printing it to the terminal. Now only parse errors go to the terminal.
- Speedup drawing by raising and lowering tags only once everything has
been drawn. Surprisingly, it now takes a little longer to parse than
it does to draw.
- Parameterize the layout with X_ and Y_ defines that determine the sizes
of various things.
- Remove unnecessary tags.
optimized single pass function for each. This reduces the number of
tkinter calls required to the minimum.
- Add a right-click context menu for sources. Supported commands hide
the source, hide the whole group the source is in, and bring up a stat
window.
- Add a source stat frame that gives an event frequency table as well as
the total duration for each event type that has a duration. This can
be used to see, for example, the total time a thread spent running or
blocked by a wchan or lock.
quoth the README:
I have been running -current on my laptop since before FreeBSD 2.0 was
released and along the way developed this little trick to making the
task easier.
sysbuild.sh is a way to build a new FreeBSD system on a computer from
a specification, while leaving the current installation intact.
sysbuild.sh assume you have two partitions that can hold your rootfs
and can be booted, and roughly speaking, all it does is build a new
system into the one you don't use, from the one you do use.
A partition named /freebsd is assumed to be part of your layout, and
that is where the sources and ports will be found.
If you know how nanobsd works, you will find a lot of similarity.
displaying sources.
- Add functions to the main SchedGraph to facilitate source hiding. The
source is simply moved off screen and all other sources are moved to
compensate.
This no longer requires any custom classes or parsers to support new
event types.
- Add an optional command line argument for specifying the clock frequency
in ghz. This is useful for traces that do not include KTR_SCHED.
Sponsored by: Nokia
- Add support for sorting rows by clicking and dragging them to their new
position.
- Add support for configuring the cpu background colors.
- Improve the scaling so a better center is maintained as you zoom. This
is not perfect due to precision loss with floats used in the window
views.
- Add new colors and a random assignment for unknown event types. A table
is used for known event types. This is the only event specific
information.
The jot(1) regression tests directory contained two tests named `wx' and
`wX', which doesn't work on case insensitive filesystems. Rename `wX' to
`wX1'.
MFC after: 1 month
- Callwheels traced via KTR_CALLOUT. Each CPU is assigned a callwheel
source. The events on this source are the execution of individual callout
routines. Each routine shows up as a green rectangle while it is executed
and the event details include the function pointer and argument.
- Locks traced via KTR_LOCK. Currently, each lock name is assigned an event
source (since the existing KTR_LOCK traces only include lock names and
not pointers). This does mean that if multiple locks of the same name are
manipulated, the source line for that name may be confusing. However, for
many cases this can be useful. Locks are blue when they are held and
purple when contested. The contention support is a bit weak due to
limitations in the rw_rlock() and mtx_lock_spin() logging messages
currently. I also have not added support for contention on lockmgr,
sx, or rmlocks yet. What is there now can be profitably used to examine
activity on Giant however.
- Expand the width of the event source names column a bit to allow for some
of the longer names of these new source types.
(threads, CPU load counters, etc.). Each source is tagged with a group
and an order similar to the SYSINIT SI_SUB_* and SI_ORDER_*. After
the file is parsed, all the sources are then sorted. Currently, the only
affects of this are that the CPU loads are now sorted by CPU ID (so
CPU 0 is always first). However, this makes it easier to add new types
of event sources in the future and have them all clustered together
instead of intertwined with threads.
- Python lists perform insertions at the tail much faster than insertions
at the head. For a trace that had a lot of events for a single event
source, the constant insertions of new events to the head of the
per-source event list caused a noticable slow down. To compensate,
append new events to the end of the list during parsing and then
reverse the list prior to drawing.
- Somewhere in the tkinter internals the coordinates of a canvas are
stored in a signed 32-bit integer. As a result, if an the box for
an event spans 2^31, it would actually end up having a negative
X offset at one end. The result was a single box that covered the
entire event source. Kris worked around this for some traces by
bumping up the initial ticks/pixel ratio from 1 to 10. However, a
divisor of 10 can still be too small for large tracefiles (e.g.
with 4 million entries). Instead of hardcoding the initial scaling
ratio, calculate it from the time span of the trace file.
- Add support for using the mouse wheel to scroll the graph window
up and down.
o add net80211 support for a tdma vap that is built on top of the
existing adhoc-demo support
o add tdma scheduling of frame transmission to the ath driver; it's
conceivable other devices might be capable of this too in which case
they can make use of the 802.11 protocol additions etc.
o add minor bits to user tools that need to know: ifconfig to setup and
configure, new statistics in athstats, and new debug mask bits
While the architecture can support >2 slots in a TDMA BSS the current
design is intended (and tested) for only 2 slots.
Sponsored by: Intel
This bring huge amount of changes, I'll enumerate only user-visible changes:
- Delegated Administration
Allows regular users to perform ZFS operations, like file system
creation, snapshot creation, etc.
- L2ARC
Level 2 cache for ZFS - allows to use additional disks for cache.
Huge performance improvements mostly for random read of mostly
static content.
- slog
Allow to use additional disks for ZFS Intent Log to speed up
operations like fsync(2).
- vfs.zfs.super_owner
Allows regular users to perform privileged operations on files stored
on ZFS file systems owned by him. Very careful with this one.
- chflags(2)
Not all the flags are supported. This still needs work.
- ZFSBoot
Support to boot off of ZFS pool. Not finished, AFAIK.
Submitted by: dfr
- Snapshot properties
- New failure modes
Before if write requested failed, system paniced. Now one
can select from one of three failure modes:
- panic - panic on write error
- wait - wait for disk to reappear
- continue - serve read requests if possible, block write requests
- Refquota, refreservation properties
Just quota and reservation properties, but don't count space consumed
by children file systems, clones and snapshots.
- Sparse volumes
ZVOLs that don't reserve space in the pool.
- External attributes
Compatible with extattr(2).
- NFSv4-ACLs
Not sure about the status, might not be complete yet.
Submitted by: trasz
- Creation-time properties
- Regression tests for zpool(8) command.
Obtained from: OpenSolaris
"A function can be preceded by one or more '!' characters, in which
case the function shall be applied if the addresses do not select
the pattern space."
from one parent directory to another, in addition to the usual access checks
one also needs write access to the subdirectory being moved.
Approved by: rwatson (mentor), pjd
and server. This replaces the RPC implementation of the NFS client and
server with the newer RPC implementation originally developed
(actually ported from the userland sunrpc code) to support the NFS
Lock Manager. I have tested this code extensively and I believe it is
stable and that performance is at least equal to the legacy RPC
implementation.
The NFS code currently contains support for both the new RPC
implementation and the older legacy implementation inherited from the
original NFS codebase. The default is to use the new implementation -
add the NFS_LEGACYRPC option to fall back to the old code. When I
merge this support back to RELENG_7, I will probably change this so
that users have to 'opt in' to get the new code.
To use RPCSEC_GSS on either client or server, you must build a kernel
which includes the KGSSAPI option and the crypto device. On the
userland side, you must build at least a new libc, mountd, mount_nfs
and gssd. You must install new versions of /etc/rc.d/gssd and
/etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf.
As long as gssd is running, you should be able to mount an NFS
filesystem from a server that requires RPCSEC_GSS authentication. The
mount itself can happen without any kerberos credentials but all
access to the filesystem will be denied unless the accessing user has
a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There
is currently no support for situations where the ticket file is in a
different place, such as when the user logged in via SSH and has
delegated credentials from that login. This restriction is also
present in Solaris and Linux. In theory, we could improve this in
future, possibly using Brooks Davis' implementation of variant
symlinks.
Supporting RPCSEC_GSS on a server is nearly as simple. You must create
service creds for the server in the form 'nfs/<fqdn>@<REALM>' and
install them in /etc/krb5.keytab. The standard heimdal utility ktutil
makes this fairly easy. After the service creds have been created, you
can add a '-sec=krb5' option to /etc/exports and restart both mountd
and nfsd.
The only other difference an administrator should notice is that nfsd
doesn't fork to create service threads any more. In normal operation,
there will be two nfsd processes, one in userland waiting for TCP
connections and one in the kernel handling requests. The latter
process will create as many kthreads as required - these should be
visible via 'top -H'. The code has some support for varying the number
of service threads according to load but initially at least, nfsd uses
a fixed number of threads according to the value supplied to its '-n'
option.
Sponsored by: Isilon Systems
MFC after: 1 month
it relies on non-portable flock(2) semantics. Not only is flock(2) not
portable, but on some OSes that do have it, it is implemented in terms
of fcntl(2) locks, which are per-process rather than per-descriptor.