case there is nothing to do. This happens normally when the card shares
the interrupt line with other devices.
This code saves a couple of microseconds per interrupt even on a
fast CPU. You normally would not care, except under heavy tinygram
traffic where you can have some 50-100.000 interrupts per second...
On passing, correct a spelling error.
register our sub-busses in the reversed order. In the future, we may provide
a hint to CAM on how to order the scans for multi-function adapters that also
set this flag, but trying to do it the "twin channel" way will lead to
a panic.
- All processes go into the same array of queues, with different
scheduling classes using different portions of the array. This
allows user processes to have their priorities propogated up into
interrupt thread range if need be.
- I chose 64 run queues as an arbitrary number that is greater than
32. We used to have 4 separate arrays of 32 queues each, so this
may not be optimal. The new run queue code was written with this
in mind; changing the number of run queues only requires changing
constants in runq.h and adjusting the priority levels.
- The new run queue code takes the run queue as a parameter. This
is intended to be used to create per-cpu run queues. Implement
wrappers for compatibility with the old interface which pass in
the global run queue structure.
- Group the priority level, user priority, native priority (before
propogation) and the scheduling class into a struct priority.
- Change any hard coded priority levels that I found to use
symbolic constants (TTIPRI and TTOPRI).
- Remove the curpriority global variable and use that of curproc.
This was used to detect when a process' priority had lowered and
it should yield. We now effectively yield on every interrupt.
- Activate propogate_priority(). It should now have the desired
effect without needing to also propogate the scheduling class.
- Temporarily comment out the call to vm_page_zero_idle() in the
idle loop. It interfered with propogate_priority() because
the idle process needed to do a non-blocking acquire of Giant
and then other processes would try to propogate their priority
onto it. The idle process should not do anything except idle.
vm_page_zero_idle() will return in the form of an idle priority
kernel thread which is woken up at apprioriate times by the vm
system.
- Update struct kinfo_proc to the new priority interface. Deliberately
change its size by adjusting the spare fields. It remained the same
size, but the layout has changed, so userland processes that use it
would parse the data incorrectly. The size constraint should really
be changed to an arbitrary version number. Also add a debug.sizeof
sysctl node for struct kinfo_proc.
- Missing cpu_to_scr() added (endian-ness).
Improvement (fix|workaroung??):
- Blindly firing a PPR can lead to some messy situations due to
various causes or misfeatures, for example:
* The 53C1010-[33|66] supports offset 62 in DT mode, but only
offset 31 in ST mode. As a result, a PPR(DT, offset 62)
responded with PPR(ST, any offset > 31) must be rejected.
* A device that doesn't know about PPR should reject it, but
may also be confused by this message.
When a PPR encounters problems, the driver now patches the goal
transfer settings for legacy negotiations to be performed later
with the offending target. This give a chance for bad situations
to be fixed automagically.
Some things needed bits of <i386/include/lock.h> - cy.c now has its
own (only) copy of the COM_(UN)LOCK() macros, and IMASK_(UN)LOCK()
has been moved to <i386/include/apic.h> (AKA <machine/apic.h>).
Reviewed by: jhb
isp_iid_set/isp_iid for fibre channel- this is because we now
fake a port database entry for ourselves. Add the additional loop
states between LOOP_PDB_RCVD and LOOP_READY.
Change and comment on a wad of Fibre Channel isp_control functions.
Change and comment on some of the ISPASYNC Fibre Channel events.
the unit number doesn't get reused.
Make sure that if we've compiled for ISP_TARGET_MODE we set the
default role to be ISP_ROLE_INITIATOR|ISP_ROLE_TARGET.
Do some misc other cleanups.
and depending on role, make sure link is up, scan the fabric (if we're
connected to a fabric), scan the local loop (if appropriate), merge
the results into the local port database then, check once again
to make sure we have f/w at FW_READY state and the the loopstate
is LOOP_READY.
Comment out usage of ISP_SMPLOCK- I have my doubts that this works sanely
as yet because CAM itself still needs Giant. I *was* dropping my lock
and grabbing Giant when doing the upcall for completion, but this is all
seems ridiculous until CAM is fixed.
if we're ISP_ROLE_NONE. Change ISPASYNC_LOGGED_INOUT to ISPASYNC_PROMENADE.
Make sure we note if something is a fabric device.
Target mode:
Finally fix (to a first approximation) SCSI Target Mode again- we needed
to correctly check against CAM_TARGET_WILDCARD and CAM_LUN_WILDCARD
so that targbh won't confuse us. Comment out the drainqueue stuff for
now. Use isp_fc_runstate instead if isp_control/ISPCTL_FCLINK_TEST.
Remove ISP2100_FABRIC defines- we always handle fabric now. Insert
isp_getmap helper function (for getting Loop Position map). Make
sure we (for our own benefit) mark req_state_flags with RQSF_GOT_SENSE
for Fibre Channel if we got sense data- the !*$)!*$)~*$)*$ Qlogic
f/w doesn't do so. Add ISPCTL_SCAN_FABRIC, ISPCTL_SCAN_LOOP, ISPCTL_SEND_LIP,
and ISPCTL_GET_POSMAP isp_control functions. Correctly send async notifications
upstream for changes in the name server, changes in the port database, and
f/w crashes. Correctly set topology when we get a ASYNC_PTPMODE event.
Major stuff:
Quite massively redo how we handle Loop events- we've now added several
intermediate states between LOOP_PDB_RCVD and LOOP_READY. This allows us
a lot finer control about how we scan fabric, whether we go further
than scanning fabric, how we look at the local loop, and whether we
merge entries at the level or not. This is the next to last step for
moving managing loop state out of the core module entirely (whereupon
loop && fabric events will simply freeze the command queue and a thread
will run to figure out what's changed and *it* will re-enable the queu).
This fine amount of control also gets us closer to having an external
policy engine decide which fabric devices we really want to log into.
Style nits.
Make sure that our selection hardware is disabled
as soon as possible after detecting a busfree and
even go so far as to disable the selection hardware
in advance of an event that will cause a busfree
(ABORT or BUS DEVICE RESET message). The concern
is that the selection hardware will select a target
for which, after processing the bus free, there
will be no commands pending. The sequencer idle
loop will re-enable the selection should it still be
necessary.
In ahc_handle_scsiint(), clear SSTAT0 events several
PCI transactions (most notably reads) prior to clearing
SCSIINT. The newer chips seem to take a bit of time to
see the change which can make the clearing of SCSIINT
ineffective.
Don't bother panicing at the end of ahc_handle_scsiint().
Getting to the final else just means we lost the race
with clearing SCSIINT.
In ahc_free(), handle init-level 0. This can happen when we
fail the attach for RAID devices. While I'm here, also kill
the parent dma tag.
In ahc_match_scb(), consider initiator ccbs to be any
that are not from the target mode group. This fixes
a bug where an external target reset CCB was not getting
cleaned up by the reset code.
Don't bother freezing a ccb in any of our "abort" routines
when the status is set to CAM_REQ_CMP. This can happen
for a target reset ccb.
aic7xxx.reg:
Reserve space for a completion queue. This will be used
to enhance performance in the near future.
aic7xxx.seq:
Remove an optimization for the 7890 autoflush bug that
turned out to allow, in rare cases, some data to get
lost.
Implement a simpler, faster, fix for the PCI_2_1 retry
bug that hangs the sequencer on an SCB dma for certain chips.
Test against SAVED_SCSIID rather than SELID during target
reselections. This is how we always did it in the past,
but the code was modified while trying to work around an
issue with the 7895. SAVED_SCSIID takes into account
twin channel adapters such as the 2742T, whereas SELID
does not have the channel bit. This caused invalid
selection warnings and other strangeness on these cards.
aic7xxx_pci.c
Use the correct mask for checking the generic aic7892
entry.
- Use swi_* function names.
- Use void * to hold cookies to handlers instead of struct intrhand *.
- In sio.c, use 'driver_name' instead of "sio" as the name of the driver
lock to minimize diffs with cy(4).
This mistake seems to have been benign until very recently, probably
until msmith's PCI code reshuffle which cleaned up a lot of things.
Still, my AIC7770 doesn't work again, but it at least probes the
EISA bus now.
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
* a ">" is really ">=" ;
* do not try to fetch zero-sized blocks from the card;
* make sure that bpf gets the packets it wants even with
bridging active;
adv_free() as the ISA probe routine doesn't malloc() ccb_infos but does
call adv_free().
- Release the ISA-only overrun DMA tags, bufs, and maps if the probe fails.
Tested by: rwatson