This particular implementation is designed to be fully backwards compatible
and to be MFC-able to 7.x (and 6.x)
Currently the only protocol that can make use of the multiple tables is IPv4
Similar functionality exists in OpenBSD and Linux.
From my notes:
-----
One thing where FreeBSD has been falling behind, and which by chance I
have some time to work on is "policy based routing", which allows
different
packet streams to be routed by more than just the destination address.
Constraints:
------------
I want to make some form of this available in the 6.x tree
(and by extension 7.x) , but FreeBSD in general needs it so I might as
well do it in -current and back port the portions I need.
One of the ways that this can be done is to have the ability to
instantiate multiple kernel routing tables (which I will now
refer to as "Forwarding Information Bases" or "FIBs" for political
correctness reasons). Which FIB a particular packet uses to make
the next hop decision can be decided by a number of mechanisms.
The policies these mechanisms implement are the "Policies" referred
to in "Policy based routing".
One of the constraints I have if I try to back port this work to
6.x is that it must be implemented as a EXTENSION to the existing
ABIs in 6.x so that third party applications do not need to be
recompiled in timespan of the branch.
This first version will not have some of the bells and whistles that
will come with later versions. It will, for example, be limited to 16
tables in the first commit.
Implementation method, Compatible version. (part 1)
-------------------------------
For this reason I have implemented a "sufficient subset" of a
multiple routing table solution in Perforce, and back-ported it
to 6.x. (also in Perforce though not always caught up with what I
have done in -current/P4). The subset allows a number of FIBs
to be defined at compile time (8 is sufficient for my purposes in 6.x)
and implements the changes needed to allow IPV4 to use them. I have not
done the changes for ipv6 simply because I do not need it, and I do not
have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it.
Other protocol families are left untouched and should there be
users with proprietary protocol families, they should continue to work
and be oblivious to the existence of the extra FIBs.
To understand how this is done, one must know that the current FIB
code starts everything off with a single dimensional array of
pointers to FIB head structures (One per protocol family), each of
which in turn points to the trie of routes available to that family.
The basic change in the ABI compatible version of the change is to
extent that array to be a 2 dimensional array, so that
instead of protocol family X looking at rt_tables[X] for the
table it needs, it looks at rt_tables[Y][X] when for all
protocol families except ipv4 Y is always 0.
Code that is unaware of the change always just sees the first row
of the table, which of course looks just like the one dimensional
array that existed before.
The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign()
are all maintained, but refer only to the first row of the array,
so that existing callers in proprietary protocols can continue to
do the "right thing".
Some new entry points are added, for the exclusive use of ipv4 code
called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(),
which have an extra argument which refers the code to the correct row.
In addition, there are some new entry points (currently called
rtalloc_fib() and friends) that check the Address family being
looked up and call either rtalloc() (and friends) if the protocol
is not IPv4 forcing the action to row 0 or to the appropriate row
if it IS IPv4 (and that info is available). These are for calling
from code that is not specific to any particular protocol. The way
these are implemented would change in the non ABI preserving code
to be added later.
One feature of the first version of the code is that for ipv4,
the interface routes show up automatically on all the FIBs, so
that no matter what FIB you select you always have the basic
direct attached hosts available to you. (rtinit() does this
automatically).
You CAN delete an interface route from one FIB should you want
to but by default it's there. ARP information is also available
in each FIB. It's assumed that the same machine would have the
same MAC address, regardless of which FIB you are using to get
to it.
This brings us as to how the correct FIB is selected for an outgoing
IPV4 packet.
Firstly, all packets have a FIB associated with them. if nothing
has been done to change it, it will be FIB 0. The FIB is changed
in the following ways.
Packets fall into one of a number of classes.
1/ locally generated packets, coming from a socket/PCB.
Such packets select a FIB from a number associated with the
socket/PCB. This in turn is inherited from the process,
but can be changed by a socket option. The process in turn
inherits it on fork. I have written a utility call setfib
that acts a bit like nice..
setfib -3 ping target.example.com # will use fib 3 for ping.
It is an obvious extension to make it a property of a jail
but I have not done so. It can be achieved by combining the setfib and
jail commands.
2/ packets received on an interface for forwarding.
By default these packets would use table 0,
(or possibly a number settable in a sysctl(not yet)).
but prior to routing the firewall can inspect them (see below).
(possibly in the future you may be able to associate a FIB
with packets received on an interface.. An ifconfig arg, but not yet.)
3/ packets inspected by a packet classifier, which can arbitrarily
associate a fib with it on a packet by packet basis.
A fib assigned to a packet by a packet classifier
(such as ipfw) would over-ride a fib associated by
a more default source. (such as cases 1 or 2).
4/ a tcp listen socket associated with a fib will generate
accept sockets that are associated with that same fib.
5/ Packets generated in response to some other packet (e.g. reset
or icmp packets). These should use the FIB associated with the
packet being reponded to.
6/ Packets generated during encapsulation.
gif, tun and other tunnel interfaces will encapsulate using the FIB
that was in effect withthe proces that set up the tunnel.
thus setfib 1 ifconfig gif0 [tunnel instructions]
will set the fib for the tunnel to use to be fib 1.
Routing messages would be associated with their
process, and thus select one FIB or another.
messages from the kernel would be associated with the fib they
refer to and would only be received by a routing socket associated
with that fib. (not yet implemented)
In addition Netstat has been edited to be able to cope with the
fact that the array is now 2 dimensional. (It looks in system
memory using libkvm (!)). Old versions of netstat see only the first FIB.
In addition two sysctls are added to give:
a) the number of FIBs compiled in (active)
b) the default FIB of the calling process.
Early testing experience:
-------------------------
Basically our (IronPort's) appliance does this functionality already
using ipfw fwd but that method has some drawbacks.
For example,
It can't fully simulate a routing table because it can't influence the
socket's choice of local address when a connect() is done.
Testing during the generating of these changes has been
remarkably smooth so far. Multiple tables have co-existed
with no notable side effects, and packets have been routes
accordingly.
ipfw has grown 2 new keywords:
setfib N ip from anay to any
count ip from any to any fib N
In pf there seems to be a requirement to be able to give symbolic names to the
fibs but I do not have that capacity. I am not sure if it is required.
SCTP has interestingly enough built in support for this, called VRFs
in Cisco parlance. it will be interesting to see how that handles it
when it suddenly actually does something.
Where to next:
--------------------
After committing the ABI compatible version and MFCing it, I'd
like to proceed in a forward direction in -current. this will
result in some roto-tilling in the routing code.
Firstly: the current code's idea of having a separate tree per
protocol family, all of the same format, and pointed to by the
1 dimensional array is a bit silly. Especially when one considers that
there is code that makes assumptions about every protocol having the
same internal structures there. Some protocols don't WANT that
sort of structure. (for example the whole idea of a netmask is foreign
to appletalk). This needs to be made opaque to the external code.
My suggested first change is to add routing method pointers to the
'domain' structure, along with information pointing the data.
instead of having an array of pointers to uniform structures,
there would be an array pointing to the 'domain' structures
for each protocol address domain (protocol family),
and the methods this reached would be called. The methods would have
an argument that gives FIB number, but the protocol would be free
to ignore it.
When the ABI can be changed it raises the possibilty of the
addition of a fib entry into the "struct route". Currently,
the structure contains the sockaddr of the desination, and the resulting
fib entry. To make this work fully, one could add a fib number
so that given an address and a fib, one can find the third element, the
fib entry.
Interaction with the ARP layer/ LL layer would need to be
revisited as well. Qing Li has been working on this already.
This work was sponsored by Ironport Systems/Cisco
Reviewed by: several including rwatson, bz and mlair (parts each)
Obtained from: Ironport systems/Cisco
ICMP unreach, frag needed. Up to now we only looked at the
interface MTU. Make sure to only use the minimum of the two.
In case IPSEC is compiled in, loop the mtu through ip_ipsec_mtu()
to avoid any further conditional maths.
Without this, PMTU was broken in those cases when there was a
route with a lower MTU than the MTU of the outgoing interface.
PR: kern/122338
Tested by: Mark Cammidge mark peralex.com
Reviewed by: silence on net@
MFC after: 2 weeks
1. A packet comes in that is to be forwarded
2. The destination of the packet is rewritten by some firewall code
3. The next link's MTU is too small
4. The packet has the DF bit set
Then the current code is such that instead of setting the next
link's MTU in the ICMP error, ip_next_mtu() is called and a guess
is sent as to which MTU is supposed to be tried next. This is because
in this case ip_forward() is called with srcrt set to 1. In that
case the ia pointer remains NULL but it is needed to get the MTU
of the interface the packet is to be sent out from.
Thus, we always set ia to the outgoing interface.
MFC after: 2 weeks
from Mac OS X Leopard--rationalize naming for entry points to
the following general forms:
mac_<object>_<method/action>
mac_<object>_check_<method/action>
The previous naming scheme was inconsistent and mostly
reversed from the new scheme. Also, make object types more
consistent and remove spaces from object types that contain
multiple parts ("posix_sem" -> "posixsem") to make mechanical
parsing easier. Introduce a new "netinet" object type for
certain IPv4/IPv6-related methods. Also simplify, slightly,
some entry point names.
All MAC policy modules will need to be recompiled, and modules
not updates as part of this commit will need to be modified to
conform to the new KPI.
Sponsored by: SPARTA (original patches against Mac OS X)
Obtained from: TrustedBSD Project, Apple Computer
Also rename the related functions in a similar way.
There are no functional changes.
For a packet coming in with IPsec tunnel mode, the default is
to only call into the firewall with the "outer" IP header and
payload.
With this option turned on, in addition to the "outer" parts,
the "inner" IP header and payload are passed to the
firewall too when going through ip_input() the second time.
The option was never only related to a gif(4) tunnel within
an IPsec tunnel and thus the name was very misleading.
Discussed at: BSDCan 2007
Best new name suggested by: rwatson
Reviewed by: rwatson
Approved by: re (bmah)
This commit includes only the kernel files, the rest of the files
will follow in a second commit.
Reviewed by: bz
Approved by: re
Supported by: Secure Computing
explaining that some more locking is needed. The routing pieces are done,
but there is an interlocking issue between optionally compiled code and
mandatory code.
Spotted by: kris
begun with a repo-copy of mac.h to mac_framework.h. sys/mac.h now
contains the userspace and user<->kernel API and definitions, with all
in-kernel interfaces moved to mac_framework.h, which is now included
across most of the kernel instead.
This change is the first step in a larger cleanup and sweep of MAC
Framework interfaces in the kernel, and will not be MFC'd.
Obtained from: TrustedBSD Project
Sponsored by: SPARTA
in older versions of FreeBSD. This option is pointless as it is needed in just
about every interesting usage of forward that I have ever seen. It doesn't make
the system any safer and just wastes huge amounts of develper time
when the system doesn't behave as expected when code is moved from
4.x to 6.x It doesn't make
the system any safer and just wastes huge amounts of develper time
when the system doesn't behave as expected when code is moved from
4.x to 6.x or 7.x
Reviewed by: glebius
MFC after: 1 week
seperately. Also use pfil hook/unhook instead of keeping the check
functions in pfil just to return there based on the sysctl. While here fix
some whitespace on a nearby SYSCTL_ macro.
filtering mechanisms to use the new rwlock(9) locking API:
- Drop the variables stored in the phil_head structure which were specific to
conditions and the home rolled read/write locking mechanism.
- Drop some includes which were used for condition variables
- Drop the inline functions, and convert them to macros. Also, move these
macros into pfil.h
- Move pfil list locking macros intp phil.h as well
- Rename ph_busy_count to ph_nhooks. This variable will represent the number
of IN/OUT hooks registered with the pfil head structure
- Define PFIL_HOOKED macro which evaluates to true if there are any
hooks to be ran by pfil_run_hooks
- In the IP/IP6 stacks, change the ph_busy_count comparison to use the new
PFIL_HOOKED macro.
- Drop optimization in pfil_run_hooks which checks to see if there are any
hooks to be ran, and returns if not. This check is already performed by the
IP stacks when they call:
if (!PFIL_HOOKED(ph))
goto skip_hooks;
- Drop in assertion which makes sure that the number of hooks never drops
below 0 for good measure. This in theory should never happen, and if it
does than there are problems somewhere
- Drop special logic around PFIL_WAITOK because rw_wlock(9) does not sleep
- Drop variables which support home rolled read/write locking mechanism from
the IPFW firewall chain structure.
- Swap out the read/write firewall chain lock internal to use the rwlock(9)
API instead of our home rolled version
- Convert the inlined functions to macros
Reviewed by: mlaier, andre, glebius
Thanks to: jhb for the new locking API
and signifincantly improve the readability of ip_input() and
ip_output() again.
The resulting IPSEC hooks in ip_input() and ip_output() may be
used later on for making IPSEC loadable.
This move is mostly mechanical and should preserve current IPSEC
behaviour as-is. Nothing shall prevent improvements in the way
IPSEC interacts with the IPv4 stack.
Discussed with: bz, gnn, rwatson; (earlier version)
ip_forward() would report back a zero MTU in ICMP needfrag messages
because on a IPSEC SP lookup failure no MTU got computed.
Fix this by changing the logic to compute a new MTU in any case if
IPSEC didn't do it.
Change MTU computation logic to use egress interface MTU if available
or the next smaller MTU compared to the current packet size instead
of falling back to a very small fixed MTU.
Fix associated comment.
PR: kern/91412
MFC after: 3 days
ipq_zone, to allocate fragment headers from, rather than using cast mbuf
storage. This was one of the few remaining uses of mbuf storage for
local data structures that relied on dtom(). Implement the resource
limit on ipq's using UMA zone limits, but preserve current sysctl
semantics using a sysctl proc.
MFC after: 3 weeks
have any know to enable it from userland and could only be enabled by
either setting it to 1 at compile time or through the kernel debugger.
In the future it may be brought back as KTR tracing points.
Discussed with: rwatson
Sponsored by: TCP/IP Optimization Fundraise 2005
include ip_options.h into all files making use of IP Options functions.
From ip_input.c rev 1.306:
ip_dooptions(struct mbuf *m, int pass)
save_rte(m, option, dst)
ip_srcroute(m0)
ip_stripoptions(m, mopt)
From ip_output.c rev 1.249:
ip_insertoptions(m, opt, phlen)
ip_optcopy(ip, jp)
ip_pcbopts(struct inpcb *inp, int optname, struct mbuf *m)
No functional changes in this commit.
Discussed with: rwatson
Sponsored by: TCP/IP Optimization Fundraise 2005
have free space in it. Allocate correct mbuf from the beginning.
This allows icmp_error() to quote the entire TCP header in error
messages.
Sponsored by: TCP/IP Optimization Fundraise 2005
rather than in ifindex_table[]; all (except one) accesses are
through ifp anyway. IF_LLADDR() works faster, and all (except
one) ifaddr_byindex() users were converted to use ifp->if_addr.
- Stop storing a (pointer to) Ethernet address in "struct arpcom",
and drop the IFP2ENADDR() macro; all users have been converted
to use IF_LLADDR() instead.
lists, as well as accessor macros. For now, this is a recursive mutex
due code sequences where IPv4 multicast calls into IGMP calls into
ip_output(), which then tests for a multicast forwarding case.
For support macros in in_var.h to check multicast address lists, assert
that in_multi_mtx is held.
Acquire in_multi_mtx around iteration over the IPv4 multicast address
lists, such as in ip_input() and ip_output().
Acquire in_multi_mtx when manipulating the IPv4 layer multicast addresses,
as well as over the manipulation of ifnet multicast address lists in order
to keep the two layers in sync.
Lock down accesses to IPv4 multicast addresses in IGMP, or assert the
lock when performing IGMP join/leave events.
Eliminate spl's associated with IPv4 multicast addresses, portions of
IGMP that weren't previously expunged by IGMP locking.
Add in_multi_mtx, igmp_mtx, and if_addr_mtx lock order to hard-coded
lock order in WITNESS, in that order.
Problem reported by: Ed Maste <emaste at phaedrus dot sandvine dot ca>
MFC after: 10 days
try to reasseble the packet from the fragments queue with the only
fragment, finish with the first fragment as soon as we create a queue.
Spotted by: Vijay Singh
o Drop the fragment if maxfragsperpacket == 0, no chances we
will be able to reassemble the packet in future.
Reviewed by: silby
with the kernel compile time option:
options IPFIREWALL_FORWARD_EXTENDED
This option has to be specified in addition to IPFIRWALL_FORWARD.
With this option even packets targeted for an IP address local
to the host can be redirected. All restrictions to ensure proper
behaviour for locally generated packets are turned off. Firewall
rules have to be carefully crafted to make sure that things like
PMTU discovery do not break.
Document the two kernel options.
PR: kern/71910
PR: kern/73129
MFC after: 1 week
hosts to share an IP address, providing high availability and load
balancing.
Original work on CARP done by Michael Shalayeff, with many
additions by Marco Pfatschbacher and Ryan McBride.
FreeBSD port done solely by Max Laier.
Patch by: mlaier
Obtained from: OpenBSD (mickey, mcbride)
connection rates, which is causing problems for some users.
To retain the security advantage of random ports and ensure
correct operation for high connection rate users, disable
port randomization during periods of high connection rates.
Whenever the connection rate exceeds randomcps (10 by default),
randomization will be disabled for randomtime (45 by default)
seconds. These thresholds may be tuned via sysctl.
Many thanks to Igor Sysoev, who proved the necessity of this
change and tested many preliminary versions of the patch.
MFC After: 20 seconds
With pr_proto_register() it has become possible to dynamically load protocols
within the PF_INET domain. However the PF_INET domain has a second important
structure called ip_protox[] that is derived from the 'struct protosw inetsw[]'
and takes care of the de-multiplexing of the various protocols that ride on
top of IP packets.
The functions ipproto_[un]register() allow to dynamically adjust the ip_protox[]
array mux in a consistent and easy way. To register a protocol within
ip_protox[] the existence of a corresponding and matching protocol definition
in inetsw[] is required. The function does not allow to overwrite an already
registered protocol. The unregister function simply replaces the mux slot with
the default index pointer to IPPROTO_RAW as it was previously.
passing along socket information. This is required to work around a LOR with
the socket code which results in an easy reproducible hard lockup with
debug.mpsafenet=1. This commit does *not* fix the LOR, but enables us to do
so later. The missing piece is to turn the filter locking into a leaf lock
and will follow in a seperate (later) commit.
This will hopefully be MT5'ed in order to fix the problem for RELENG_5 in
forseeable future.
Suggested by: rwatson
A lot of work by: csjp (he'd be even more helpful w/o mentor-reviews ;)
Reviewed by: rwatson, csjp
Tested by: -pf, -ipfw, LINT, csjp and myself
MFC after: 3 days
LOR IDs: 14 - 17 (not fixed yet)
When net.inet.ip.check_interface was MFCed to RELENG_4 3+ years ago in
rev. 1.130.2.17 ip_input.c it was 1 by default but shortly changed to
0 (accidently?) in rev. 1.130.2.20 in RELENG_4 only. Among with the
fact this knob is not documented it breaks POLA especially in bridge
environment.
OK'ed by: andre
Reviewed by: -current
family to the ip_protox[] array. The protocol number of IPPROTO_DIVERT is
larger than IPPROTO_MAX and was initializing memory beyond the array.
Catch all these kinds of errors by ignoring protocols that are higher than
IPPROTO_MAX or 0 (zero).
Add more comments ip_init().
it travels through the IP stack. This wasn't much of a problem because IP
source routing is disabled by default but when enabled together with SMP and
preemption it would have very likely cross-corrupted the IP options in transit.
The IP source route options of a packet are now stored in a mtag instead of the
global variable.
compile option. All FreeBSD packet filters now use the PFIL_HOOKS API and
thus it becomes a standard part of the network stack.
If no hooks are connected the entire packet filter hooks section and related
activities are jumped over. This removes any performance impact if no hooks
are active.
Both OpenBSD and DragonFlyBSD have integrated PFIL_HOOKS permanently as well.