Commit Graph

13 Commits

Author SHA1 Message Date
Stephan Uphoff
6097174e4d Add IPI support for preempting a thread on another CPU.
MFC after:	3 weeks
2005-06-09 18:23:54 +00:00
John Baldwin
2326e092a7 Remove support for mixed mode altogether now that we no longer use IRQ 0
when using an APIC.  This simplifies the APIC code somewhat and also allows
us to be pedantically more compliant with ACPI which mandates no use of
mixed mode.
2005-04-14 17:59:58 +00:00
John Baldwin
e8ce55117b Use the local APIC timer to drive the various kernel clocks on SMP machines
rather than forwarding interrupts from the clock devices around using IPIs:
- Add an IDT vector that pushes a clock frame and calls
  lapic_handle_timer().
- Add functions to program the local APIC timer including setting the
  divisor, and setting up the timer to either down a periodic countdown
  or one-shot countdown.
- Add a lapic_setup_clock() function that the BSP calls from
  cpu_init_clocks() to setup the local APIC timer if it is going to be
  used.  The setup uses a one-shot countdown to calibrate the timer.  We
  then program the timer on each CPU to fire at a frequency of hz * 3.
  stathz is defined as freq / 23 (hz * 3 / 23), and profhz is defined as
  freq / 2 (hz * 3 / 2).  This gives the clocks relatively prime divisors
  while keeping a low LCM for the frequency of the clock interrupts.
  Thanks to Peter Jeremy for suggesting this approach.
- Remove the hardclock and statclock forwarding code including the two
  associated IPIs.  The bitmap IPI handler has now effectively degenerated
  to just IPI_AST.
- When the local APIC timer is used we don't turn the RTC on at all, but
  we still enable interrupts on the ISA timer 0 (i8254) for timecounting
  purposes.
2005-02-08 20:25:07 +00:00
John Baldwin
dfa7bc486b - Add a function to set the Task Priority Register (TPR) of the local APIC.
Currently this is only used to initiailize the TPR to 0 during initial
  setup.
- Reallocate vectors for the local APIC timer, error, and thermal LVT
  entries.  The timer entry is allocated from the top of the I/O interrupt
  range reducing the number of vectors available for hardware interrupts
  to 191.  Linux happens to use the same exact vector for its timer
  interrupt as well.  If the timer vector shared the same priority queue
  as the IPI handlers, then the frequency that the timer vector will
  eventually be firing at can interact badly with the IPIs resulting in
  the queue filling and the dreaded IPI stuck panics, hence it being located
  at the top of the previous priority queue instead.
- Fixup various minor nits in comments.
2004-12-23 19:47:59 +00:00
Stephan Uphoff
f30a4a1ced Avoid more than two pending IPI interrupt vectors per local APIC
as this may cause deadlocks.

This should fix kern/72123.

Discussed with: jhb
Tested by: Nik Azim Azam, Andy Farkas, Flack Man, Aykut KARA
           Izzet BESKARDES, Jens Binnewies, Karl Keusgen
Approved by:    sam (mentor)
2004-12-07 20:15:01 +00:00
John Baldwin
96d3b93753 Various cleanups in support of a future ioapic_config_intr() function:
- Allow ioapic_set_{nmi,smi,extint}() to be called multiple times on the
  same pin so long as the pin's mode is the same as the mode being
  requested.
- Add a notion of bus type for the interrupt associated with interrupt pin.
  This is needed so that we can force all EISA interrupts to be active high
  in the forthcoming ioapic_config_intr().
- Fix a bug for EISA systems that didn't remap IRQs.  This would have broken
  EISA systems that tried to disable mixed mode for IRQ 0.
2004-06-23 15:29:20 +00:00
John Baldwin
eb8943b13e Rework the APIC mixed mode support a bit:
- Require the APIC enumerators to explicitly enable mixed mode by calling
  ioapic_enable_mixed_mode().  Calling this function tells the apic driver
  that the PC-AT 8259A PICs are present and routable through the first I/O
  APIC via an ExtINT pin.  The mptable enumerator always calls this
  function for now.  The MADT enumerator only enables mixed mode if the
  PC-AT compatability flag is set in the MADT header.
- Allow mixed mode to be enabled or disabled via a 'hw.apic.mixed_mode'
  tunable.  By default this tunable is set to 1 (true).  The kernel option
  NO_MIXED_MODE changes the default to 0 to preserve existing behavior, but
  adding 'hw.apic.mixed_mode=0' to loader.conf achieves the same effect.
- Only use mixed mode to route IRQ 0 if it is both enabled by the APIC
  enumerator and activated by the loader tunable.  Note that both
  conditions must be true, so if the APIC enumerator does not enable mixed
  mode, then you can't set the tunable to try to override the enumerator.
2004-05-10 18:49:58 +00:00
John Baldwin
c2ce35977e - Change the APIC code to mostly use the recently added intr_trigger
and intr_polarity enums for passing around interrupt trigger modes and
  polarity rather than using the magic numbers 0 for level/low and 1 for
  edge/high.
- Convert the mptable parsing code to use the new ELCR wrapper code rather
  than reading the ELCR directly.  Also, use the ELCR settings to control
  both the trigger and polarity of EISA IRQs instead of just the trigger
  mode.
- Rework the MADT's handling of the ACPI SCI again:
  - If no override entry for the SCI exists at all, use level/low trigger
    instead of the default edge/high used for ISA IRQs.
  - For the ACPI SCI, use level/low values for conforming trigger and
    polarity rather than the edge/high values we use for all other ISA
    IRQs.
  - Rework the tunables available to override the MADT.  The
    hw.acpi.force_sci_lo tunable is no longer supported.  Instead, there
    are now two tunables that can independently override the trigger mode
    and/or polarity of the SCI.  The hw.acpi.sci.trigger tunable can be
    set to either "edge" or "level", and the hw.acpi.sci.polarity tunable
    can be set to either "high" or "low".  To simulate hw.acpi.force_sci_lo,
    set hw.acpi.sci.trigger to "level" and hw.acpi.sci.polarity to "low".
    If you are having problems with ACPI either causing an interrupt storm
    or not working at all (e.g., the power button doesn't turn invoke a
    shutdown -p now), you can try tweaking these two tunables to find the
    combination that works.
2004-05-04 20:39:24 +00:00
Peter Wemm
40e3826a9f Whitespace nit (sorry, couldn't help it) 2003-11-14 22:21:30 +00:00
John Baldwin
3ab2ba59f4 Shuffle the APIC interrupt vectors around a bit:
- Move the IPI and local APIC interrupt vectors up into the 0xf0 - 0xff
  range.  The pmap lazyfix IPI was reordered down next to the TLB
  shootdowns to avoid conflicting with the spurious interrupt vector.
- Move the base of APIC interrupts up 16 so that the first 16 APIC
  interrupts do not overlap the vectors used by the ATPIC.
- Remove bogus interrupt vector reservations for LINT[01].
- Now that 0xc0 - 0xef are available, use them for device interrupts.
  This increases the number of APIC device interrupts to 191.
- Increase the system-wide number of global interrupts to 191 to catch up
  to more APIC interrupts.

Requested by:	peter (2)
2003-11-14 19:10:13 +00:00
John Baldwin
69487322d8 Fix a typo. 2003-11-13 16:41:07 +00:00
John Baldwin
bd9cd7e3f7 - Move manipulation of td_intr_nesting_level out of assembly interrupt
vector stubs and into the C functions they call.
- Move disabling and EOIing of interrupt sources out of PIC driver entry
  points and into intr_execute_handlers().  Intr_execute_handlers() only
  disables a source for an interrupt if it is a stray interrupt or has
  threaded handlers.  Sources with fast handlers no longer disable (mask)
  the source while executing the handlers.
- Move the setting of clkintr_pending into intr_execute_handlers() and set
  the variable for any interrupt source with a vector of 0.  (Should only
  be true for IRQ 0.)  This fixes clkintr_pending in the NO_MIXED_MODE
  case.
- Implement lapic_eoi() and use it to implement ioapic_eoi_source().
- Rename atpic_sched_ithd() to atpic_handle_intr() since it is used to
  handle all atpic interrupts and not just threaded ones.

Inspired by:	peter's changes to amd64 in p4 (1)
Requested by:	bde (2)
2003-11-12 18:13:57 +00:00
John Baldwin
6f92bdd0c1 New APIC support code:
- The apic interrupt entry points have been rewritten so that each entry
  point can serve 32 different vectors.  When the entry is executed, it
  uses one of the 32-bit ISR registers to determine which vector in its
  assigned range was triggered.  Thus, the apic code can support 159
  different interrupt vectors with only 5 entry points.
- We now always to disable the local APIC to work around an errata in
  certain PPros and then re-enable it again if we decide to use the APICs
  to route interrupts.
- We no longer map IO APICs or local APICs using special page table
  entries.  Instead, we just use pmap_mapdev().  We also no longer
  export the virtual address of the local APIC as a global symbol to
  the rest of the system, but only in local_apic.c.  To aid this, the
  APIC ID of each CPU is exported as a per-CPU variable.
- Interrupt sources are provided for each intpin on each IO APIC.
  Currently, each source is given a unique interrupt vector meaning that
  PCI interrupts are not shared on most machines with an I/O APIC.
  That mapping for interrupt sources to interrupt vectors is up to the
  APIC enumerator driver however.
- We no longer probe to see if we need to use mixed mode to route IRQ 0,
  instead we always use mixed mode to route IRQ 0 for now.  This can be
  disabled via the 'NO_MIXED_MODE' kernel option.
- The npx(4) driver now always probes to see if a built-in FPU is present
  since this test can now be performed with the new APIC code.  However,
  an SMP kernel will panic if there is more than one CPU and a built-in
  FPU is not found.
- PCI interrupts are now properly routed when using APICs to route
  interrupts, so remove the hack to psuedo-route interrupts when the
  intpin register was read.
- The apic.h header was moved to apicreg.h and a new apicvar.h header
  that declares the APIs used by the new APIC code was added.
2003-11-03 21:53:38 +00:00