this gives us several benefits, including:
* easier extensibility- new optional methods can be added to
ac97/mixer/channel classes without having to fixup every driver.
* forward compatibility for drivers, provided no new mandatory methods are
added.
- Break out the /dev/pci driver into a separate file.
- Kill the COMPAT_OLDPCI support.
- Make the EISA bridge attach a bit more like the old code; explicitly
check for the existence of eisa0/isa0 and only attach if they don't
already exist. Only make one bus_generic_attach() pass over the
bridge, once both busses are attached. Note that the stupid Intel
bridge's class is entirely unpredictable.
- Add prototypes and re-layout the core PCI modules in line with
current coding standards (not a major whitespace change, just moving
the module data to the top of the file).
- Remove redundant type-2 bridge support from the core PCI code; the
PCI-CardBus code does this itself internally. Remove the now
entirely redundant header-class-specific support, as well as the
secondary and subordinate bus number fields. These are bridge
attributes now.
- Add support for PCI Extended Capabilities.
- Add support for PCI Power Management. The interface currently
allows a driver to query and set the power state of a device.
- Add helper functions to allow drivers to enable/disable busmastering
and the decoding of I/O and memory ranges.
- Use PCI_SLOTMAX and PCI_FUNCMAX rather than magic numbers in some
places.
- Make the PCI-PCI bridge code a little more paranoid about valid
I/O and memory decodes.
- Add some more PCI register definitions for the command and status
registers. Correct another bogus definition for type-1 bridges.
but serves to work around some uncleanliness whereby the ISA bus is not
found on Alpha systems with PCI:EISA bridges due to the lack of EISA code
for the Alpha.
held and panic if so (conditional on witness).
- Change witness_list to return the number of locks held so this is easier.
- Add kern/syscalls.c to the kernel build if witness is defined so that the
panic message can contain the name of the offending system call.
- Add assertions that Giant and sched_lock are not held when returning from
a system call, which were missing for alpha and ia64.
- Make pccbb/cardbus kld loadable and unloadable.
- Make pccbb/cardbus use the power interface from pccard instead of inventing its own.
- some other minor fixes
using a cardbus based system with pccbb providing the pcic interface).
Something isn't quite right.. when the driver allocates and activates
its resources, the IO space that was requested reads as all zeros (versus
the original 0xff's as it normally is when there is no device responding).
Also, deactivate the resources before releasing them. OLDCARD doesn't
seem to care but NEWCARD/CARDBUS get rather unhappy if you release
a resource that hasn't been deactivated yet.
Make pcic_p.c only compile with oldcard kernels.
This code has help us comprehence ACPI spec .
Contributors of this code is as follows(except for FreeBSD commiter):
Yasuo Yokoyama,
Munehiro Matsuda,
and ALL acpi-jp@jp.freebsd.org people.
Thanks.
R.I.P.
- Layout reorganisation to enhance portability. The driver now has
a relatively MI 'core' and a FreeBSD-specific layer over the top.
Since the NetBSD people have already done their own port, this is
largely just to help me with the BSD/OS port.
- Request ID allocation changed to improve performance (I'd been
considering switching to this approach after having failed to come
up with a better way to dynamically allocate request IDs, and seeing
Andy Doran use it in the NetBSD port of the driver convinced me
that I was wasting my time doing it any other way). Now we just
allocate all the requests up front.
- Maximum request count bumped back to 255 after characterisation
of a firmware issue (off-by-one causing it to crash with 256
outstanding commands).
- Control interface implemented. This allows 3ware's '3dm' utility to
talk to the controller. 3dm will be available from 3ware shortly.
- Controller soft-reset feature added; if the controller signals a
firmware or protocol error, the controller will be reset and all
outstanding commands will be retried.
(a NetBSD port for NEC PC-98x1 machines). They are ncv for NCR 53C500,
nsp for Workbit Ninja SCSI-3, and stg for TMC 18C30 and 18C50.
I thank NetBSD/pc98 and bsd-nomads people.
Obtained from: NetBSD/pc98
This commit adds support for Xircom X3201 based cardbus cards.
Support for the TDK 78Q2120 MII is also added.
IBM Etherjet, Intel and Xircom cards uses these chips.
Note that as a result of this commit, some Intel/DEC 21143 based cardbus
cards will also attach, but not get link. That is being looked at.
Files:
dev/cardbus/cardbus.c
dev/cardbus/cardbusreg.h
dev/cardbus/cardbusvar.h
dev/cardbus/cardbus_cis.c
dev/cardbus/cardbus_cis.h
dev/pccbb/pccbb.c
dev/pccbb/pccbbreg.h
dev/pccbb/pccbbvar.h
dev/pccbb/pccbb_if.m
This should support:
- cardbus controllers:
* TI 113X
* TI 12XX
* TI 14XX
* Ricoh 47X
* Ricoh 46X
* ToPIC 95
* ToPIC 97
* ToPIC 100
* Cirrus Logic CLPD683x
- cardbus cards
* 3c575BT
* 3c575CT
* Xircom X3201 (includes IBM, Xircom and, Intel cards)
[ 3com support already in kernel, Xircom will be committed real soon now]
This doesn't work with 16bit pccards under NEWCARD.
Enable in your config by having "device pccbb" and "device cardbus".
(A "device pccard" will attach a pccard bus, but it means you system have
a high chance of panicing when a 16bit card is inserted)
It should be fairly simple to make a driver attach to cardbus under
NEWCARD -- simply add an entry for attaching to cardbus on a new
DRIVER_MODULE and add new device IDs as necessary. You should also make
sure the card can be detached nicely without the interrupt routine doing
something weird, like going into an infinite loop. Usually that should
entail adding an additional check when a pci register or the bus space is
read to check if it equals 0xffffffff.
Any problems, please let me know.
Reviewed by: imp
now in dirs called sys/*/random/ instead of sys/*/randomdev/*.
Introduce blocking, but only at startup; the random device will
block until the first reseed happens to prevent clients from
using untrustworthy output.
Provide a read_random() call for the rest of the kernel so that
the entropy device does not need to be present. This means that
things like IPX no longer need to have "device random" hardcoded
into thir kernel config. The downside is that read_random() will
provide very poor output until the entropy device is loaded and
reseeded. It is recommended that developers do NOT use the
read_random() call; instead, they should use arc4random() which
internally uses read_random().
Clean up the mutex and locking code a bit; this makes it possible
to unload the module again.
description:
How it works:
--
Basically ifs is a copy of ffs, overriding some vfs/vnops. (Yes, hack.)
I didn't see the need in duplicating all of sys/ufs/ffs to get this
off the ground.
File creation is done through a special file - 'newfile' . When newfile
is called, the system allocates and returns an inode. Note that newfile
is done in a cloning fashion:
fd = open("newfile", O_CREAT|O_RDWR, 0644);
fstat(fd, &st);
printf("new file is %d\n", (int)st.st_ino);
Once you have created a file, you can open() and unlink() it by its returned
inode number retrieved from the stat call, ie:
fd = open("5", O_RDWR);
The creation permissions depend entirely if you have write access to the
root directory of the filesystem.
To get the list of currently allocated inodes, VOP_READDIR has been added
which returns a directory listing of those currently allocated.
--
What this entails:
* patching conf/files and conf/options to include IFS as a new compile
option (and since ifs depends upon FFS, include the FFS routines)
* An entry in i386/conf/NOTES indicating IFS exists and where to go for
an explanation
* Unstaticize a couple of routines in src/sys/ufs/ffs/ which the IFS
routines require (ffs_mount() and ffs_reload())
* a new bunch of routines in src/sys/ufs/ifs/ which implement the IFS
routines. IFS replaces some of the vfsops, and a handful of vnops -
most notably are VFS_VGET(), VOP_LOOKUP(), VOP_UNLINK() and VOP_READDIR().
Any other directory operation is marked as invalid.
What this results in:
* an IFS partition's create permissions are controlled by the perm/ownership of
the root mount point, just like a normal directory
* Each inode has perm and ownership too
* IFS does *NOT* mean an FFS partition can be opened per inode. This is a
completely seperate filesystem here
* Softupdates doesn't work with IFS, and really I don't think it needs it.
Besides, fsck's are FAST. (Try it :-)
* Inodes 0 and 1 aren't allocatable because they are special (dump/swap IIRC).
Inode 2 isn't allocatable since UFS/FFS locks all inodes in the system against
this particular inode, and unravelling THAT code isn't trivial. Therefore,
useful inodes start at 3.
Enjoy, and feedback is definitely appreciated!
platforms.
While here, work around a strange quirk in config(8) that I do not yet
understand. Rearrange which atapi* files have 'optional' vs. 'count'
so that you can have atapifd without atapicd. The only difference should
be that this works instead of having a link error because atapi-all.o got
left out of the kernel.
- Move all register I/O into acpi_io.c
- Move event handling into acpi_event.c
- Reorganise headers into acpivar/acpireg/acpiio
- Move find-RSDT and find-ACPI-owned-memory into acpi_machdep
- Allocate all resources (except those detailed only by AML)
as real resources. Add infrastructure that will make adding
resource support to AML code easy.
- Remove all ACPI #ifdefs in non-ACPI code
- Removed unnecessary includes
- Minor style and commenting fixes
Reviewed by: iwasaki
sequencer files. Different platforms place the included files in different
locations and it is easier to modify the include path passed as arguments
to the assembler than adding #ifdef support to the assembler.
Previously, these cards were supported by the lnc driver (and they
still are, but the pcn driver will claim them first), which is fine
except the lnc driver runs them in 16-bit LANCE compatibility mode.
The pcn driver runs these chips in 32-bit mode and uses the RX alignment
feature to achieve zero-copy receive. (Which puts it in the same
class as the xl, fxp and tl chipsets.) This driver is also MI, so it
will work on the x86 and alpha platforms. (The lnc driver is still
needed to support non-PCI cards. At some point, I'll need to newbusify
it so that it too will me MI.)
The Am79c978 HomePNA adapter is also supported.
from many folk.
o The reseed process is now a kthread. With SMPng, kthreads are
pre-emptive, so the annoying jerkiness of the mouse is gone.
o The data structures are protected by mutexes now, not splfoo()/splx().
o The cryptographic routines are broken out into their own subroutines.
this facilitates review, and possible replacement if that is ever
found necessary.
Thanks to: kris, green, peter, jasone, grog, jhb
Forgotten to thank: You know who you are; no offense intended.
include:
* Mutual exclusion is used instead of spl*(). See mutex(9). (Note: The
alpha port is still in transition and currently uses both.)
* Per-CPU idle processes.
* Interrupts are run in their own separate kernel threads and can be
preempted (i386 only).
Partially contributed by: BSDi (BSD/OS)
Submissions by (at least): cp, dfr, dillon, grog, jake, jhb, sheldonh
This provides support for the Adaptec SCSI RAID controller family,
as well as the DPT SmartRAID V and VI families.
The driver will be maintained by Mark and Adaptec, and any changes
should be referred to the MAINTAINER.
the drivers.
* Remove legacy inx/outx support from chipset and replace with macros
which call busspace.
* Rework pci config accesses to route through the pcib device instead of
calling a MD function directly.
With these changes it is possible to cleanly support machines which have
more than one independantly numbered PCI busses. As a bonus, the new
busspace implementation should be measurably faster than the old one.
Remove old DEVFS support fields from dev_t.
Make uid, gid & mode members of dev_t and set them in make_dev().
Use correct uid, gid & mode in make_dev in disk minilayer.
Add support for registering alias names for a dev_t using the
new function make_dev_alias(). These will show up as symlinks
in DEVFS.
Use makedev() rather than make_dev() for MFSs magic devices to prevent
DEVFS from noticing this abuse.
Add a field for DEVFS inode number in dev_t.
Add new DEVFS in fs/devfs.
Add devfs cloning to:
disk minilayer (ie: ad(4), sd(4), cd(4) etc etc)
md(4), tun(4), bpf(4), fd(4)
If DEVFS add -d flag to /sbin/inits args to make it mount devfs.
Add commented out DEVFS to GENERIC
The tap driver is used to present a virtual Ethernet interface to the
system. Packets presented by the network stack to the interface are
made available to a character device in /dev. With tap and the bridge
code, you can make remote bridge configurations where both sides of
the bridge are separated by userland daemons.
This driver also has a special naming hack to allow it to serve a similar
purpose to the vmware port.
Submitted by: myevmenkin@att.com, vsilyaev@mindspring.com
associated patch to XFree86 allows the X server to work with this chipset
on FreeBSD. Additional work will include porting the Linux 3D driver.
Submitted by: Ruslan Ermilov <ru@FreeBSD.org>
the gating of system calls that cause modifications to the underlying
filesystem. The gating can be enabled by any filesystem that needs
to consistently suspend operations by adding the vop_stdgetwritemount
to their set of vnops. Once gating is enabled, the function
vfs_write_suspend stops all new write operations to a filesystem,
allows any filesystem modifying system calls already in progress
to complete, then sync's the filesystem to disk and returns. The
function vfs_write_resume allows the suspended write operations to
begin again. Gating is not added by default for all filesystems as
for SMP systems it adds two extra locks to such critical kernel
paths as the write system call. Thus, gating should only be added
as needed.
Details on the use and current status of snapshots in FFS can be
found in /sys/ufs/ffs/README.snapshot so for brevity and timelyness
is not included here. Unless and until you create a snapshot file,
these changes should have no effect on your system (famous last words).
(I had been busy for my own research activity until the last weekend)
Supported devices:
SB Midi Port (sbc + midi)
SB OPL3 (sbc + midi)
16550 UART (midi, needs a trick in your hint)
CS461x Midi Port (csa + midi)
OSS-compatible sequencer (seq)
Supported playing software:
playmidi (We definitely need more)
Notes:
/dev/midistat now reports installed midi drivers. /dev/sndstat reports
only pcm drivers. We need the new name(pcmstat?).
EMU8000(SB AWE) does not sound yet but does get probed so that the OPL3
synth on an AWE card works.
TODO:
MSS/PCI bridge drivers
Midi-tty interface to support general serial devices
Modules
This means 'options NETGRAPH' is no longer necessary in order to get
netgraph-enabled Ethernet interfaces. This supports loading/unloading
the ng_ether.ko and attaching/detaching the Ethernet interface in any
order.
Add two new hooks 'upper' and 'lower' to allow access to the protocol
demux engine and the raw device, respectively. This enables bridging
to be defined as a netgraph node, if so desired.
Reviewed by: freebsd-net@freebsd.org
accept filters are now loadable as well as able to be compiled into
the kernel.
two accept filters are provided, one that returns sockets when data
arrives the other when an http request is completed (doesn't work
with 0.9 requests)
Reviewed by: jmg
2. Newbusify the driver.
3. Build as a module.
4. Use correct minor numbers when creating device files.
5. Correctly lock control characters.
6. Return ENXIO when device not configured.
Submitted by: Tor Egge <Tor.Egge@fast.no>
7. Fix the baud_table.
Submitted by: Elliot Dierksen <ebd@oau.org>
Note:
- the old driver still lives in src/sys/i386/isa, so that you can
revert to it if something goes wrong.
- The module does not detach very well. Attaching works fine.
config(8). This commit allows control of the creation of the
#include "foo.h" files. We now only create them explicitly when needed.
BTW; these are mostly bad because they usually imply static limits on
numbers of units for devices. eg: struct mysoftc sc[NFOO];
These static limits have Got To Go.
"options COMPAT_OLDPCI". This option already existed, but now also tidies
up the declarations in #include <pci/pci*.h>. It is amazing how much stuff
was using the old pre-FreeBSD 3.x names and going silently undetected.
have pv_entries. This is intended for very special circumstances,
eg: a certain database that has a 1GB shm segment mapped into 300
processes. That would consume 2GB of kvm just to hold the pv_entries
alone. This would not be used on systems unless the physical ram was
available, as it's not pageable.
This is a work-in-progress, but is a useful and functional checkpoint.
Matt has got some more fixes for it that will be committed soon.
Reviewed by: dillon
are two supported chips, the NetChip 1080 (only prototypes available)
and the EzLink cable. Any other cable should be supported however as they
are all very much alike (there is a difference between them wrt
performance).
It uses Netgraph.
This driver was mostly written by Doug Ambrisko and Julian Elischer and
I would like to thank Whistle for yet another contribution. And my
aplogies to them for me sitting on the driver for so long (2 months).
Also, many thanks to Reid Augustin from NetChip for providing me with a
prototype of their 1080 chip.
Be aware of the fact that this driver is very immature and has only been
tested very lightly. If someone feels like learning about Netgraph however
this is an excellent driver to start playing with.
coming later this week. Mitsuru IWASAKI provided a patch to -mobile which
I used to make sure I was doing the right thing but only a small part of
the actual patch was used.
This driver should support both the SSI (V.35 etc) E1/T1 unchannelized,
DS3 and HSSI cards. Only tested on the SSI card.
More info at: http://www.lanmedia.com
Thanks to LanMedia for donating two LMC1000P cards.
if_de.c driver modified by: LanMedia
NetGraphification by: Stephen Kiernan <sk-ports@vegamuse.org>
- Break out the support for the XMAC II's PHY into an miibus driver.
- Reorganize the probe/attach stuff using newbus. Each XMAC is now
attached to the parent GEnesis controller using newbus. This is
necessary since each XMAC must also have an attached miibus, and
the miibus read/write register routines need to be able to get
at the softc struct for each XMAC, not the one for the parent
controller. This allows me to get rid of the grotty code I added
for selecting the unit numbers for the ifnet interfaces: the unit
numbers are now derived from the newbus-assigned unit numbers,
which should track with the ifnet interface numbers. I think.
At the very least, there should never be any collisions.
- Add support for the SK-9821 and SK-9822 1000baseTX adapters. Special
thanks to SysKonnect for loaning me two adapters for testing.
(name, value) pairs to be associated with inodes. This support is
used for ACLs, MAC labels, and Capabilities in the TrustedBSD
security extensions, which are currently under development.
In this implementation, attributes are backed to data vnodes in the
style of the quota support in FFS. Support for FFS extended
attributes may be enabled using the FFS_EXTATTR kernel option
(disabled by default). Userland utilities and man pages will be
committed in the next batch. VFS interfaces and man pages have
been in the repo since 4.0-RELEASE and are unchanged.
o ufs/ufs/extattr.h: UFS-specific extattr defines
o ufs/ufs/ufs_extattr.c: bulk of support routines
o ufs/{ufs,ffs,mfs}/*.[ch]: hooks and extattr.h includes
o contrib/softupdates/ffs_softdep.c: extattr.h includes
o conf/options, conf/files, i386/conf/LINT: added FFS_EXTATTR
o coda/coda_vfsops.c: XXX required extattr.h due to ufsmount.h
(This should not be the case, and will be fixed in a future commit)
Currently attributes are not supported in MFS. This will be fixed.
Reviewed by: adrian, bp, freebsd-fs, other unthanked souls
Obtained from: TrustedBSD Project
non-device code.
* Re-implement the method dispatch to improve efficiency. The new system
takes about 40ns for a method dispatch on a 300Mhz PII which is only
10ns slower than a direct function call on the same hardware.
This changes the new-bus ABI slightly so make sure you re-compile any
driver modules which you use.
From the README:
Any IEEE 802.11 cards use AMD Am79C930 and Harris (Intersil) Chipset
with PCnetMobile firmware by AMD.
BayStack 650 1Mbps Frequency Hopping PCCARD adapter
BayStack 660 2Mbps Direct Sequence PCCARD adapter
Icom SL-200 2Mbps Direct Sequence PCCARD adapter
Melco WLI-PCM 2Mbps Direct Sequence PCCARD adapter
NEL SSMagic 2Mbps Direct Sequence PCCARD adapter
Netwave AirSurfer Plus
1Mbps Frequency Hopping PCCARD adapter
Netwave AirSurfer Pro
2Mbps Direct Sequence PCCARD adapter
Known Problems:
WEP is not supported.
Does not create IBSS itself.
Cannot configure the following on FreeBSD:
selection of infrastructure/adhoc mode
ESSID
...
Submitted by: Atsushi Onoe <onoe@sm.sony.co.jp>
line in files or files.${arch} instead of 13 lines of code.
This is a small chance that this will break the alpha kernel build - I'll
fix it this evening if it does.
- Move dev/aic/aic_isa.c entry from conf/files to conf/files.MACHINE
because PC-98 uses different file.
Submitted by: nyan and IMAI Takeshi <take-i@ceres.dti.ne.jp>
rewrite ess mixer to use native registers
rewrite play/rec code to use more accurate timer when available
add code to use audio2 for playback, but disable it as no irqs are generated
Make the public interface more systematically named.
Remove the alternate method, it doesn't do any good, only ruins performance.
Add counters to profile the usage of the 8 access functions.
Apply the beer-ware to my code.
The weird +/- counts are caused by two repocopies behind the scenes:
kern/kern_clock.c -> kern/kern_tc.c
sys/time.h -> sys/timetc.h
(thanks peter!)
the user's config file. Based on an idea/suggestion from Cameron (cg).
Change LINT to build newpcm instead of the old Voxware derived stuff.
That's much more useful in the longer term.
Yes it is almost code freeze, but as the result of many thought, now I
think this should be added before 4.0...
make world check, kernel build check is done.
Reviewed by: green
Obtained from: KAME project
kernel IPv6 multicast routing support.
pim6 dense mode daemon
pim6 sparse mode daemon
netstat support of IPv6 multicast routing statistics
Merging to the current and testing with other existing multicast routers
is done by Tatsuya Jinmei <jinmei@kame.net>, who writes and maintainances
the base code in KAME distribution.
Make world check and kernel build check was also successful.
include this in all kernels. Declare some const *intrq_present
variables that can be checked by a module prior to using *intrq
to queue data.
Make the if_tun module capable of processing atm, ip, ip6, ipx,
natm and netatalk packets when TUNSIFHEAD is ioctl()d on.
Review not required by: freebsd-hackers
NICs. (Finally!) The PCMCIA, ISA and PCI varieties are all supported,
though only the ISA and PCI ones will work on the alpha for now.
PCCARD, ISA and PCI attachments are all provided. Also provided an
ancontrol(8) utility for configuring the NIC, man pages, and updated
pccard.conf.sample. ISA cards are supported in both ISA PnP and hard-wired
mode, although you must configure the kernel explicitly to support the
hardwired mode since you have to know the I/O address and port ahead
of time.
Special thanks to Doug Ambrisko for doing the initial newbus hackery
and getting it to work in infrastructure mode.
Collect together the components of several drivers and export eisa from
the i386-only area (It's not, it's on some alphas too). The code hasn't
been updated to work on the Alpha yet, but that can come later.
Repository copies were done a while ago.
Moving these now keeps them in consistant place across the 4.x series
as the newbusification progresses.
Submitted by: mdodd
USB-EL1202A chipset. Between this and the other two drivers, we should
have support for pretty much every USB ethernet adapter on the market.
The only other USB chip that I know of is the SMC USB97C196, and right
now I don't know of any adapters that use it (including the ones made
by SMC :/ ).
Note that the CATC chip supports a nifty feature: read and write combining.
This allows multiple ethernet packets to be transfered in a single USB
bulk in/out transaction. However I'm again having trouble with large
bulk in transfers like I did with the ADMtek chip, which leads me to
believe that our USB stack needs some work before we can really make
use of this feature. When/if things improve, I intend to revisit the
aue and cue drivers. For now, I've lost enough sanity points.
Note1: the correct interrupt level is invoked correctly for each driver.
For this purpose, drivers request the bus before being able to
call BUS_SETUP_INTR and BUS_TEARDOWN_INTR call is forced by the ppbus
core when drivers release it. Thus, when BUS_SETUP_INTR is called
at ppbus driver level, ppbus checks that the caller owns the
bus and stores the interrupt handler cookie (in order to unregister
it later).
Printing is impossible while plip link is up is still TRUE.
vpo (ZIP driver) and lpt are make in such a way that
using the ZIP and printing concurrently is permitted is also TRUE.
Note2: specific chipset detection is not done by default. PPC_PROBE_CHIPSET
is now needed to force chipset detection. If set, the flags 0x40
still avoid detection at boot.
Port of the pcf(4) driver to the newbus system (was previously directly
connected to the rootbus and attached by a bogus pcf_isa_probe function).
Packets are received inside USB bulk transfer callbacks, which run at
splusb() (actually splbio()). The packet input queues are meant to be
manipulated at splimp(). However the locking apparently breaks down under
certain circumstances and the input queues can get trampled.
There's a similar problem with if_ppp, which is driven by hardware/tty
interrupts from the serial driver, but which must also manipulate the
packet input queues at splimp(). The fix there is to use a netisr, and
that's the fix I used here. (I can hear you groaning back there. Hush up.)
The usb_ethersubr module maintains a single queue of its own. When a
packet is received in the USB callback routine, it's placed on this
queue with usb_ether_input(). This routine also schedules a soft net
interrupt with schednetisr(). The ISR routine then runs later, at
splnet, outside of the USB callback/interrupt context, and passes the
packet to ether_input(), hopefully in a safe manner.
The reason this is implemented as a separate module is that there are
a limited number of NETISRs that we can use, and snarfing one up for
each driver that needs it is wasteful (there will be three once I get
the CATC driver done). It also reduces code duplication to a certain
small extent. Unfortunately, it also needs to be linked in with the
usb.ko module in order for the USB ethernet drivers to share it.
Also removed some uneeded includes from if_aue.c and if_kue.c
Fix suggested by: peter
Not rejected as a hairbrained idea by: n_hibma