- Define option FORCECONSPEED to force the serial console to
be CONSPEED. I've run into a lot of boards in which
the detect for prior speed doesn't work and ends up with
broken console since it is at the wrong speed.
- If a serial port is marked as a console, but console=vidconsole
and if the serial ports doesn't exist it will be probed and
attached at a 8250 chip. Then writes to that will freeze the
system.
- Add an option flags 0x400000 to mark this as a potential
comconsole in-case the one flaged with 0x10 does not exist
in the system.
This makes it easier to deploy on systems with one or two serial ports.
Obtained from: IronPort
- Use the dh_inserted member of the dispatch header in the Windows
timer structure to indicate that the timer has been "inserted into
the timer queue" (i.e. armed via timeout()). Use this as the value
to return to the caller in KeCancelTimer(). Previously, I was using
callout_pending(), but you can't use that with timeout()/untimeout()
without creating a potential race condition.
- Make ntoskrnl_init_timer() just a wrapper around ntoskrnl_init_timer_ex()
(reduces some code duplication).
- Drop Giant when entering if_ndis.c:ndis_tick() and
subr_ntorkrnl.c:ntoskrnl_timercall(). At the moment, I'm forced to
use system callwheel via timeout()/untimeout() to handle timers rather
than the callout API (struct callout is too big to fit inside the
Windows struct KTIMER, so I'm kind of hosed). Unfortunately, all
the callouts in the callwhere are not marked as MPSAFE, so when
one of them fires, it implicitly acquires Giant before invoking the
callback routine (and releases it when it returns). I don't need to
hold Giant, but there's no way to stop the callout code from acquiring
it as long as I'm using timeout()/untimeout(), so for now we cheat
by just dropping Giant right away (and re-acquiring it right before
the routine returns so keep the callout code happy). At some point,
I will need to solve this better, but for now this should be a suitable
workaround.
channels. This also work when PCI native mode has been selected
(patch for /sys/dev/pci/pci.c needed for that) since pci_get_progif
uses the saved value for progif, not the one stored after we may have
changed from legacy mode to native PCI mode.
1) In pci.c, we need to check the child device's state, not the parent
device's state.
2) In acpi_pci.c, we have to run the power state change after the acpi
method when the old_state is > new state, not the other way around.
Submitted by: Dmitry Remesov
PR: 65694
caller to vm_page_grab(). Although this gives VM_ALLOC_ZERO a
different meaning for vm_page_grab() than for vm_page_alloc(), I feel
such change is necessary to accomplish other goals. Specifically, I
want to make the PG_ZERO flag immutable between the time it is
allocated by vm_page_alloc() and freed by vm_page_free() or
vm_page_free_zero() to avoid locking overheads. Once we gave up on
the ability to automatically recognize a zeroed page upon entry to
vm_page_free(), the ability to mutate the PG_ZERO flag became useless.
Instead, I would like to say that "Once a page becomes valid, its
PG_ZERO flag must be ignored."
added an arbitrary delay to our readings, causing us to use the ACPI-safe
read method when not necessary. Submitted by: bde
Old:
ACPI timer looks GOOD min = 3, max = 5, width = 2
ACPI timer looks BAD min = 3, max = 19, width = 16
ACPI timer looks GOOD min = 3, max = 5, width = 2
ACPI timer looks GOOD min = 3, max = 5, width = 2
ACPI timer looks GOOD min = 3, max = 5, width = 2
ACPI timer looks GOOD min = 3, max = 4, width = 1
ACPI timer looks GOOD min = 3, max = 5, width = 2
ACPI timer looks BAD min = 3, max = 19, width = 16
ACPI timer looks GOOD min = 3, max = 5, width = 2
ACPI timer looks GOOD min = 3, max = 4, width = 1
Timecounter "ACPI-safe" frequency 3579545 Hz quality 1000
New:
ACPI timer looks GOOD min = 3, max = 4, width = 1
ACPI timer looks GOOD min = 3, max = 4, width = 1
ACPI timer looks GOOD min = 3, max = 4, width = 1
ACPI timer looks GOOD min = 3, max = 4, width = 1
ACPI timer looks GOOD min = 3, max = 4, width = 1
ACPI timer looks GOOD min = 3, max = 4, width = 1
ACPI timer looks GOOD min = 3, max = 4, width = 1
ACPI timer looks GOOD min = 3, max = 4, width = 1
ACPI timer looks GOOD min = 3, max = 4, width = 1
ACPI timer looks GOOD min = 3, max = 4, width = 1
Timecounter "ACPI-fast" frequency 3579545 Hz quality 1000
Also, reduce unnecesary overhead in ACPI-fast by remove the barrier for
reads. The timer in the ACPI-fast case is known to increase monotonically
so there is no need to serialize access to it.
modules is a very nice way to produce hard-to-find panics. Who would look for
a bug in a Makefile anyway?
Has anyone seen the pointy hat? :-o
Approved by: njl (mentor)
resource pre-allocation. The problem is that the BARs of the EBus bridges
contain the ranges for the resources for the EBus devices beyond the bridge.
So when the EBus code tries to allocate the resource for an EBus device
it's already allocated by the PCI code.
To be removed again as soon as we have a proper solution in the EBus Code.
Reviewed by: tmm
Approved by: marcel (mentor)
secondary bus is 0, we program the primary bus, the secondary bus and
the suborindate bus. This isn't ideal, since we start at parent_bus +
1 and store this in a static.
Ideally, we'd walk the tree and assign bus numbers. However, that's
harder to accomplish without some help from the bus layer which we're
not planning on doing that until 6.
This fixes my CardBus problems on my Sony PCG-Z1WA, and might fix the
Dells that have had problems.
gadgets (hotkeys, lcd, ...) on Asus laptops. I aim to closely track the
acpi4asus project which implements these features in the Linux kernel.
If this breaks your laptop, please let me know how it does it :-)
Approved by: njl (mentor)
(I hope.)
My original instinct to make ndis_return_packet() asynchronous was correct.
Making ndis_rxeof() submit packets to the stack asynchronously fixes
one recursive spinlock acquisition, but it's also possible for it to
happen via the ndis_txeof() path too. So:
- In if_ndis.c, revert ndis_rxeof() to its old behavior (and don't bother
putting ndis_rxeof_serial() back since we don't need it anymore).
- In kern_ndis.c, make ndis_return_packet() submit the call to the
MiniportReturnPacket() function to the "ndis swi" thread so that
it always happens in another context no matter who calls it.
workaround was for hardware where the clock was not latched, not for
hardware that was too slow. Also, make variable names more specific for ddb
printing.
While I would have prefered to have a solution that didn't move
knowledge of this into the pci layer. However, this is literally the
only exception that's listed in the PCI standard to the usual way of
decoding BARs. atapci devices in legacy mode now ignore the first 4
bars and hard code the values to the legacy ide values (well, for each
of the controllers that are in legacy mode). The 5th bar is handled
normally.
Remove the zero bar handling. zero bars should be ignored at all
other times, and since we handle that specially, we don't need the
older workaround.
what the ACPI-safe workaround is intended to fix. Requested by phk.
Set the bushandle and tag when attaching the timer, don't do it each time
in read_counter(). Pointed out by bde.
Move test_counter() to the end. Staticize acpi_timer_reg.
of you with other cards, please do review and test the drivers for
MP-safety and disable Giant in the interrupt routines when you are
sure of proper functionality.
wireless ever since I added the new spinlock code. Previously, I added
a special ndis_rxeof_serial() function to insure that when we receive
a packet, we never end up calling the MiniportReturnPacket() routine
until after the receive handler has finished. I set things up so that
ndis_rxeof_serial() would only be used for serialized miniports since
they depend on this property. Well, it turns out deserialized miniports
depend on a similar property: you can't let MiniportReturnPacket() be
called from the same context as the receive handler at all. The 2100B
driver happens to use a single spinlock for all of its synchronization,
and it tries to acquire it both while in MiniportHandleInterrupt() and
in MiniportReturnPacket(), so if we call MiniportReturnPacket() from
the MiniportHandleInterrupt() context, we will end up trying to acquire
the spinlock recursively, which you can't do.
To fix this, I made the ndis_rxeof_serial() handler the default. An
alternate solution would be to make ndis_return_packet() submit
the call to MiniportReturnPacket() to the NDIS task queue thread.
I may do that in the future, after I've tested things a bit more.