the interface conversion to platform.pci_intr_route(). I've left the
platform.pci_intr_route() function pointer in place, as well as
alpha_pci_route_interrupt(), but no platform currently implements it.
To work around the removal of alpha_platform_assign_pciintr(cfg);
from the pci probe code, I've hooked in calls to platform.pci_intr_map()
in pcib_read_config (similar to the x86 APIC_IO ifdef in pci_cfgregread)
for every chipset that has a platform which needs it.
While here, I've removed the interupt mapping/routing code from the
AS2x00 platform because its not required (it has never been present in
-stable).
Tested on: UP1000, Miata(GL), XP1000, AS2100, AS500
- move the sysctl code to kern_intr.c
- do not use INTRCNT_COUNT, but rather eintrcnt - intrcnt to determine
the length of the intrcnt array
- move the declarations of intrnames, eintrnames, intrcnt and eintrcnt
from machine-dependent include files to sys/interrupt.h
- remove the hw.nintr sysctl, it is not needed.
- fix various style bugs
Requested by: bde
Reviewed by: bde (some time ago)
all alphas with devices behind ppb's. I'm working on a better solution now.
Note that all alphas that use per-platform interrupt mapping are broken
again (as they have been for several months)
breakage:
- call PCIB_ROUTE_INTERRUPT() regardless of how valid the intline looks.
Some alphas leave garbage in the intline and leave the intr mapping
to OS platform support routines that map slots/buses to intlines
- Down in the alpha pci code, first try platform.pci_intr_route() and
if it doesn't exist or returns garbage, just read the intline out of
config space.
tested on AS500 (garbage in intline) and UP1000 (PC-like, intline is valid)
Note that a nice little hack like the APIC_IO section of pci_cfgregread()
is not workable. This is because the calling interface for
alpha_pci_route_interrupt() requires us to figure out the bus/slot/etc
from a device_t. At pci_read_device() time, we don't have a device_t
for the bus/slot/func in question.
real uid, saved uid, real gid, and saved gid to ucred, as well as the
pcred->pc_uidinfo, which was associated with the real uid, only rename
it to cr_ruidinfo so as not to conflict with cr_uidinfo, which
corresponds to the effective uid.
o Remove p_cred from struct proc; add p_ucred to struct proc, replacing
original macro that pointed.
p->p_ucred to p->p_cred->pc_ucred.
o Universally update code so that it makes use of ucred instead of pcred,
p->p_ucred instead of p->p_pcred, cr_ruidinfo instead of p_uidinfo,
cr_{r,sv}{u,g}id instead of p_*, etc.
o Remove pcred0 and its initialization from init_main.c; initialize
cr_ruidinfo there.
o Restruction many credential modification chunks to always crdup while
we figure out locking and optimizations; generally speaking, this
means moving to a structure like this:
newcred = crdup(oldcred);
...
p->p_ucred = newcred;
crfree(oldcred);
It's not race-free, but better than nothing. There are also races
in sys_process.c, all inter-process authorization, fork, exec, and
exit.
o Remove sigio->sio_ruid since sigio->sio_ucred now contains the ruid;
remove comments indicating that the old arrangement was a problem.
o Restructure exec1() a little to use newcred/oldcred arrangement, and
use improved uid management primitives.
o Clean up exit1() so as to do less work in credential cleanup due to
pcred removal.
o Clean up fork1() so as to do less work in credential cleanup and
allocation.
o Clean up ktrcanset() to take into account changes, and move to using
suser_xxx() instead of performing a direct uid==0 comparision.
o Improve commenting in various kern_prot.c credential modification
calls to better document current behavior. In a couple of places,
current behavior is a little questionable and we need to check
POSIX.1 to make sure it's "right". More commenting work still
remains to be done.
o Update credential management calls, such as crfree(), to take into
account new ruidinfo reference.
o Modify or add the following uid and gid helper routines:
change_euid()
change_egid()
change_ruid()
change_rgid()
change_svuid()
change_svgid()
In each case, the call now acts on a credential not a process, and as
such no longer requires more complicated process locking/etc. They
now assume the caller will do any necessary allocation of an
exclusive credential reference. Each is commented to document its
reference requirements.
o CANSIGIO() is simplified to require only credentials, not processes
and pcreds.
o Remove lots of (p_pcred==NULL) checks.
o Add an XXX to authorization code in nfs_lock.c, since it's
questionable, and needs to be considered carefully.
o Simplify posix4 authorization code to require only credentials, not
processes and pcreds. Note that this authorization, as well as
CANSIGIO(), needs to be updated to use the p_cansignal() and
p_cansched() centralized authorization routines, as they currently
do not take into account some desirable restrictions that are handled
by the centralized routines, as well as being inconsistent with other
similar authorization instances.
o Update libkvm to take these changes into account.
Obtained from: TrustedBSD Project
Reviewed by: green, bde, jhb, freebsd-arch, freebsd-audit
the chipset. This is already how the multi-hose systems handle resource
allocation and it fixes a bug where dense and bwx memory allocations were
not handled properly.
Reviewed by: gallatin
systems were repo-copied from sys/miscfs to sys/fs.
- Renamed the following file systems and their modules:
fdesc -> fdescfs, portal -> portalfs, union -> unionfs.
- Renamed corresponding kernel options:
FDESC -> FDESCFS, PORTAL -> PORTALFS, UNION -> UNIONFS.
- Install header files for the above file systems.
- Removed bogus -I${.CURDIR}/../../sys CFLAGS from userland
Makefiles.
flags if it is safe to do so, otherwise it will just alter the pmap state
(eg, clear the appropriate PG_FOx bits).
This gets alpha booting in the face of the vm_mtx introduction.
Reviewed by: dfr
- Attach a writable sysctl to bootverbose (debug.bootverbose) so it can be
toggled after boot.
- Move the printf of the version string to a SI_SUB_COPYRIGHT SYSINIT just
afer the display of the copyright message instead of doing it by hand in
three MD places.
registers better. Hold sched_lock not only for checking the flag but
also while performing the actual operation to ensure the process doesn't
get swapped out by another CPU while we the operation is being performed.
. FD_CLRERR clears the error counter, thus re-enables kernel error
printf()s,
. FD_GSTAT obtains the last FDC operation state, if any,
. FDOPT_NOERRLOG (temporarily) turns off kernel printf() floppy
error logging,
. FDOPT_NOERROR makes the kernel ignore an FDC error, thus can
enable the transfer of an erroneous sector to the user application
All options are being cleared on (last) close.
Prime consumer of the last features will be fdread(1), to be committed
shortly.
(FD_CLRERR should be wired into fdcontrol(8), but then fdcontrol(8)
needs a major rewrite anyway.)
If for some reason DEVFS is undesired, the "NODEVFS" option is
needed now.
Pending any significant issues, DEVFS will be made mandatory in
-current on july 1st so that we can start reaping the full
benefits of having it.
other "system" header files.
Also help the deprecation of lockmgr.h by making it a sub-include of
sys/lock.h and removing sys/lockmgr.h form kernel .c files.
Sort sys/*.h includes where possible in affected files.
OK'ed by: bde (with reservations)
been made machine independent and various other adjustments have been made
to support Alpha SMP.
- It splits the per-process portions of hardclock() and statclock() off
into hardclock_process() and statclock_process() respectively. hardclock()
and statclock() call the *_process() functions for the current process so
that UP systems will run as before. For SMP systems, it is simply necessary
to ensure that all other processors execute the *_process() functions when the
main clock functions are triggered on one CPU by an interrupt. For the alpha
4100, clock interrupts are delievered in a staggered broadcast fashion, so
we simply call hardclock/statclock on the boot CPU and call the *_process()
functions on the secondaries. For x86, we call statclock and hardclock as
usual and then call forward_hardclock/statclock in the MD code to send an IPI
to cause the AP's to execute forwared_hardclock/statclock which then call the
*_process() functions.
- forward_signal() and forward_roundrobin() have been reworked to be MI and to
involve less hackery. Now the cpu doing the forward sets any flags, etc. and
sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically
return so that they can execute ast() and don't bother with setting the
astpending or needresched flags themselves. This also removes the loop in
forward_signal() as sched_lock closes the race condition that the loop worked
around.
- need_resched(), resched_wanted() and clear_resched() have been changed to take
a process to act on rather than assuming curproc so that they can be used to
implement forward_roundrobin() as described above.
- Various other SMP variables have been moved to a MI subr_smp.c and a new
header sys/smp.h declares MI SMP variables and API's. The IPI API's from
machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h.
- The globaldata_register() and globaldata_find() functions as well as the
SLIST of globaldata structures has become MI and moved into subr_smp.c.
Also, the globaldata list is only available if SMP support is compiled in.
Reviewed by: jake, peter
Looked over by: eivind
It might be more correct to make stathz as close as possible to 128,
but that would involve adding complexity to the clock intr path, which
I don't want to do.
saves 32 registers) to do on every context switch. This is only required
for SMP, so only do it there.
We should also look at moving the critical enter/exit out to the callers
structure. This field keeps track of how many levels deep we are nested
into the kernel. The nesting level is bumped at the start of a trap,
interrupt, syscall, or exception and is decremented on return. This is
used to detect the case when the kernel is returning back to a kernel
context in exception_return(). If we are returning to the kernel we need
to update the globaldata pointer register saved in the stack frame in case
we have switched CPU's between taking the initial interrupt that saved the
frame and returning. If we don't do this fixup it is possible for a CPU to
use the wrong per-cpu data. On UP systems this is not a problem, so the
code is conditional on SMP.
A count was used instead of simply checking the process status register in
the frame during exception_return() since there are critical sections at
the very start and end of a trap, exception, or interrupt from userland in
which we could trash the t7 register being used in userland. The counter
is incremented after adn before these critical sections respectively so
that we will not overwrite the saved t7 register if we are interrupted
during one of these critical sections.
This is will be required to prevent lowering the ipl when a critical_enter()
is present in the interrupt path when handling a machine check.
reviewed by: jhb
and AS4100s into single user mode. This work was done jointly by jhb and
myself, and builds on dfr's earlier work.
smp_init_secondary() / smp_start_secondary()
- use the uniq val to pass the globalp (me)
- fancy footwork to take any pending machine checks (me)
- doing things the FreeBSD way and getting the per-cpu idleproc created
correctly, and synchronizing the startup of secondaries (jhb)
mp_start()
- better recognition of available cpus (jhb)
smp_rendezvous()
- if smp hasn't started, only run the rendezvous function on the current
cpu. Sleuthing and (prior) incorrect fix by me, correct fix by jhb
smp_handle_ipi()
- more verbose handling of console messages (jhb)
- grab sched lock around setting PS_ASTPENDING (jhb)
forward_*clock()
- commented out. Joint decision by dfr, jhb and myself
General synchronization improvements (more mb()s, etc) (jhb)
Printf cleanups (joint)
Whitespace cleanups (jhb)
- don't do the stack overflow sanity check on MP systems -- p->p_addr
will be malloc'ed memory (not K0SEG) and the check will fail.
- don't ignore clock interrupts on secondaries. Alphas apparently
roundrobin clock interrupts to all cpus, so we're going to take clock
interrupts on all CPUS and not forward them.
- use the unique value to save the per-cpu globalp struct like the
comment says
- don't lower the ipl to ALPHA_PSL_IPL_HIGH: we may have a pending machine
check to take and we're not prepared for that yet, as we haven't setup
our interrupt entry points. (this may only happen on sable/lynx)
- indicate the fact that the working version of smp_init_secondary() doesn't
return (this is tied up in other changes and hasn't yet been committed).
panic_cpu shared variable. I used a simple atomic operation here instead
of a spin lock as it seemed to be excessive overhead. Also, this can avoid
recursive panics if, for example, witness is broken.
"inside" of locked regions. That is, an acquire atomic operation will
always enforce a memory barrier after the atomic operation and a release
operation will always enforce a memory barrier before the atomic
operation.
- Explicitly use 'mb' instead of 'wmb' in release atomic operations. The
'wmb' memory barrier is not strong enough to guarantee coherence with
other processors. This is effectively a nop since alpha_wmb() actually
performs a 'mb' and not a 'wmb', but I wanted the code to be more
correct since at some point in the future alpha_wmb()'s implementation
may switch to being a real 'wmb'.
we should call ast(). This allows us to branch to a separate Lkernelret
label so we can fixup the saved t7 register in the trapframe. Otherwise
we can run into a problem on SMP systems where a process is interrupted by
a trap or interrupt on one CPU, migrates to another CPU, and then returns
with the t7 in the stack clobbering the CPU's t7. As a result, two CPU's
would both point to the same per-CPU data and things would go downhill from
there.
Sleuthing help by: gallatin
- Add a new ddb command: 'show pcpu' similar to the i386 command added
recently. By default it displays the current CPU's info, but an optional
argument can specify the logical ID of a specific CPU to examine.
badaddr_read(). This fixes 'machine check in pal mode' halts on
ev5 2100As.
MFC candidate -- after spending 6 hours tracking this down, I checked and
discovered that it has been in NetBSD for over a year, so it should be safe
for MFC into 4.3-RELEASE
than a NOP. bounds_check_with_label() would return -1 yet NOT set any
of the bio flags to show an error. This meant the caller would not
properly see that bounds_check_with_label() did not do any work. This
prevented newfs(8) from being able to write a file system on any partition
other than `c' on a `ccd'.
The logs of this file do not tell _why_ bounds_check_with_label() was
emasculated. Nor are there any `XXX' comments. So we'll unemasculated
it, and see what breaks.
Submitted by: gallatin
- Introduce lock classes and lock objects. Each lock class specifies a
name and set of flags (or properties) shared by all locks of a given
type. Currently there are three lock classes: spin mutexes, sleep
mutexes, and sx locks. A lock object specifies properties of an
additional lock along with a lock name and all of the extra stuff needed
to make witness work with a given lock. This abstract lock stuff is
defined in sys/lock.h. The lockmgr constants, types, and prototypes have
been moved to sys/lockmgr.h. For temporary backwards compatability,
sys/lock.h includes sys/lockmgr.h.
- Replace proc->p_spinlocks with a per-CPU list, PCPU(spinlocks), of spin
locks held. By making this per-cpu, we do not have to jump through
magic hoops to deal with sched_lock changing ownership during context
switches.
- Replace proc->p_heldmtx, formerly a list of held sleep mutexes, with
proc->p_sleeplocks, which is a list of held sleep locks including sleep
mutexes and sx locks.
- Add helper macros for logging lock events via the KTR_LOCK KTR logging
level so that the log messages are consistent.
- Add some new flags that can be passed to mtx_init():
- MTX_NOWITNESS - specifies that this lock should be ignored by witness.
This is used for the mutex that blocks a sx lock for example.
- MTX_QUIET - this is not new, but you can pass this to mtx_init() now
and no events will be logged for this lock, so that one doesn't have
to change all the individual mtx_lock/unlock() operations.
- All lock objects maintain an initialized flag. Use this flag to export
a mtx_initialized() macro that can be safely called from drivers. Also,
we on longer walk the all_mtx list if MUTEX_DEBUG is defined as witness
performs the corresponding checks using the initialized flag.
- The lock order reversal messages have been improved to output slightly
more accurate file and line numbers.
and change the u_int mtx_saveintr member of struct mtx to a critical_t
mtx_savecrit.
- On the alpha we no longer need a custom _get_spin_lock() macro to avoid
an extra PAL call, so remove it.
- Partially fix using mutexes with WITNESS in modules. Change all the
_mtx_{un,}lock_{spin,}_flags() macros to accept explicit file and line
parameters and rename them to use a prefix of two underscores. Inside
of kern_mutex.c, generate wrapper functions for
_mtx_{un,}lock_{spin,}_flags() (only using a prefix of one underscore)
that are called from modules. The macros mtx_{un,}lock_{spin,}_flags()
are mapped to the __mtx_* macros inside of the kernel to inline the
usual case of mutex operations and map to the internal _mtx_* functions
in the module case so that modules will use WITNESS and KTR logging if
the kernel is compiled with support for it.
sections.
- Add implementations of the critical_enter() and critical_exit() functions
and remove restore_intr() and save_intr().
- Remove the somewhat bogus disable_intr() and enable_intr() functions on
the alpha as the alpha actually uses a priority level and not simple bit
flag on the CPU.
- If there is no gdb device, just return without trying to return any
value since gdb_handle_exception() returns void.
- When calling prom_halt(), pass in a value telling it to actually halt
and not to randomly choose whether or not to halt or reboot depending on
whatever value happened to be in a0 when the call was made.
an AST results in a signal being delivered, we'll need to do a full register
restore so as to properly setup the signal handler. This is somewhat of
a pessimization, because ast() will be called twice in this case.
This fixes several problems that have been reported where signal intensive
userland apps (most notably dump) have been SEGV'ing for no fault of their
own.
Thanks to Peter Jeremy <peter.jeremy@alcatel.com.au> for presenting the
AST scenario which led to me fiinally figuring this out.
Reviewed by: jhb
Make the name cache hash as well as the nfsnode hash use it.
As a special tweak, create an unsigned version of register_t. This allows
us to use a special tweak for the 64 bit versions that significantly
speeds up the i386 version (ie: int64 XOR int64 is slower than int64
XOR int32).
The code layout is a little strange for the string function, but I was
able to get between 5 to 10% improvement over the original version I
started with. The layout affects gcc code generation choices and this way
was fastest on x86 and alpha.
Note that 'CPUTYPE=p3' etc makes a fair difference to this. It is
around 45% faster with -march=pentiumpro on a p6 cpu.
if we hold a spin mutex, since we can trivially get into deadlocks if we
start switching out of processes that hold spinlocks. Checking to see if
interrupts were disabled was a sort of cheap way of doing this since most
of the time interrupts were only disabled when holding a spin lock. At
least on the i386. To fix this properly, use a per-process counter
p_spinlocks that counts the number of spin locks currently held, and
instead of checking to see if interrupts are disabled in the witness code,
check to see if we hold any spin locks. Since child processes always
start up with the sched lock magically held in fork_exit(), we initialize
p_spinlocks to 1 for child processes. Note that proc0 doesn't go through
fork_exit(), so it starts with no spin locks held.
Consulting from: cp
- Don't try to grab Giant before postsig() in userret() as it is no longer
needed.
- Don't grab Giant before psignal() in ast() but get the proc lock instead.
supported architectures such as the alpha. This allows us to save
on kernel virtual address space, TLB entries, and (on the ia64) VHPT
entries. pmap_map() now modifies the passed in virtual address on
architectures that do not support direct-mapped segments to point to
the next available virtual address. It also returns the actual
address that the request was mapped to.
- On the IA64 don't use a special zone of PV entries needed for early
calls to pmap_kenter() during pmap_init(). This gets us in trouble
because we end up trying to use the zone allocator before it is
initialized. Instead, with the pmap_map() change, the number of needed
PV entries is small enough that we can get by with a static pool that is
used until pmap_init() is complete.
Submitted by: dfr
Debugging help: peter
Tested by: me