here any more as they are self identifying. Only PNP remains but that
will be replaced any day now.
Also reword a comment that had been XXX'ed to death to make it clear[er]
why we don't enable interrupts before probing.
PCIBIOS interrupt routing controls may make this possible to fix one day.
than having explicit hooks here.
Treat the eisa/isa attach a little differently so that we defer the
decision about to attach eisa/isa to the motherboard directly only if
the PCI probe (if it exists) fails to turn up a PCI->EISA/ISA bridge.
This restores the original device geometry where ISA and/or EISA attach
to their bridge rather than bypassing and going to the root.
PCI fast ethernet controller. Currently, the only card I know that uses
this chip is the D-Link DFE-550TX. (Don't ask me where to buy these: the
only cards I have are samples sent to me by D-Link.)
This driver is the first to make use of the miibus code once I'm sure
it all works together nicely, I'll start converting the other drivers.
The Sundance chip is a clone of the 3Com 3c90x Etherlink XL design
only with its own register layout. Support is provided for ifmedia,
hardware multicast filtering, bridging and promiscuous mode.
trying to size it intelligently just make it 64k and leave it up to the caller
to ensure that the arguments all fit within that range.
This should resolve the issue that some people were seeing with the PnP BIOS
scan crashing on a large PnP node.
test does not change undefined flag like Cyrix CPUs. Another is that
5/2 test changes undefined flag like Intel CPUs. Latter one could not
be detected and was recognized 486DX CPU. To solve this,
finishidentcpu() calls identblue() when cpu_vendor is null string
(that is, CPUID instruction is not supported) and cpu == CPU_486.
Tests have been done on IBM BlueLightning CPUs, i486SX and i486DX.
into two parts - one to do the bsfl and the other to convert the result
(base 0) to ffs()-like (base 1) in inline C. This enables the optimizer
to be a lot smarter in certain cases, like where it knows that the argument
is non-zero and we want ffs(known non zero arg) - 1. This appears to
produce identical code to the old inline when the argument is unknown.
that are linked into the kernel. The KLD compilation options are
changed to call these functions, rather than in-lining the
atomic operations.
This approach makes atomic operations from KLDs significantly
faster on UP systems (though somewhat slower on SMP systems).
PR: i386/13111
Submitted by: peter.jeremy@alcatel.com.au
0x40 and then access data stored in real-mode segment 0x40, even when
called in protected mode. Microsoft unfortunately coddle these individuals,
and so must we if we want to run their code.
This change works around GPFs in some APM and PnP BIOS implementations.
Obtained from: Linux
as PCI->HOST bridges on my (440BX) box.
My change is to remove the test at the beginning entirely, letting the
switch on the device ID happen first. If the device ID is unknown, then
(in the default case) check for the generic PCIS_BRIDGE_HOST tag. This
should allow wierd cases (eg: wpaul's IMS VL bridge) to work by using the
id override. This strategy is more in line with the other PCI match
methods we use elsewhere,
I only have a limited testbed, but having my USB etc devices detected as
PCI->HOST bridges doesn't look good.
correctly. It has the following code:
if (class != PCIC_BRIDGE || subclass != PCIS_BRIDGE_HOST)
return NULL;
My 486 has an Integrated Micro Solutions PCI bridge which identifies
itself as subclass PCIS_BRIDGE_OTHER, not PCIS_BRIDGE_HOST. Consequently,
it gets ignored. In my opinion, the correct test should be:
if ((class != PCIC_BRIDGE) && (subclass != PCIS_BRIDGE_HOST))
return NULL;
That way the test still succeeds because the chip's class is PCIC_BRIDGE.
Clearly it's not reasonable to expect all host to PCI bridges to always
have a subclass of PCIS_BRIDGE_HOST since I've got one that doesn't.
This way the sanity test should remain relatively sane while still allowing
some oddball yet correct hardware to work. If somebody has a better way
to do it, go ahead and tweak the test, but be aware that
class == PCIC_BRIDGE and subclass == PCIS_BRIDGE_OTHER is a valid case.
While I was here, I also added an explicit ID string for the IMS chipset.
I also dealt with a minor style nit: it's bad karma not to have a default
case for your switch statements, but the one in this routine doesn't have
one. The default string of "Host to PCI bridge" is now assigned in a
default case of the switch statement instead of initializing "s" with the
string before the switch and then not having any default case.
we create the pty on the fly when it is first opened.
If you run out of ptys now, just MAKEDEV some more.
This also demonstrate the use of dev_t->si_tty_tty and dev_t->si_drv1
in a device driver.
of 2 weeks ago that this be done, and anyone who wishes to make bpf more
selective according to securelevel or compile-time options is more
than free to do so.
- Add support for calling 32-bit code in other segments
- Add support for calling 16-bit protected mode code
Update APM to use this facility.
Submitted by: jlemon
- device_print_child() either lets the BUS_PRINT_CHILD
method produce the entire device announcement message or
it prints "foo0: not found\n"
Alter sys/kern/subr_bus.c:bus_generic_print_child() to take on
the previous behavior of device_print_child() (printing the
"foo0: <FooDevice 1.1>" bit of the announce message.)
Provide bus_print_child_header() and bus_print_child_footer()
to actually print the output for bus_generic_print_child().
These functions should be used whenever possible (unless you can
just use bus_generic_print_child())
The BUS_PRINT_CHILD method now returns int instead of void.
Modify everything else that defines or uses a BUS_PRINT_CHILD
method to comply with the above changes.
- Devices are 'on' a bus, not 'at' it.
- If a custom BUS_PRINT_CHILD method does the same thing
as bus_generic_print_child(), use bus_generic_print_child()
- Use device_get_nameunit() instead of both
device_get_name() and device_get_unit()
- All BUS_PRINT_CHILD methods return the number of
characters output.
Reviewed by: dfr, peter
active or not. The only sane thing we can do here is assume that if
APM is supported it might be active at some point, and bail.
In reality, even this isn't good enough; regardless of whether we support
APM or not, the system may well futz with the CPU's clock speed and throw
the TSC off. We need to stop using it for timekeeping except under
controlled circumstances. Curse the lack of a dependable high-resolution
timer.
equivalent to SYS_RES_MEMORY for x86 but for alpha, the rman_get_virtual()
address of the resource is initialised to point into either dense-mapped
or bwx-mapped space respectively, allowing direct memory pointers to be
used to device memory.
Reviewed by: Andrew Gallatin <gallatin@cs.duke.edu>
macros) to the signal handler, for old-style BSD signal handlers as
the second (int) argument, for SA_SIGINFO signal handlers as
siginfo_t->si_code. This is source-compatible with Solaris, except
that we have no <siginfo.h> (which isn't even mentioned in POSIX
1003.1b).
An rather complete example program is at
http://www3.cons.org/cracauer/freebsd-signal.c
This will be added to the regression tests in src/.
This commit also adds code to disable the (hardware) FPU from
userconfig, so that you can use a software FP emulator on a machine
that has hardware floating point. See LINT.
ethernet controllers based on the AIC-6915 "Starfire" controller chip.
There are single port, dual port and quad port cards, plus one 100baseFX
card. All are 64-bit PCI devices, except one single port model.
The Starfire would be a very nice chip were it not for the fact that
receive buffers have to be longword aligned. This requires buffer
copying in order to achieve proper payload alignment on the alpha.
Payload alignment is enforced on both the alpha and x86 platforms.
The Starfire has several different DMA descriptor formats and transfer
mechanisms. This driver uses frame descriptors for transmission which
can address up to 14 packet fragments, and a single fragment descriptor
for receive. It also uses the producer/consumer model and completion
queues for both transmit and receive. The transmit ring has 128
descriptors and the receive ring has 256.
This driver supports both FreeBSD/i386 and FreeBSD/alpha, and uses newbus
so that it can be compiled as a loadable kernel module. Support for BPF
and hardware multicast filtering is included.
Change "void *" to "volatile TYPE *", improving type safety
and eliminating some warnings (e.g., mp_machdep.c rev 1.106).
cpufunc.h:
Eliminate setbits. As defined, it's not precisely correct;
and it's redundant. (Use atomic_set_int instead.)
ipl_funcs.c:
Use atomic_set_int instead of setbits.
systm.h:
Include atomic.h.
Reviewed by: bde
When creating new processes (or performing exec), the new page
directory is initialized too early. The kernel might grow before
p_vmspace is initialized for the new process. Since pmap_growkernel
doesn't yet know about the new page directory, it isn't updated, and
subsequent use causes a failure.
The fix is (1) to clear p_vmspace early, to stop pmap_growkernel
from stomping on memory, and (2) to defer part of the initialization
of new page directories until p_vmspace is initialized.
PR: kern/12378
Submitted by: tegge
Reviewed by: dfr
- Support for setting memory range attributes on SMP systems using the
new SMP rendezvous function
- Don't print the confusing default memory type message.
- Allow legal overlapping range types.
- Turn interrupts back on after setting MTRRs in UP mode (whoops)
- Don't waste time calling invltlb() after wbinvd(); it's not
SMP-compatible (interrupts are off) and unncessary because
wbinvd already flushes the TLB.
This code is now essentially feature-complete.
the caller to specify a function to be guarded between an entry and exit
barrier, as well as pre- and post-barrier functions.
The primary use for this function is synchronised update of per-cpu private
data. The implementation is almost (but not quite) MI; with a better
mechanism for masking per-CPU interrupts it could probably be hoisted.
Reviewed by: peter (partially)
but broken, since tsc_timecounter is not initialised in that case,
and updating an uninitialised timecounter is fatal.
Fixed style bugs in the machdep.i8254_freq and machdep.tsc_freq
sysctls.
Reviewed by: phk
with respect to interrupts on UP systems. (The upgrade from gcc 2.7.x
to egcs 1.1.2 produced at least one non-atomic code sequence in
swap_pager_getpages.)
In addition, the primitives are now SMP-safe, but only on SMPs. (For
portability between SMPs and UPs, modules are compiled with the SMP-safe
versions.)
Submitted by: dillon and myself
Reviewed by: bde
not masked during handling of shared PCI interrupts. This resulted in
ASTs sometimes being discarded and softclock interrupts sometimes being
handled prematurely (sometimes = quite often on systems with shared PCI
interrupts, never on other systems).
Debugged by: gibbs and other people at plutotech.com
PR: 6944, maybe 12381
large (1G) memory machine configurations. I was able to run 'dbench 32'
on a 32MB system without bring the machine to a grinding halt.
* buffer cache hash table now dynamically allocated. This will
have no effect on memory consumption for smaller systems and
will help scale the buffer cache for larger systems.
* minor enhancement to pmap_clearbit(). I noticed that
all the calls to it used constant arguments. Making
it an inline allows the constants to propogate to
deeper inlines and should produce better code.
* removal of inherent vfs_ioopt support through the emplacement
of appropriate #ifdef's, with John's permission. If we do not
find a use for it by the end of the year we will remove it entirely.
* removal of getnewbufloops* counters & sysctl's - no longer
necessary for debugging, getnewbuf() is now optimal.
* buffer hash table functions removed from sys/buf.h and localized
to vfs_bio.c
* VFS_BIO_NEED_DIRTYFLUSH flag and support code added
( bwillwrite() ), allowing processes to block when too many dirty
buffers are present in the system.
* removal of a softdep test in bdwrite() that is no longer necessary
now that bdwrite() no longer attempts to flush dirty buffers.
* slight optimization added to bqrelse() - there is no reason
to test for available buffer space on B_DELWRI buffers.
* addition of reverse-scanning code to vfs_bio_awrite().
vfs_bio_awrite() will attempt to locate clusterable areas
in both the forward and reverse direction relative to the
offset of the buffer passed to it. This will probably not
make much of a difference now, but I believe we will start
to rely on it heavily in the future if we decide to shift
some of the burden of the clustering closer to the actual
I/O initiation.
* Removal of the newbufcnt and lastnewbuf counters that Kirk
added. They do not fix any race conditions that haven't already
been fixed by the gbincore() test done after the only call
to getnewbuf(). getnewbuf() is a static, so there is no chance
of it being misused by other modules. ( Unless Kirk can think
of a specific thing that this code fixes. I went through it
very carefully and didn't see anything ).
* removal of VOP_ISLOCKED() check in flushbufqueues(). I do not
think this check is necessary, the buffer should flush properly
whether the vnode is locked or not. ( yes? ).
* removal of extra arguments passed to getnewbuf() that are not
necessary.
* missed cluster_wbuild() that had to be a cluster_wbuild_wb() in
vfs_cluster.c
* vn_write() now calls bwillwrite() *PRIOR* to locking the vnode,
which should greatly aid flushing operations in heavy load
situations - both the pageout and update daemons will be able
to operate more efficiently.
* removal of b_usecount. We may add it back in later but for now
it is useless. Prior implementations of the buffer cache never
had enough buffers for it to be useful, and current implementations
which make more buffers available might not benefit relative to
the amount of sophistication required to implement a b_usecount.
Straight LRU should work just as well, especially when most things
are VMIO backed. I expect that (even though John will not like
this assumption) directories will become VMIO backed some point soon.
Submitted by: Matthew Dillon <dillon@backplane.com>
Reviewed by: Kirk McKusick <mckusick@mckusick.com>
than a review, this was a nice puzzle.
This is supposed to be binary and source compatible with older
applications that access the old FreeBSD-style three arguments to a
signal handler.
Except those applications that access hidden signal handler arguments
bejond the documented third one. If you have applications that do,
please let me know so that we take the opportunity to provide the
functionality they need in a documented manner.
Also except application that use 'struct sigframe' directly. You need
to recompile gdb and doscmd. `make world` is recommended.
Example program that demonstrates how SA_SIGINFO and old-style FreeBSD
handlers (with their three args) may be used in the same process is at
http://www3.cons.org/tmp/fbsd-siginfo.c
Programs that use the old FreeBSD-style three arguments are easy to
change to SA_SIGINFO (although they don't need to, since the old style
will still work):
Old args to signal handler:
void handler_sn(int sig, int code, struct sigcontext *scp)
New args:
void handler_si(int sig, siginfo_t *si, void *third)
where:
old:code == new:second->si_code
old:scp == &(new:si->si_scp) /* Passed by value! */
The latter is also pointed to by new:third, but accessing via
si->si_scp is preferred because it is type-save.
FreeBSD implementation notes:
- This is just the framework to make the interface POSIX compatible.
For now, no additional functionality is provided. This is supposed
to happen now, starting with floating point values.
- We don't use 'sigcontext_t.si_value' for now (POSIX meant it for
realtime-related values).
- Documentation will be updated when new functionality is added and
the exact arguments passed are determined. The comments in
sys/signal.h are meant to be useful.
Reviewed by: BDE
into uipc_mbuf.c. This reduces three sets of identical tunable code to
one set, and puts the initialisation with the mbuf code proper.
Make NMBUFs tunable as well.
Move the nmbclusters sysctl here as well.
Move the initialisation of maxsockets from param.c to uipc_socket2.c,
next to its corresponding sysctl.
Use the new tunable macros for the kern.vm.kmem.size tunable (this should have
been in a separate commit, whoops).
print_AMD_info(), L2 internal cache is shown, as are AMD's special CPUID
infos:
CPU: AMD-K6(tm) 3D processor (350.81-MHz 586-class CPU)
Origin = "AuthenticAMD" Id = 0x58c Stepping=12
Features=0x8021bf<FPU,VME,DE,PSE,TSC,MSR,MCE,CX8,PGE,MMX>
AMD Features=0x808029bf<FPU,VME,DE,PSE,TSC,MSR,MCE,CX8,SYSCALL,PGE,MMX,3DNow!>
PR: kern/12512
Submitted by: Louis A. Mamakos <louie@TransSys.COM>
we will never use more memory than this value (if specified), but will always
check memory for validity up to this amount.
Get rid of the speculative_mprobe option; the memory amount can now be
specified by hw.physmem.
QUEUE_AGE, QUEUE_LRU, and QUEUE_EMPTY we instead have QUEUE_CLEAN,
QUEUE_DIRTY, QUEUE_EMPTY, and QUEUE_EMPTYKVA. With this patch clean
and dirty buffers have been separated. Empty buffers with KVM
assignments have been separated from truely empty buffers. getnewbuf()
has been rewritten and now operates in a 100% optimal fashion. That is,
it is able to find precisely the right kind of buffer it needs to
allocate a new buffer, defragment KVM, or to free-up an existing buffer
when the buffer cache is full (which is a steady-state situation for
the buffer cache).
Buffer flushing has been reorganized. Previously buffers were flushed
in the context of whatever process hit the conditions forcing buffer
flushing to occur. This resulted in processes blocking on conditions
unrelated to what they were doing. This also resulted in inappropriate
VFS stacking chains due to multiple processes getting stuck trying to
flush dirty buffers or due to a single process getting into a situation
where it might attempt to flush buffers recursively - a situation that
was only partially fixed in prior commits. We have added a new daemon
called the buf_daemon which is responsible for flushing dirty buffers
when the number of dirty buffers exceeds the vfs.hidirtybuffers limit.
This daemon attempts to dynamically adjust the rate at which dirty buffers
are flushed such that getnewbuf() calls (almost) never block.
The number of nbufs and amount of buffer space is now scaled past the
8MB limit that was previously imposed for systems with over 64MB of
memory, and the vfs.{lo,hi}dirtybuffers limits have been relaxed
somewhat. The number of physical buffers has been increased with the
intention that we will manage physical I/O differently in the future.
reassignbuf previously attempted to keep the dirtyblkhd list sorted which
could result in non-deterministic operation under certain conditions,
such as when a large number of dirty buffers are being managed. This
algorithm has been changed. reassignbuf now keeps buffers locally sorted
if it can do so cheaply, and otherwise gives up and adds buffers to
the head of the dirtyblkhd list. The new algorithm is deterministic but
not perfect. The new algorithm greatly reduces problems that previously
occured when write_behind was turned off in the system.
The P_FLSINPROG proc->p_flag bit has been replaced by the more descriptive
P_BUFEXHAUST bit. This bit allows processes working with filesystem
buffers to use available emergency reserves. Normal processes do not set
this bit and are not allowed to dig into emergency reserves. The purpose
of this bit is to avoid low-memory deadlocks.
A small race condition was fixed in getpbuf() in vm/vm_pager.c.
Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
Reviewed by: Kirk McKusick <mckusick@mckusick.com>
behavior slightly.
If machine/bus.h is included, but neither bus_memio.h nor bus_pio.h
are included, then behave as if both were included.
This won't change existing drivers, all of which include one or more
of bus_{p,mem}io.h, but will allow drivers from other systems to come
over with fewer changes. I freely admit that this might not be
optimal for some drivers, but those drivers can be optimized for
FreeBSD after the initial bringup happens.
Without the change, there is a bug that preclude drivers from
compiling with strange warning/errors.
I've been running this here for a while now w/o ill effects.
Reviewed by: gibbs
Not objected to by: bde, arch@ list.
- The kernel environment variable 'hw.physmem' can be used to set the
amount of physical memory space, based at 0, that FreeBSD will use.
Any memory detected over this limit is ignored. Documentation for
this is available under 'help set tunables' in the loader.
- In the case where system memory size can't be accurately determined,
hw.physmem is used as a best-guess memory size, but speculative
probing will be used to determine actual memory size if any of the
guesses or hints are 16M or more.
- If RB_VERBOSE, we list the memory regions as we test them.
- The compile-time option MAXMEM supplies a default value for
'hw.physmem'.
specified in the kernel config file - but setting options MAXMEM works
exactly the same. Userconfig overrides of this have not worked for
ages.
Also, change the getenv for the loader override to hw.physmem based on a
prior suggestion from Mike Smith. I think he still wants to change this
some, but this shouldn't get in his way. This is a forced setting of
the memory size, not a "cap". We probably should have a plain 'maxmem'
variable as well which does do a cap, without loosing the bios memory
configuration data.
memory size. If somebody wants to change the name, fine - I used this
since it's consistant with the config variable it replaces.
This is intended to replace the npx0 msize hack (which no longer works).
SYSINIT_KT() etc (which is a static, compile-time procedure), use a
NetBSD-style kthread_create() interface. kproc_start is still available
as a SYSINIT() hook. This allowed simplification of chunks of the
sysinit code in the process. This kthread_create() is our old kproc_start
internals, with the SYSINIT_KT fork hooks grafted in and tweaked to work
the same as the NetBSD one.
One thing I'd like to do shortly is get rid of nfsiod as a user initiated
process. It makes sense for the nfs client code to create them on the
fly as needed up to a user settable limit. This means that nfsiod
doesn't need to be in /sbin and is always "available". This is a fair bit
easier to do outside of the SYSINIT_KT() framework.
1. Rise is recognized in identdcpu.c.
2. The TSC is not written to. A workaround for the CPU bug is being
applied to clock.c (the bug being that the mP6 has TSC enabled
in its CPUID-capabilities, but it only supports reading it. If we
try to write to it (MSR 16), a GPF occurs.) The new behavior is that
FreeBSD will _not_ zero the TSC. Instead, we do a bit of 64-bit
arithmetic.
Reviewed by: msmith
Obtained from: unfurl & msmith
sure that i686_mem was only used when
1. CPUID had MTRR set (this was there before)
2. the CPU was GenuineIntel (not there)
3. the CPU is a 686 (also not there)
This should prevent any problems with CPUs that set MTRR but aren't
compatibile with Intel's interface (none that I know of yet.)
automatically hacks on the active copy of the IDT if f00f_hack()
has changed it. This also allows simplifications in setidt().
This fixes breakage of FP exception handling by rev.1.55 of
sys/kernel.h. FP exceptions were sent to npx.c's probe handlers
because npx.c "restored" the old handlers to the wrong copy of the
IDT. The SYSINIT for f00f_hack() was purposely run quite late to
avoid problems like this, but it is bogusly associated with the
SYSINIT for proc0 so it was moved with the latter.
Problem reported and fix tested by: Martin Cracauer <cracauer@cons.org>
The cdevsw_add() function now finds the major number(s) in the
struct cdevsw passed to it. cdevsw_add_generic() is no longer
needed, cdevsw_add() does the same thing.
cdevsw_add() will print an message if the d_maj field looks bogus.
Remove nblkdev and nchrdev variables. Most places they were used
bogusly. Instead check a dev_t for validity by seeing if devsw()
or bdevsw() returns NULL.
Move bdevsw() and devsw() functions to kern/kern_conf.c
Bump __FreeBSD_version to 400006
This commit removes:
72 bogus makedev() calls
26 bogus SYSINIT functions
if_xe.c bogusly accessed cdevsw[], author/maintainer please fix.
I4b and vinum not changed. Patches emailed to authors. LINT
probably broken until they catch up.
Reformat and initialize correctly all "struct cdevsw".
Initialize the d_maj and d_bmaj fields.
The d_reset field was not removed, although it is never used.
I used a program to do most of this, so all the files now use the
same consistent format. Please keep it that way.
Vinum and i4b not modified, patches emailed to respective authors.
The old version only worked right when the time was read strictly
more often than every 1/HZ seconds, but we only guarantee reading
it every (1/HZ + epsilon) seconds. Part of rev.1.126-1.127 attempted
to fix this but didn't succeed. Detect counter rollover using the
heuristic from the old version of microtime() with additional
complications for supporting calls from fast interrupt handlers.
This works provided i8254 interrupts are not delayed by more than
1/(2*HZ) seconds.
This needs more comments, and cleanups for the SMP case, and more
testing of the SMP case before it is merged into RELENG_3.
Tested by: jhay
on systems with no FFS.
- Remove all references to mfs from cpu_rootconf(). mfs_init is
called prior to cpu_rootconf(), so it can set mountrootfsname to mfs
and (more imporantly) set rootdev using the (bogus in Bruce's opinion)
special major number of 255.
* Re-work the resource allocation code to use helper functions in subr_bus.c.
* Add simple isa interface for manipulating the resource ranges which can be
allocated and remove the code from isa_write_ivar() which was previously
used for this purpose.
ADMtek AL981 "Comet" chipset. The AL981 is yet another DEC tulip clone,
except with simpler receive filter options. The AL981 has a built-in
transceiver, power management support, wake on LAN and flow control.
This chip performs extremely well; it's on par with the ASIX chipset
in terms of speed, which is pretty good (it can do 11.5MB/sec with TCP
easily).
I would have committed this driver sooner, except I ran into one problem
with the AL981 that required a workaround. When the chip is transmitting
at full speed, it will sometimes wedge if you queue a series of packets
that wrap from the end of the transmit descriptor list back to the
beginning. I can't explain why this happens, and none of the other tulip
clones behave this way. The workaround this is to just watch for the end
of the transmit ring and make sure that al_start() breaks out of its
packet queuing loop and waiting until the current batch of transmissions
completes before wrapping back to the start of the ring. Fortunately, this
does not significantly impact transmit performance.
This is one of those things that takes weeks of analysis just to come
up with two or three lines of code changes.
Implement priorities.
GENERIC, LINT, files:
Remove remarks about ordering of device names.
GENERIC, LINT:
Sort the devices alphabetically in LINT and GENERIC.
though, on systems (386 mostly) that still have a seperate fpu, but it
might be possible to find systems where the FPU coprocessor is wired to
a different IRQ pin.
instances to a parent bus.
* Define a new method BUS_ADD_CHILD which can be called from DEVICE_IDENTIFY
to add new instances.
* Add a generic implementation of DEVICE_PROBE which calls DEVICE_IDENTIFY
for each driver attached to the parent's devclass.
* Move the hint-based isa probe from the isa driver to a new isahint driver
which can be shared between i386 and alpha.
udev_t in the kernel but still called dev_t in userland.
Provide functions to manipulate both types:
major() umajor()
minor() uminor()
makedev() umakedev()
dev2udev() udev2dev()
For now they're functions, they will become in-line functions
after one of the next two steps in this process.
Return major/minor/makedev to macro-hood for userland.
Register a name in cdevsw[] for the "filedescriptor" driver.
In the kernel the udev_t appears in places where we have the
major/minor number combination, (ie: a potential device: we
may not have the driver nor the device), like in inodes, vattr,
cdevsw registration and so on, whereas the dev_t appears where
we carry around a reference to a actual device.
In the future the cdevsw and the aliased-from vnode will be hung
directly from the dev_t, along with up to two softc pointers for
the device driver and a few houskeeping bits. This will essentially
replace the current "alias" check code (same buck, bigger bang).
A little stunt has been provided to try to catch places where the
wrong type is being used (dev_t vs udev_t), if you see something
not working, #undef DEVT_FASCIST in kern/kern_conf.c and see if
it makes a difference. If it does, please try to track it down
(many hands make light work) or at least try to reproduce it
as simply as possible, and describe how to do that.
Without DEVT_FASCIST I belive this patch is a no-op.
Stylistic/posixoid comments about the userland view of the <sys/*.h>
files welcome now, from userland they now contain the end result.
Next planned step: make all dev_t's refer to the same devsw[] which
means convert BLK's to CHR's at the perimeter of the vnodes and
other places where they enter the game (bootdev, mknod, sysctl).
Fixed profiling of elf kernels. Made high resolution profiling compile
for elf kernels (it is broken for all kernels due to lack of egcs support).
Renaming of many assembler labels is avoided by declaring by declaring
the labels that need to be visible to gprof as having type "function"
and depending on the elf version of gprof being zealous about discarding
the others. A few type declarations are still missing, mainly for SMP.
PR: 9413
Submitted by: Assar Westerlund <assar@sics.se> (initial parts)
implicitly LOCK'ed instruction), so there shouldn't be any harm in making
it volatile pointer compatable for one of the users of it. It seems to
generate the same code regardless.
upset about it (and generate things like __main() calls that are reserved
for main()). Renaming was phk's suggestion, but I'd already thought about
it too. (phk liked my suggested name tada() but I decided against it :-)
Reviewed by: phk
config kernel mumble mumble
line has been obsoleted and removed and with it went all knowledge of
devices on the part of config.
You can still configure a root device (which is used if you give
the "-r" flag) but now with an option:
options ROOTDEVNAME=\"da0s2e\"
The string is parsed by the same code as at the "boot -a" prompt.
At the same time, make the "boot -a" prompt both more able and more
informative.
ALPHA/PC98 people: You will have to adapt a few simple changes
(defining rootdev and dumpdev somewhere else) before config works
for you again, sorry, but it's all in the name of progress.
I'm not too happy about the result either, but at least it has less
chance of backfiring.
This particular feature could be called "a mess" without offending
anybody.