The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
Special thanks to Wind River for providing access to "The Duke of
Highlander" tool: an older (2014) run over FreeBSD tree was useful as a
starting point.
Initially, only tag files that use BSD 4-Clause "Original" license.
RelNotes: yes
Differential Revision: https://reviews.freebsd.org/D13133
Now the NDISulator supports NDIS USB drivers that it've tested with
devices as follows:
- Anygate XM-142 (Conexant)
- Netgear WG111v2 (Realtek)
- U-Khan UW-2054u (Marvell)
- Shuttle XPC Accessory PN20 (Realtek)
- ipTIME G054U2 (Ralink)
- UNiCORN WL-54G (ZyDAS)
- ZyXEL G-200v2 (ZyDAS)
All of them succeeded to attach and worked though there are still some
problems that it's expected to be solved.
To use NDIS USB support, you should rebuild and install ndiscvt(8) and
if you encounter a problem to attach please set `hw.ndisusb.halt' to
0 then retry.
I expect no changes of the NDIS code for PCI, PCMCIA devices.
Obtained from: //depot/projects/ndisusb/...
the same time.
Fix if_ndis_pccard.c so that it sets sc->ndis_dobj and sc->ndis_regvals.
Correct IMPORT_SFUNC() macros for the READ_PORT_BUFFER_xxx() routines,
which take 3 arguments, not 2.
This fixes it so that the Windows driver for my Cisco Aironet 340 PCMCIA
card works again. (Yes, I know the an(4) driver supports this card natively,
but it's the only PCMCIA device I have with a Windows XP driver.)
here on in, if_ndis.ko will be pre-built as a module, and can be built
into a static kernel (though it's not part of GENERIC). Drivers are
created using the new ndisgen(8) script, which uses ndiscvt(8) under
the covers, along with a few other tools. The result is a driver module
that can be kldloaded into the kernel.
A driver with foo.inf and foo.sys files will be converted into
foo_sys.ko (and foo_sys.o, for those who want/need to make static
kernels). This module contains all of the necessary info from the
.INF file and the driver binary image, converted into an ELF module.
You can kldload this module (or add it to /boot/loader.conf) to have
it loaded automatically. Any required firmware files can be bundled
into the module as well (or converted/loaded separately).
Also, add a workaround for a problem in NdisMSleep(). During system
bootstrap (cold == 1), msleep() always returns 0 without actually
sleeping. The Intel 2200BG driver uses NdisMSleep() to wait for
the NIC's firmware to come to life, and fails to load if NdisMSleep()
doesn't actually delay. As a workaround, if msleep() (and hence
ndis_thsuspend()) returns 0, use a hard DELAY() to sleep instead).
This is not really the right thing to do, but we can't really do much
else. At the very least, this makes the Intel driver happy.
There are probably other drivers that fail in this way during bootstrap.
Unfortunately, the only workaround for those is to avoid pre-loading
them and kldload them once the system is running instead.