitted by: davidxu
MFC After: 3 days
* Get flags first, in case there is no devclass.
* Reset flags after each probe in case the next driver has no hints so it
doesn't inherit the old ones.
* Set them again before the winning probe.
Tested ok both with and without ACPI for ISA device flags.
Reviewed by: imp
MFC after: 1 day
- Add a new _lock() call to each API that locks the associated chain lock
for a lock_object pointer or wait channel. The _lookup() functions now
require that the chain lock be locked via _lock() when they are called.
- Change sleepq_add(), turnstile_wait() and turnstile_claim() to lookup
the associated queue structure internally via _lookup() rather than
accepting a pointer from the caller. For turnstiles, this means that
the actual lookup of the turnstile in the hash table is only done when
the thread actually blocks rather than being done on each loop iteration
in _mtx_lock_sleep(). For sleep queues, this means that sleepq_lookup()
is no longer used outside of the sleep queue code except to implement an
assertion in cv_destroy().
- Change sleepq_broadcast() and sleepq_signal() to require that the chain
lock is already required. For condition variables, this lets the
cv_broadcast() and cv_signal() functions lock the sleep queue chain lock
while testing the waiters count. This means that the waiters count
internal to condition variables is no longer protected by the interlock
mutex and cv_broadcast() and cv_signal() now no longer require that the
interlock be held when they are called. This lets consumers of condition
variables drop the lock before waking other threads which can result in
fewer context switches.
MFC after: 1 month
Implement preemption between threads in the same ksegp in out of slot
situations to prevent priority inversion.
Tested by: pho
Reviewed by: jhb, julian
Approved by: sam (mentor)
MFC: ASAP
sysctl routines and state. Add some code to use it for signalling the need
to downconvert a data structure to 32 bits on a 64 bit OS when requested by
a 32 bit app.
I tried to do this in a generic abi wrapper that intercepted the sysctl
oid's, or looked up the format string etc, but it was a real can of worms
that turned into a fragile mess before I even got it partially working.
With this, we can now run 'sysctl -a' on a 32 bit sysctl binary and have
it not abort. Things like netstat, ps, etc have a long way to go.
This also fixes a bug in the kern.ps_strings and kern.usrstack hacks.
These do matter very much because they are used by libc_r and other things.