Back in 2009 I changed the ABI of the GIO_KEYMAP and PIO_KEYMAP ioctls
to support wide characters. I created a patch to add ABI compatibility
for the old calls, but I didn't get any feedback to that.
It seems now people are upgrading from 8 to 9 they experience this
issue, so add it anyway.
MCR register on the Sunix Sun1699 chip tends to be set but doesn't
seem to have a function. That is, FreeBSD just works (provided the
correct RCLK is used) regardless.
PR: kern/129663
Diagnostics: Eygene Ryabinkin <rea-fbsd at codelabs.ru>
MFC after: 3 days
prevent sending data when CTS is de-asserted.
In uart_tty_intr(), call uart_tty_outwakeup() when the CTS signal
changed, knowing that uart_tty_outwakeup() will do the right
thing for flow control. This avoids redundant conditionals.
PR: kern/148644
Submitted by: John Wehle <john@feith.com>
MFC after: 3 days
the original amd64 and i386 headers with stubs.
Rename (AMD64|I386)_BUS_SPACE_* to X86_BUS_SPACE_* everywhere.
Reviewed by: imp (previous version), jhb
Approved by: kib (mentor)
The following systems are affected:
- MPC8555CDS
- MPC8572DS
This overhaul covers the following major changes:
- All integrated peripherals drivers for Freescale MPC85XX SoC, which are
currently in the FreeBSD source tree are reworked and adjusted so they
derive config data out of the device tree blob (instead of hard coded /
tabelarized values).
- This includes: LBC, PCI / PCI-Express, I2C, DS1553, OpenPIC, TSEC, SEC,
QUICC, UART, CFI.
- Thanks to the common FDT infrastrucutre (fdtbus, simplebus) we retire
ocpbus(4) driver, which was based on hard-coded config data.
Note that world for these platforms has to be built WITH_FDT.
Reviewed by: imp
Sponsored by: The FreeBSD Foundation
The following systems are involved:
- DB-88F5182
- DB-88F5281
- DB-88F6281
- DB-78100
- SheevaPlug
This overhaul covers the following major changes:
- All integrated peripherals drivers for Marvell ARM SoC, which are
currently in the FreeBSD source tree are reworked and adjusted so they
derive config data out of the device tree blob (instead of hard coded /
tabelarized values).
- Since the common FDT infrastrucutre (fdtbus, simplebus) is used we say
good by to obio / mbus drivers and numerous hard-coded config data.
Note that world needs to be built WITH_FDT for the affected platforms.
Reviewed by: imp
Sponsored by: The FreeBSD Foundation.
StarCat systems which provides time-of-day services for both as well as
console service for Serengeti, i.e. Sun Fire V1280. While the latter is
described with a device type of serial in the OFW device tree, it isn't
actually an UART. Nevertheless the console service is handled by uart(4)
as this allowed to re-use quite a bit of MD and MI code. Actually, this
idea is stolen from Linux which interfaces the sun4v hypervisor console
with the Linux counterpart of uart(4).
This device only appears on the ACPI bus, so isn't caught by the current
entry for it in the uart(4) ISA attachment.
PR: kern/140172
Reviewed by: jhb, marcel
Approved by: ed (mentor)
MFC after: 2 weeks
interface is fairly simple WRT dealing with flow control, but
needed 2 new RX buffer functions with "get-char-from-buf" separated
from "advance-buf-pointer" so that the pointer could be advanced
only when ttydisc_rint() succeeded.
MFC after: 1 week
if input-device is unavailable. The Xserve G5 defaults to using
screen/keyboard for output-device/input-device even if these are not
installed, and then falls back to serial ports at boot time.
Reviewed by: marcel
Hardware from: grehan
Approved by: re (kib)
so that it isn't exposured unless needed. In particular this means
that it's easier to tune the memory layout based on board details.
While here, remove inclusion of <machine/intr.h> from mvreg.h. This
also contains exposure to SoC specifics in MI drivers, because NIRQ
depends on the SoC.
I don't want people to override the mutex when allocating a TTY. It has
to be there, to keep drivers like syscons happy. So I'm creating a
tty_alloc_mutex() which can be used in those cases. tty_alloc_mutex()
should eventually be removed.
The advantage of this approach, is that we can just remove a function,
without breaking the regular API in the future.
We typically wire translation to devices with TLB1 entries and
pmap_kextract() does not know about those and returns 0. This
causes false positives (read: all serial ports suddenly become
the console).
(framing, parity, etc), but does not indicate characters
being received. Since no chracters have been received,
ignore the line errors.
PR: 131006
MFC after: 3 days
provided, for example, on the PowerPC 970 (G5), as well as on related CPUs
like the POWER3 and POWER4.
This also adds support for various built-in hardware found on Apple G5
hardware (e.g. the IBM CPC925 northbridge).
Reviewed by: grehan
entry is a specific entry to override the generic NetMos entry so that
puc(4) will leave this device alone and let uart(4) claim it.
Submitted by: Navdeep Parhar nparhar @ gmail
Reviewed by: marcel
MFC after: 1 week
With our new TTY layer we use a two step device destruction procedure.
The TTY first gets abandoned by the device driver. When the TTY layer
notices all threads have left the TTY layer, it deallocates the TTY.
This means that the device unit number should not be reused before a
callback from the TTY layer to the device driver has been made. newbus
doesn't seem to support this concept (yet), so right now just add a
destructor with a big comment in it. It's not ideal, but at least it's
better than panicing.
Reported by: rnoland
* Orion
- 88F5181
- 88F5182
- 88F5281
* Kirkwood
- 88F6281
* Discovery
- MV78100
The above families of SOCs are built around CPU cores compliant with ARMv5TE
instruction set architecture definition. They share a number of integrated
peripherals. This commit brings support for the following basic elements:
* GPIO
* Interrupt controller
* L1, L2 cache
* Timers, watchdog, RTC
* TWSI (I2C)
* UART
Other peripherals drivers will be introduced separately.
Reviewed by: imp, marcel, stass (Thanks guys!)
Obtained from: Marvell, Semihalf
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
variations from normal 16x50 behaviour however is the the use of a normally
unused bit of IER to control RX timeout interrupts independently of the
generally used RXRDY bit. If this bit is not enabled, we only ever get
interrupts when the FIFO is full, never before. This is not very useful when
the UART is being used as a console.
In order to support this without causing potential problems on more "normal"
16x50 variants, this change introduces two hints for the uart device, ier_mask
and ier_rxbits. These can be used to override which bits get set and cleared
when we're enabling and disabling RX interrupts.
Reviewed by: marcel
ALT_BREAK_TO_DEBUGGER. In addition to "Enter ~ ctrl-B" (to enter the
debugger), there is now "Enter ~ ctrl-P" (force panic) and
"Enter ~ ctrl-R" (request clean reboot, ala ctrl-alt-del on syscons).
We've used variations of this at work. The force panic sequence is
best used with KDB_UNATTENDED for when you just want it to dump and
get on with it.
The reboot request is a safer way of getting into single user than
a power cycle. eg: you've hosed the ability to log in (pam, rtld, etc).
It gives init the reboot signal, which causes an orderly reboot.
I've taken my best guess at what the !x86 and non-sio code changes
should be.
This also makes sio release its spinlock before calling KDB/DDB.
The QUICC engine is found on various Freescale parts including MPC85xx, and
provides multiple generic time-division serial channel resources, which are in
turn muxed/demuxed by the Serial Communications Controller (SCC).
Along with core QUICC/SCC functionality a uart(4)-compliant device driver is
provided which allows for serial ports over QUICC/SCC.
Approved by: cognet (mentor)
Obtained from: Juniper
MFp4: e500
The PQ3 is a high performance integrated communications processing system
based on the e500 core, which is an embedded RISC processor that implements
the 32-bit Book E definition of the PowerPC architecture. For details refer
to: http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC8555E
This port was tested and successfully run on the following members of the PQ3
family: MPC8533, MPC8541, MPC8548, MPC8555.
The following major integrated peripherals are supported:
* On-chip peripherals bus
* OpenPIC interrupt controller
* UART
* Ethernet (TSEC)
* Host/PCI bridge
* QUICC engine (SCC functionality)
This commit brings the main functionality and will be followed by individual
drivers that are logically separate from this base.
Approved by: cognet (mentor)
Obtained from: Juniper, Semihalf
MFp4: e500
for that argument. This will allow DDB to detect the broad category of
reason why the debugger has been entered, which it can use for the
purposes of deciding which DDB script to run.
Assign approximate why values to all current consumers of the
kdb_enter() interface.
a pointer to struct bus_space. The structure contains function
pointers that do the actual bus space access.
The reason for this change is that previously all bus space
accesses were little endian (i.e. had an explicit byte-swap
for multi-byte accesses), because all busses on Macs are little
endian.
The upcoming support for Book E, and in particular the E500
core, requires support for big-endian busses because all
embedded peripherals are in the native byte-order.
With this change, there's no distinction between I/O port
space and memory mapped I/O. PowerPC doesn't have I/O port
space. Busses assign tags based on the byte-order only.
For that purpose, two global structures exist (bs_be_tag and
bs_le_tag), of which the address can be taken to get a valid
tag.
Obtained from: Juniper, Semihalf