now used in f_ops in place of NULL, and modifications to the files
are more carefully ordered. f_ops should also be set to &badfileops
upon "close" of a file.
This does not fix other problems mentioned in this PR than the first
one.
PR: 11629
Reviewed by: peter
o use suser_xxx rather than suser to support JAIL code.
o KNF comment convention
o use vp->type rather than vaddr.type and eliminate call to
VOP_GETATTR. Bruce says that vp->type is valid at this
point.
Submitted by: bde.
Not fixed:
o return (value)
o Comment needs to be longer and more explicit. It will be after
the advisory.
- device_print_child() either lets the BUS_PRINT_CHILD
method produce the entire device announcement message or
it prints "foo0: not found\n"
Alter sys/kern/subr_bus.c:bus_generic_print_child() to take on
the previous behavior of device_print_child() (printing the
"foo0: <FooDevice 1.1>" bit of the announce message.)
Provide bus_print_child_header() and bus_print_child_footer()
to actually print the output for bus_generic_print_child().
These functions should be used whenever possible (unless you can
just use bus_generic_print_child())
The BUS_PRINT_CHILD method now returns int instead of void.
Modify everything else that defines or uses a BUS_PRINT_CHILD
method to comply with the above changes.
- Devices are 'on' a bus, not 'at' it.
- If a custom BUS_PRINT_CHILD method does the same thing
as bus_generic_print_child(), use bus_generic_print_child()
- Use device_get_nameunit() instead of both
device_get_name() and device_get_unit()
- All BUS_PRINT_CHILD methods return the number of
characters output.
Reviewed by: dfr, peter
macros) to the signal handler, for old-style BSD signal handlers as
the second (int) argument, for SA_SIGINFO signal handlers as
siginfo_t->si_code. This is source-compatible with Solaris, except
that we have no <siginfo.h> (which isn't even mentioned in POSIX
1003.1b).
An rather complete example program is at
http://www3.cons.org/cracauer/freebsd-signal.c
This will be added to the regression tests in src/.
This commit also adds code to disable the (hardware) FPU from
userconfig, so that you can use a software FP emulator on a machine
that has hardware floating point. See LINT.
When creating new processes (or performing exec), the new page
directory is initialized too early. The kernel might grow before
p_vmspace is initialized for the new process. Since pmap_growkernel
doesn't yet know about the new page directory, it isn't updated, and
subsequent use causes a failure.
The fix is (1) to clear p_vmspace early, to stop pmap_growkernel
from stomping on memory, and (2) to defer part of the initialization
of new page directories until p_vmspace is initialized.
PR: kern/12378
Submitted by: tegge
Reviewed by: dfr
also gets the device by st_rdev, which is alright except for the fact that
the sysctl kern.dumpdev passed out a char device. This is a workaround.
Sorry for not committing the fix earlier, before people started having
problems.
vnodes referencing this device.
Details:
cdevsw->d_parms has been removed, the specinfo is available
now (== dev_t) and the driver should modify it directly
when applicable, and the only driver doing so, does so:
vn.c. I am not sure the logic in checking for "<" was right
before, and it looks even less so now.
An intial pool of 50 struct specinfo are depleted during
early boot, after that malloc had better work. It is
likely that fewer than 50 would do.
Hashing is done from udev_t to dev_t with a prime number
remainder hash, experiments show no better hash available
for decent cost (MD5 is only marginally better) The prime
number used should not be close to a power of two, we use
83 for now.
Add new checkalias2() to get around the loss of info from
dev2udev() in bdevvp();
The aliased vnodes are hung on a list straight of the dev_t,
and speclisth[SPECSZ] is unused. The sharing of struct
specinfo means that the v_specnext moves into the vnode
which grows by 4 bytes.
Don't use a VBLK dev_t which doesn't make sense in MFS, now
we hang a dummy cdevsw on B/Cmaj 253 so that things look sane.
Storage overhead from all of this is O(50k).
Bump __FreeBSD_version to 400009
The next step will add the stuff needed so device-drivers can start to
hang things from struct specinfo
the caller to specify a function to be guarded between an entry and exit
barrier, as well as pre- and post-barrier functions.
The primary use for this function is synchronised update of per-cpu private
data. The implementation is almost (but not quite) MI; with a better
mechanism for masking per-CPU interrupts it could probably be hoisted.
Reviewed by: peter (partially)
Only know casualy of this is swapinfo/pstat which should be fixes
the right way: Store the actual pathname in the kernel like mount
does. [Volounteers sought for this task]
The road map from here is roughly: expand struct specinfo into struct
based dev_t. Add dev_t registration facilities for device drivers and
start to use them.
used for timecounting. The possible values are the names of the
physically present harware timecounters ("i8254" and "TSC" on i386's).
Fixed some nearby bitrot in comments in <sys/time.h>.
Reviewed by: phk
1. Printing large quads in small bases overflowed the buffer if
sizeof(u_quad_t) > sizeof(u_long).
2. The sharpflag checks had operator precedence bugs due to excessive
parentheses in all the wrong places.
3. The explicit 0L was bogus in the quad_t comparison and useless in
the long comparision.
4. There was some more bitrot in the comment about ksprintn(). Our
ksprintn() handles bases up to 36 as well as down to 2.
Bruce has other complaints about using %q in kernel and would rather
we went towards using the C9X style %ll and/or %j. (I agree for that
matter, as long as gcc/egcs know how to deal with that.)
Submitted by: bde
I don't know if it was intentional or not, but it would have printed out:
/compat/linux/foo/bar.so: interpreter not found
If it was, then I've broken it. De-constifying the 'interp' variable
or carrying the constness through to elf_load_file() are alternatives.
Alpha believes that %q is for long long, whereas our quad_t and int64_t
is only just a plain long. long long on the alpha is the same size (64
bit) as a long. It was requested, but I have not implemented yet, support
for C9X style %lld - it should be pretty easy though.
large (1G) memory machine configurations. I was able to run 'dbench 32'
on a 32MB system without bring the machine to a grinding halt.
* buffer cache hash table now dynamically allocated. This will
have no effect on memory consumption for smaller systems and
will help scale the buffer cache for larger systems.
* minor enhancement to pmap_clearbit(). I noticed that
all the calls to it used constant arguments. Making
it an inline allows the constants to propogate to
deeper inlines and should produce better code.
* removal of inherent vfs_ioopt support through the emplacement
of appropriate #ifdef's, with John's permission. If we do not
find a use for it by the end of the year we will remove it entirely.
* removal of getnewbufloops* counters & sysctl's - no longer
necessary for debugging, getnewbuf() is now optimal.
* buffer hash table functions removed from sys/buf.h and localized
to vfs_bio.c
* VFS_BIO_NEED_DIRTYFLUSH flag and support code added
( bwillwrite() ), allowing processes to block when too many dirty
buffers are present in the system.
* removal of a softdep test in bdwrite() that is no longer necessary
now that bdwrite() no longer attempts to flush dirty buffers.
* slight optimization added to bqrelse() - there is no reason
to test for available buffer space on B_DELWRI buffers.
* addition of reverse-scanning code to vfs_bio_awrite().
vfs_bio_awrite() will attempt to locate clusterable areas
in both the forward and reverse direction relative to the
offset of the buffer passed to it. This will probably not
make much of a difference now, but I believe we will start
to rely on it heavily in the future if we decide to shift
some of the burden of the clustering closer to the actual
I/O initiation.
* Removal of the newbufcnt and lastnewbuf counters that Kirk
added. They do not fix any race conditions that haven't already
been fixed by the gbincore() test done after the only call
to getnewbuf(). getnewbuf() is a static, so there is no chance
of it being misused by other modules. ( Unless Kirk can think
of a specific thing that this code fixes. I went through it
very carefully and didn't see anything ).
* removal of VOP_ISLOCKED() check in flushbufqueues(). I do not
think this check is necessary, the buffer should flush properly
whether the vnode is locked or not. ( yes? ).
* removal of extra arguments passed to getnewbuf() that are not
necessary.
* missed cluster_wbuild() that had to be a cluster_wbuild_wb() in
vfs_cluster.c
* vn_write() now calls bwillwrite() *PRIOR* to locking the vnode,
which should greatly aid flushing operations in heavy load
situations - both the pageout and update daemons will be able
to operate more efficiently.
* removal of b_usecount. We may add it back in later but for now
it is useless. Prior implementations of the buffer cache never
had enough buffers for it to be useful, and current implementations
which make more buffers available might not benefit relative to
the amount of sophistication required to implement a b_usecount.
Straight LRU should work just as well, especially when most things
are VMIO backed. I expect that (even though John will not like
this assumption) directories will become VMIO backed some point soon.
Submitted by: Matthew Dillon <dillon@backplane.com>
Reviewed by: Kirk McKusick <mckusick@mckusick.com>
than a review, this was a nice puzzle.
This is supposed to be binary and source compatible with older
applications that access the old FreeBSD-style three arguments to a
signal handler.
Except those applications that access hidden signal handler arguments
bejond the documented third one. If you have applications that do,
please let me know so that we take the opportunity to provide the
functionality they need in a documented manner.
Also except application that use 'struct sigframe' directly. You need
to recompile gdb and doscmd. `make world` is recommended.
Example program that demonstrates how SA_SIGINFO and old-style FreeBSD
handlers (with their three args) may be used in the same process is at
http://www3.cons.org/tmp/fbsd-siginfo.c
Programs that use the old FreeBSD-style three arguments are easy to
change to SA_SIGINFO (although they don't need to, since the old style
will still work):
Old args to signal handler:
void handler_sn(int sig, int code, struct sigcontext *scp)
New args:
void handler_si(int sig, siginfo_t *si, void *third)
where:
old:code == new:second->si_code
old:scp == &(new:si->si_scp) /* Passed by value! */
The latter is also pointed to by new:third, but accessing via
si->si_scp is preferred because it is type-save.
FreeBSD implementation notes:
- This is just the framework to make the interface POSIX compatible.
For now, no additional functionality is provided. This is supposed
to happen now, starting with floating point values.
- We don't use 'sigcontext_t.si_value' for now (POSIX meant it for
realtime-related values).
- Documentation will be updated when new functionality is added and
the exact arguments passed are determined. The comments in
sys/signal.h are meant to be useful.
Reviewed by: BDE
dynamicly linked binaries to run in a chroot'd environment with "emul_path"
as the new root. The new behavior of loading interpreters is identical to the
principle of overlaying.
PR: 10145
into uipc_mbuf.c. This reduces three sets of identical tunable code to
one set, and puts the initialisation with the mbuf code proper.
Make NMBUFs tunable as well.
Move the nmbclusters sysctl here as well.
Move the initialisation of maxsockets from param.c to uipc_socket2.c,
next to its corresponding sysctl.
Use the new tunable macros for the kern.vm.kmem.size tunable (this should have
been in a separate commit, whoops).
returns 0 after ptrace() attach and/or detach doesn't quite quite
deliver a signal. Perhaps the process shouldn't be woken in this
case, but avoiding the problem is easy.
PR: 12247
Fixed a couple of places where mechanical fixing of compiler warnings
caused misspelling of NOLOCKF as NULL.
allow changes to the filesystem's write_behind behavior. By the
default the filesystem aggressively issues write_behind's. Three values
may be specified for vfs.write_behind. 0 disables write_behind, 1 results
in historical operation (agressive write_behind), and 2 is an experimental
backed-off write_behind. The values of 0 and 1 are recommended. The value
of 0 is recommended in conjuction with an increase in the number of
NBUF's and the number of dirty buffers allowed (vfs.{lo,hi}dirtybuffers).
Note that a value of 0 will radically increase the dirty buffer load on
the system. Future work on write_behind behavior will use values 2 and
greater for testing purposes.
Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
Reviewed by: Kirk McKusick <mckusick@mckusick.com>
QUEUE_AGE, QUEUE_LRU, and QUEUE_EMPTY we instead have QUEUE_CLEAN,
QUEUE_DIRTY, QUEUE_EMPTY, and QUEUE_EMPTYKVA. With this patch clean
and dirty buffers have been separated. Empty buffers with KVM
assignments have been separated from truely empty buffers. getnewbuf()
has been rewritten and now operates in a 100% optimal fashion. That is,
it is able to find precisely the right kind of buffer it needs to
allocate a new buffer, defragment KVM, or to free-up an existing buffer
when the buffer cache is full (which is a steady-state situation for
the buffer cache).
Buffer flushing has been reorganized. Previously buffers were flushed
in the context of whatever process hit the conditions forcing buffer
flushing to occur. This resulted in processes blocking on conditions
unrelated to what they were doing. This also resulted in inappropriate
VFS stacking chains due to multiple processes getting stuck trying to
flush dirty buffers or due to a single process getting into a situation
where it might attempt to flush buffers recursively - a situation that
was only partially fixed in prior commits. We have added a new daemon
called the buf_daemon which is responsible for flushing dirty buffers
when the number of dirty buffers exceeds the vfs.hidirtybuffers limit.
This daemon attempts to dynamically adjust the rate at which dirty buffers
are flushed such that getnewbuf() calls (almost) never block.
The number of nbufs and amount of buffer space is now scaled past the
8MB limit that was previously imposed for systems with over 64MB of
memory, and the vfs.{lo,hi}dirtybuffers limits have been relaxed
somewhat. The number of physical buffers has been increased with the
intention that we will manage physical I/O differently in the future.
reassignbuf previously attempted to keep the dirtyblkhd list sorted which
could result in non-deterministic operation under certain conditions,
such as when a large number of dirty buffers are being managed. This
algorithm has been changed. reassignbuf now keeps buffers locally sorted
if it can do so cheaply, and otherwise gives up and adds buffers to
the head of the dirtyblkhd list. The new algorithm is deterministic but
not perfect. The new algorithm greatly reduces problems that previously
occured when write_behind was turned off in the system.
The P_FLSINPROG proc->p_flag bit has been replaced by the more descriptive
P_BUFEXHAUST bit. This bit allows processes working with filesystem
buffers to use available emergency reserves. Normal processes do not set
this bit and are not allowed to dig into emergency reserves. The purpose
of this bit is to avoid low-memory deadlocks.
A small race condition was fixed in getpbuf() in vm/vm_pager.c.
Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
Reviewed by: Kirk McKusick <mckusick@mckusick.com>