If an operation would generate a MAC output (e.g. for digest operation
or for an AEAD or EtA operation), then an empty payload buffer is
valid. Only reject requests with an empty buffer for "plain" cipher
sessions.
Some of the AES-CCM NIST KAT vectors use an empty payload.
While here, don't advance crp_payload_start for requests that use an
empty payload with an inline IV. (*)
Reported by: syzbot+d4b94fbd9a44b032f428@syzkaller.appspotmail.com (*)
Reviewed by: markj
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D32109
A request without AAD for an AEAD cipher can be submitted via
CIOCCRYPT rather than CIOCCRYPTAEAD.
Reviewed by: markj
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D32108
Add 'ivlen' and 'maclen' fields to the structure used for CIOGSESSION2
to specify the explicit IV/nonce and MAC/tag lengths for crypto
sessions. If these fields are zero, the default lengths are used.
This permits selecting an alternate nonce length for AEAD ciphers such
as AES-CCM which support multiple nonce leengths. It also supports
truncated MACs as input to AEAD or ETA requests.
Reviewed by: markj
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D32107
- Retire cse->mode and use csp->csp_mode instead.
- Use csp->csp_cipher_algorithm instead of the ivsize when checking
for the fixup for the IV length for AES-XTS.
Reviewed by: markj
Sponsored by: Chelsio Communications, The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D32103
Otherwise we can end up comparing the computed digest with an
uninitialized kernel buffer.
In cryptoaead_op() we already unconditionally fail the request if a
pointer to a digest buffer is not specified.
Based on a patch by Simran Kathpalia.
Reported by: syzkaller
Reviewed by: jhb
MFC after: 1 week
Pull Request: https://github.com/freebsd/freebsd-src/pull/529
Differential Revision: https://reviews.freebsd.org/D32124
There haven't been any non-obscure drivers that supported this
functionality and it has been impossible to test to ensure that it
still works. The only known consumer of this interface was the engine
in OpenSSL < 1.1. Modern OpenSSL versions do not include support for
this interface as it was not well-documented.
Reviewed by: cem
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D29736
Note that this algorithm implements the mode defined in RFC 8439.
Reviewed by: cem
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D27836
Crypto file descriptors were added in the original OCF import as a way
to provide per-open data (specifically the list of symmetric
sessions). However, this gives a bit of a confusing API where one has
to open /dev/crypto and then invoke an ioctl to obtain a second file
descriptor. This also does not match the API used with /dev/crypto on
other BSDs or with Linux's /dev/crypto driver.
Character devices have gained support for per-open data via cdevpriv
since OCF was imported, so use cdevpriv to simplify the userland API
by permitting ioctls directly on /dev/crypto descriptors.
To provide backwards compatibility, CRIOGET now opens another
/dev/crypto descriptor via kern_openat() rather than dup'ing the
existing file descriptor. This preserves prior semantics in case
CRIOGET is invoked multiple times on a single file descriptor.
Reviewed by: markj
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D27302
- Rename cse*() to cse_*() to more closely match other local APIs in
this file.
- Merge the old csecreate() into cryptodev_create_session() and rename
the new function to cse_create().
Reviewed by: markj
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D27070
This simplifies cryptof_ioctl as it now a wrapper around functions that
contain the bulk of the per-ioctl logic.
Reviewed by: markj
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D27068
This is consistent with cryptodevkey_cb being defined before it is used
and removes a prototype in the middle of the file.
Reviewed by: markj
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D27067
This breaks the case where the original pointer was NULL but an
in-line IV was used.
Reviewed by: markj
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D27064
Only one MIPS-specific driver implements support for one of the
asymmetric operations. There are no in-kernel users besides
/dev/crypto. The only known user of the /dev/crypto interface was the
engine in OpenSSL releases before 1.1.0. 1.1.0 includes a rewritten
engine that does not use the asymmetric operations due to lack of
documentation.
Reviewed by: cem, markj
MFC after: 1 week
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D26810
- Make session handling always use the CIOGSESSION2 structure.
CIOGSESSION requests use a thunk similar to COMPAT_FREEBSD32 session
requests. This permits the ioctl handler to use the 'crid' field
unconditionally.
- Move COMPAT_FREEBSD32 handling out of the main ioctl handler body
and instead do conversions in/out of thunk structures in dedicated
blocks at the start and end of the ioctl function.
Reviewed by: markj (earlier version)
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D26178
The counters are exported by a sysctl and have the same width on all
platforms anyway.
Reviewed by: cem, delphij, jhb
Sponsored by: Rubicon Communications, LLC (Netgate)
Differential Revision: https://reviews.freebsd.org/D25465
This permits requests to provide the AAD in a separate side buffer
instead of as a region in the crypto request input buffer. This is
useful when the main data buffer might not contain the full AAD
(e.g. for TLS or IPsec with ESN).
Unlike separate IVs which are constrained in size and stored in an
array in struct cryptop, separate AAD is provided by the caller
setting a new crp_aad pointer to the buffer. The caller must ensure
the pointer remains valid and the buffer contents static until the
request is completed (e.g. when the callback routine is invoked).
As with separate output buffers, not all drivers support this feature.
Consumers must request use of this feature via a new session flag.
To aid in driver testing, kern.crypto.cryptodev_separate_aad can be
set to force /dev/crypto requests to use a separate AAD buffer.
Discussed with: cem
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D25288
This is a testing aid to permit using testing a driver's support of
separate output buffers via cryptocheck.
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24545
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer. Using a separate output buffer avoids this copy.
- Create a new 'struct crypto_buffer' describing a crypto buffer
containing a type and type-specific fields. crp_ilen is gone,
instead buffers that use a flat kernel buffer have a cb_buf_len
field for their length. The length of other buffer types is
inferred from the backing store (e.g. uio_resid for a uio).
Requests now have two such structures: crp_buf for the input buffer,
and crp_obuf for the output buffer.
- Consumers now use helper functions (crypto_use_*,
e.g. crypto_use_mbuf()) to configure the input buffer. If an output
buffer is not configured, the request still modifies the input
buffer in-place. A consumer uses a second set of helper functions
(crypto_use_output_*) to configure an output buffer.
- Consumers must request support for separate output buffers when
creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
only permitted to queue a request with a separate output buffer on
sessions with this flag set. Existing drivers already reject
sessions with unknown flags, so this permits drivers to be modified
to support this extension without requiring all drivers to change.
- Several data-related functions now have matching versions that
operate on an explicit buffer (e.g. crypto_apply_buf,
crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).
- Most of the existing data-related functions operate on the input
buffer. However crypto_copyback always writes to the output buffer
if a request uses a separate output buffer.
- For the regions in input/output buffers, the following conventions
are followed:
- AAD and IV are always present in input only and their
fields are offsets into the input buffer.
- payload is always present in both buffers. If a request uses a
separate output buffer, it must set a new crp_payload_start_output
field to the offset of the payload in the output buffer.
- digest is in the input buffer for verify operations, and in the
output buffer for compute operations. crp_digest_start is relative
to the appropriate buffer.
- Add a crypto buffer cursor abstraction. This is a more general form
of some bits in the cryptosoft driver that tried to always use uio's.
However, compared to the original code, this avoids rewalking the uio
iovec array for requests with multiple vectors. It also avoids
allocate an iovec array for mbufs and populating it by instead walking
the mbuf chain directly.
- Update the cryptosoft(4) driver to support separate output buffers
making use of the cursor abstraction.
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24545
The opencrypto ioctl code has very useful probe points at the various exit
points. These allow us to figure out exactly why a request failed. However, a
few paths did not have these probe points. Add them here.
Reviewed by: jhb
Although a few drivers supported this algorithm, there were never any
in-kernel consumers. cryptosoft and cryptodev never supported it,
and there was not a software xform auth_hash for it.
Reviewed by: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D24767
This removes support for the following algorithms:
- ARC4
- Blowfish
- CAST128
- DES
- 3DES
- MD5-HMAC
- Skipjack
Since /dev/crypto no longer supports 3DES, stop testing the 3DES KAT
vectors in cryptotest.py.
Reviewed by: cem (previous version)
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D24346
Coverity noted that cod pointer is always non-NULL at the end of
cryptodev_aead(). While here, fix cryptodev_op() to match by making
one earlier failure case before cod and crp are allocated just return
directly.
CID: 1422185
Reported by: Coverity
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
Negative lengths are always invalid. The key length should also
be zero for hash algorithms that do not accept a key.
admbugs: 949
Reported by: Yuval Kanarenstein <yuvalk@ssd-disclosure.com>
Reviewed by: cem
MFC after: 1 week
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23094
This prevents use-after-free races with crypto requests (which may
sleep) and CIOCFSESSION as well as races from current CIOCFSESSION
requests.
admbugs: 949
Reported by: Yuval Kanarenstein <yuvalk@ssd-disclosure.com>
Reviewed by: cem
MFC after: 1 week
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23077
Warn when actual operations are performed instead of when sessions are
created. The /dev/crypto engine in OpenSSL 1.0.x tries to create
sessions for all possible algorithms each time it is initialized
resulting in spurious warnings.
Reported by: Mike Tancsa
MFC after: 3 days
Sponsored by: Chelsio Communications
New sysctl/tunables can now set the interval (in seconds) between
rate-limited crypto warnings. The new sysctls are:
- kern.cryptodev_warn_interval for /dev/crypto
- net.inet.ipsec.crypto_warn_interval for IPsec
- kern.kgssapi_warn_interval for KGSSAPI
Reviewed by: cem
MFC after: 1 month
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D20555
These algorithms are deprecated algorithms that will have no in-kernel
consumers in FreeBSD 13. Specifically, deprecate the following
algorithms:
- ARC4
- Blowfish
- CAST128
- DES
- 3DES
- MD5-HMAC
- Skipjack
MFC after: 1 month
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D20554
This commit essentially has three parts:
* Add the AES-CCM encryption hooks. This is in and of itself fairly small,
as there is only a small difference between CCM and the other ICM-based
algorithms.
* Hook the code into the OpenCrypto framework. This is the bulk of the
changes, as the algorithm type has to be checked for, and the differences
between it and GCM dealt with.
* Update the cryptocheck tool to be aware of it. This is invaluable for
confirming that the code works.
This is a software-only implementation, meaning that the performance is very
low.
Sponsored by: iXsystems Inc.
Differential Revision: https://reviews.freebsd.org/D19090
Track session objects in the framework, and pass handles between the
framework (OCF), consumers, and drivers. Avoid redundancy and complexity in
individual drivers by allocating session memory in the framework and
providing it to drivers in ::newsession().
Session handles are no longer integers with information encoded in various
high bits. Use of the CRYPTO_SESID2FOO() macros should be replaced with the
appropriate crypto_ses2foo() function on the opaque session handle.
Convert OCF drivers (in particular, cryptosoft, as well as myriad others) to
the opaque handle interface. Discard existing session tracking as much as
possible (quick pass). There may be additional code ripe for deletion.
Convert OCF consumers (ipsec, geom_eli, krb5, cryptodev) to handle-style
interface. The conversion is largely mechnical.
The change is documented in crypto.9.
Inspired by
https://lists.freebsd.org/pipermail/freebsd-arch/2018-January/018835.html .
No objection from: ae (ipsec portion)
Reported by: jhb
In part, to support OpenSSL's use of cryptodev, which puts the HMAC pieces
in software and only offloads the raw hash primitive.
The following cryptodev identifiers are added:
* CRYPTO_RIPEMD160 (not hooked up)
* CRYPTO_SHA2_224
* CRYPTO_SHA2_256
* CRYPTO_SHA2_384
* CRYPTO_SHA2_512
The plain SHA1 and 2 hashes are plumbed through cryptodev (feels like there
is a lot of redundancy here...) and cryptosoft.
This adds new auth_hash implementations for the plain hashes, as well as
SHA1 (which had a cryptodev.h identifier, but no implementation).
Add plain SHA 1 and 2 hash tests to the cryptocheck tool.
Motivation stems from John Baldwin's earlier OCF email,
https://lists.freebsd.org/pipermail/freebsd-arch/2018-January/018835.html .
opt_compat.h is mentioned in nearly 180 files. In-progress network
driver compabibility improvements may add over 100 more so this is
closer to "just about everywhere" than "only some files" per the
guidance in sys/conf/options.
Keep COMPAT_LINUX32 in opt_compat.h as it is confined to a subset of
sys/compat/linux/*.c. A fake _COMPAT_LINUX option ensure opt_compat.h
is created on all architectures.
Move COMPAT_LINUXKPI to opt_dontuse.h as it is only used to control the
set of compiled files.
Reviewed by: kib, cem, jhb, jtl
Sponsored by: DARPA, AFRL
Differential Revision: https://reviews.freebsd.org/D14941
Mostly this is a thin shim around existing code to integrate with enc_xform
and cryptosoft (+ cryptodev).
Expand the cryptodev buffer used to match that of Chacha20's native block
size as a performance enhancement for chacha20_xform_crypt_multi.
No functional change for Skipjack, AES-ICM, Blowfish, CAST-128, Camellia,
DES3, Rijndael128, DES. All of these have identical IV and blocksizes
declared in the associated enc_xform.
Functional changes for:
* AES-GCM: block len of 1, IV len of 12
* AES-XTS: block len of 16, IV len of 8
* NULL: block len of 4, IV len of 0
For these, it seems like the IV specified in the enc_xform is correct (and
the blocksize used before was wrong).
Additionally, the not-yet-OCFed cipher Chacha20 has a logical block length
of 1 byte, and a 16 byte IV + nonce.
Rationalize references to IV lengths to refer to the declared ivsize, rather
than declared blocksize.
Sponsored by: Dell EMC Isilon