dependencies. A 'struct pmc_classdep' structure describes operations
on PMCs; 'struct pmc_mdep' contains one or more 'struct pmc_classdep'
structures depending on the CPU in question.
Inside PMC class dependent code, row indices are relative to the
PMCs supported by the PMC class; MI code in "hwpmc_mod.c" translates
global row indices before invoking class dependent operations.
- Augment the OP_GETCPUINFO request with the number of PMCs present
in a PMC class.
- Move code common to Intel CPUs to file "hwpmc_intel.c".
- Move TSC handling to file "hwpmc_tsc.c".
Because the TTY hooks interface was not finished when I imported the
MPSAFE TTY layer, I had to disconnect the snp(4) driver. This snp(4)
implementation has been sitting in my P4 branch for some time now.
Unfortunately it still doesn't use the same error handling as snp(4)
(returning codes through FIONREAD), but it should already be usable.
I'm committing this to SVN, hoping someone else could polish off its
rough edges. It's always better than having a broken driver sitting in
the tree.
that includes significant features and SMP safety.
This commit includes a more or less complete rewrite of the *BSD USB
stack, including Host Controller and Device Controller drivers and
updating all existing USB drivers to use the new USB API:
1) A brief feature list:
- A new and mutex enabled USB API.
- Many USB drivers are now running Giant free.
- Linux USB kernel compatibility layer.
- New UGEN backend and libusb library, finally solves the "driver
unloading" problem. The new BSD licensed libusb20 library is fully
compatible with libusb-0.1.12 from sourceforge.
- New "usbconfig" utility, for easy configuration of USB.
- Full support for Split transactions, which means you can use your
full speed USB audio device on a high speed USB HUB.
- Full support for HS ISOC transactions, which makes writing drivers
for various HS webcams possible, for example.
- Full support for USB on embedded platforms, mostly cache flushing
and buffer invalidating stuff.
- Safer parsing of USB descriptors.
- Autodetect of annoying USB install disks.
- Support for USB device side mode, also called USB gadget mode,
using the same API like the USB host side. In other words the new
USB stack is symmetric with regard to host and device side.
- Support for USB transfers like I/O vectors, means more throughput
and less interrupts.
- ... see the FreeBSD quarterly status reports under "USB project"
2) To enable the driver in the default kernel build:
2.a) Remove all existing USB device options from your kernel config
file.
2.b) Add the following USB device options to your kernel configuration
file:
# USB core support
device usb2_core
# USB controller support
device usb2_controller
device usb2_controller_ehci
device usb2_controller_ohci
device usb2_controller_uhci
# USB mass storage support
device usb2_storage
device usb2_storage_mass
# USB ethernet support, requires miibus
device usb2_ethernet
device usb2_ethernet_aue
device usb2_ethernet_axe
device usb2_ethernet_cdce
device usb2_ethernet_cue
device usb2_ethernet_kue
device usb2_ethernet_rue
device usb2_ethernet_dav
# USB wireless LAN support
device usb2_wlan
device usb2_wlan_rum
device usb2_wlan_ral
device usb2_wlan_zyd
# USB serial device support
device usb2_serial
device usb2_serial_ark
device usb2_serial_bsa
device usb2_serial_bser
device usb2_serial_chcom
device usb2_serial_cycom
device usb2_serial_foma
device usb2_serial_ftdi
device usb2_serial_gensa
device usb2_serial_ipaq
device usb2_serial_lpt
device usb2_serial_mct
device usb2_serial_modem
device usb2_serial_moscom
device usb2_serial_plcom
device usb2_serial_visor
device usb2_serial_vscom
# USB bluetooth support
device usb2_bluetooth
device usb2_bluetooth_ng
# USB input device support
device usb2_input
device usb2_input_hid
device usb2_input_kbd
device usb2_input_ms
# USB sound and MIDI device support
device usb2_sound
2) To enable the driver at runtime:
2.a) Unload all existing USB modules. If USB is compiled into the
kernel then you might have to build a new kernel.
2.b) Load the "usb2_xxx.ko" modules under /boot/kernel having the same
base name like the kernel device option.
Submitted by: Hans Petter Selasky hselasky at c2i dot net
Reviewed by: imp, alfred
and server. This replaces the RPC implementation of the NFS client and
server with the newer RPC implementation originally developed
(actually ported from the userland sunrpc code) to support the NFS
Lock Manager. I have tested this code extensively and I believe it is
stable and that performance is at least equal to the legacy RPC
implementation.
The NFS code currently contains support for both the new RPC
implementation and the older legacy implementation inherited from the
original NFS codebase. The default is to use the new implementation -
add the NFS_LEGACYRPC option to fall back to the old code. When I
merge this support back to RELENG_7, I will probably change this so
that users have to 'opt in' to get the new code.
To use RPCSEC_GSS on either client or server, you must build a kernel
which includes the KGSSAPI option and the crypto device. On the
userland side, you must build at least a new libc, mountd, mount_nfs
and gssd. You must install new versions of /etc/rc.d/gssd and
/etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf.
As long as gssd is running, you should be able to mount an NFS
filesystem from a server that requires RPCSEC_GSS authentication. The
mount itself can happen without any kerberos credentials but all
access to the filesystem will be denied unless the accessing user has
a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There
is currently no support for situations where the ticket file is in a
different place, such as when the user logged in via SSH and has
delegated credentials from that login. This restriction is also
present in Solaris and Linux. In theory, we could improve this in
future, possibly using Brooks Davis' implementation of variant
symlinks.
Supporting RPCSEC_GSS on a server is nearly as simple. You must create
service creds for the server in the form 'nfs/<fqdn>@<REALM>' and
install them in /etc/krb5.keytab. The standard heimdal utility ktutil
makes this fairly easy. After the service creds have been created, you
can add a '-sec=krb5' option to /etc/exports and restart both mountd
and nfsd.
The only other difference an administrator should notice is that nfsd
doesn't fork to create service threads any more. In normal operation,
there will be two nfsd processes, one in userland waiting for TCP
connections and one in the kernel handling requests. The latter
process will create as many kthreads as required - these should be
visible via 'top -H'. The code has some support for varying the number
of service threads according to load but initially at least, nfsd uses
a fixed number of threads according to the value supplied to its '-n'
option.
Sponsored by: Isilon Systems
MFC after: 1 month
compiled into the main AMR driver. It's code that is nice to have but not
required for normal operation, and it is reported to cause problems for some
people.
cable tuning. This has helped in some installations for hardware
deployed by a former employer. Made optional because the lists aren't
full of complaints about these cards... even when they were wildly
popular.
Reviewed by: attilio@, jhb@, trhodes@ (all an older version of the patch)
control logic and policy registration remaining in that file, and access
control checks broken out into other files by class of check.
Obtained from: TrustedBSD Project
Driver supports PCI devices with class 8 and subclass 5 according to
SD Host Controller Specification.
Update NOTES, enable module and static build.
Enable related mmc and mmcsd modules build.
Discussed on: mobile@, current@
This was located in the ubsa driver, but should be moved into a separate
driver:
- 3G modems provide multiple serial ports to allow AT commands while the PPP
connection is up.
- 3G modems do not provide baud rate or other serial port settings.
- Huawei cards need specific initialisation.
- ubsa is for Belkin adapters, an Linuxy choice for another device like 3G.
Speeds achieved here with a weak signal at best is ~40kb/s (UMTS). No spooky
STALLED messages as well.
Next: Move over all entries for Sierra and Novatel cards once I have found
testers, and implemented serial port enumeration for Sierra (or rather have
Andrea Guzzo do it). They list all endpoints in 1 iface instead of 4 ifaces.
Submitted by: aguzzo@anywi.com
MFC after: 3 weeks
If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in.
However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries:
atacore: ATA core functionality, always needed for any ATA setup
atacard: CARDBUS support
atacbus: PC98 cbus support
ataisa: ISA bus support
atapci: PCI bus support only generic chipset support.
ataahci: AHCI support, also pulled in by some vendor modules.
ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets
atadisk: ATA disk driver
ataraid: ATA softraid driver
atapicd: ATAPI cd/dvd driver
atapifd: ATAPI floppy/flashdisk driver
atapist: ATAPI tape driver
atausb: ATA<>USB bridge
atapicam: ATA<>CAM bridge
This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file:
device atacore
device atapci
device atavia
And then you need the atadisk, atapicd etc lines in there just as usual.
If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual.
However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
It seems we only depend on COMPAT_43 to implement the send() and recv()
routines. We can easily implement them using sendto() and recvfrom(),
just like we do inside our very own C library.
I wasn't able to really test it, apart from simple compilation testing.
I've heard rumours that COMPAT_SVR4 is broken inside execve() anyway.
It's still worth to fix this, because I suspect we'll get rid of
COMPAT_43 somewhere in the future...
Reviewed by: rdivacky
Discussed with: jhb
This is a sync to mesa/drm pre-gem, with a few fixes on top of that.
It also contains one local patch supplied by kib@ that I can't apply to
git.master shared code.
Approved by: flz
Obtained from: mesa/drm git.master
MFC after: 2 weeks
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
This driver supports GW3887 based chipsets and works on
x86/powerpc/sparc64. You need upgtfw kernel module before loading
upgt(4). Please see the manpage.
Obtained from: OpenBSD
found in Soekris hardware, for instance). The hardware supports acceleration
of AES-128-CBC accessible through crypto(4) and supplies entropy to random(4).
TODO:
o Implement rndtest(4) support
o Performance enhancements
Submitted by: Patrick Lamaizière <patfbsd -at- davenulle.org>
Reviewed by: jhb, sam
MFC after: 1 week
features of CPUs like reading/writing machine-specific registers,
retrieving cpuid data, and updating microcode.
- Add cpucontrol(8) utility, that provides userland access to
the features of cpuctl(4).
- Add subsequent manpages.
The cpuctl(4) device operates as follows. The pseudo-device node cpuctlX
is created for each cpu present in the systems. The pseudo-device minor
number corresponds to the cpu number in the system. The cpuctl(4) pseudo-
device allows a number of ioctl to be preformed, namely RDMSR/WRMSR/CPUID
and UPDATE. The first pair alows the caller to read/write machine-specific
registers from the correspondent CPU. cpuid data could be retrieved using
the CPUID call, and microcode updates are applied via UPDATE.
The permissions are inforced based on the pseudo-device file permissions.
RDMSR/CPUID will be allowed when the caller has read access to the device
node, while WRMSR/UPDATE will be granted only when the node is opened
for writing. There're also a number of priv(9) checks.
The cpucontrol(8) utility is intened to provide userland access to
the cpuctl(4) device features. The utility also allows one to apply
cpu microcode updates.
Currently only Intel and AMD cpus are supported and were tested.
Approved by: kib
Reviewed by: rpaulo, cokane, Peter Jeremy
MFC after: 1 month
As clearly mentioned on the mailing lists, there is a list of drivers
that have not been ported to the MPSAFE TTY layer yet. Remove them from
the kernel configuration files. This means people can now still use
these drivers if they explicitly put them in their kernel configuration
file, which is good.
People should keep in mind that after August 10, these drivers will not
work anymore. Even though owners of the hardware are capable of getting
these drivers working again, I will see if I can at least get them to a
compilable state (if time permits).