lock optimized for almost exclusive reader access. (see also rmlock.9)
TODO:
Convert to per cpu variables linkerset as soon as it is available.
Optimize UP (single processor) case.
per-primitive macros like MTX_NOPROFILE, SX_NOPROFILE or RW_NOPROFILE) is
not really honoured. In particular lock_profile_obtain_lock_failure() and
lock_profile_obtain_lock_success() are naked respect this flag.
The bug leads to locks marked with no-profiling to be profiled as well.
In the case of the clock_lock, used by the timer i8254 this leads to
unpredictable behaviour both on amd64 and ia32 (double faults panic,
sudden reboots, etc.). The amd64 clock_lock is also not marked as
not profilable as it should be.
Fix these bugs adding proper checks in the lock profiling code and at
clock_lock initialization time.
i8254 bug pointed out by: kris
Tested by: matteo, Giuseppe Cocomazzi <sbudella at libero dot it>
Approved by: jeff (mentor)
Approved by: re
- only collect timestamps when a lock is contested - this reduces the overhead
of collecting profiles from 20x to 5x
- remove unused function from subr_lock.c
- generalize cnt_hold and cnt_lock statistics to be kept for all locks
- NOTE: rwlock profiling generates invalid statistics (and most likely always has)
someone familiar with that should review
if waittime was zero (the lock was uncontested) l->lpo_waittime
in the hash table would not get initialized.
Inspection prompted by questions from: Attilio Rao
wait (time waited to acquire) and hold times for *all* kernel locks. If
the architecture has a system synchronized TSC, the profiling code will
use that - thereby minimizing profiling overhead. Large chunks of profiling
code have been moved out of line, the overhead measured on the T1 for when
it is compiled in but not enabled is < 1%.
Approved by: scottl (standing in for mentor rwatson)
Reviewed by: des and jhb
implementation is by no means perfect as far as some of the algorithms
that it uses and the fact that it is missing some functionality (try
locks and upgrades/downgrades are not there yet), however it does seem
to work in my local testing. There is more detail in the comments in the
code, but the short version follows.
A reader/writer lock is very much like a regular mutex: it cannot be held
across a voluntary sleep; it can be acquired in an interrupt thread; if
the lock is held by a writer then the priority of any threads that block
on the lock will be lent to the owner; the simple case lock operations all
are done in a single atomic op. It also shares some similiarities
with sx locks: it supports reader/writer semantics (multiple readers,
but single writers); readers are allowed to recurse, but writers are not.
We can extend this implementation further by either improving algorithms
or adding new functionality, but this should at least give us a base to
work with now.
Reviewed by: arch (in theory)
Tested on: i386 (4 cpu box with a kernel module that used 4 threads
that randomly chose between read locks and write locks
that ran w/o panicing for over a day solid. It usually
panic'd within a few seconds when there were bugs during
testing. :) The kernel module source is available on
request.)
lock_obj objects:
- Add new lock_init() and lock_destroy() functions to setup and teardown
lock_object objects including KTR logging and registering with WITNESS.
- Move all the handling of LO_INITIALIZED out of witness and the various
lock init functions into lock_init() and lock_destroy().
- Remove the constants for static indices into the lock_classes[] array
and change the code outside of subr_lock.c to use LOCK_CLASS to compare
against a known lock class.
- Move the 'show lock' ddb function and lock_classes[] array out of
kern_mutex.c over to subr_lock.c.