- remove DA_FLAG_SAW_MEDIA flag, almost opposite to DA_FLAG_PACK_INVALID,
using the last instead.
- allow opening device with no media present, reporting zero media size
and non-zero sector size, as geom/notes suggests. That allow to read
device attributes and potentially do other things, not related to media.
to query ATA functionality via ATA Pass-Through (16) as this page is defined
as "must" for SATL devices, hence indicating that the device is at least
likely to support Pass-Through (16).
This eliminates errors produced by CTL when ATA Pass-Through (16) fails.
Switch ATA probe daerror call to SF_NO_PRINT to avoid errors printing out
for devices which return invalid errors.
Output details about supported and choosen delete method when verbose booted.
Reviewed by: mav
Approved by: pjd (mentor)
MFC after: 1 week
Ensure that delete_available is reset so re-probes after a media change,
to one with different delete characteristics, will result in the correct
methods being flagged as available.
Make all ccb state changes use a consistent flow:
* free()
* xpt_release_ccb()
* softc->state = <new state>
* xpt_schedule()
Reviewed by: mav
Approved by: pjd (mentor)
MFC after: 1 week
Remove ADA_FLAG_PACK_INVALID flag. Since ATA disks have no concept of media
change it only duplicates CAM_PERIPH_INVALID flag, so we can use last one.
Slightly cleanup DA_FLAG_PACK_INVALID use.
requests.
sys/geom/geom_disk.h:
- Added d_delmaxsize which represents the maximum size of individual
device delete requests in bytes. This can be used by devices to
inform geom of their size limitations regarding delete operations
which are generally different from the read / write limits as data
is not usually transferred from the host to physical device.
sys/geom/geom_disk.c:
- Use new d_delmaxsize to calculate the size of chunks passed through to
the underlying strategy during deletes instead of using read / write
optimised values. This defaults to d_maxsize if unset (0).
- Moved d_maxsize default up so it can be used to default d_delmaxsize
sys/cam/ata/ata_da.c:
- Added d_delmaxsize calculations for TRIM and CFA
sys/cam/scsi/scsi_da.c:
- Added re-calculation of d_delmaxsize whenever delete_method is set.
- Added kern.cam.da.X.delete_max sysctl which allows the max size for
delete requests to be limited. This is useful in preventing timeouts
on devices who's delete methods are slow. It should be noted that
this limit is reset then the device delete method is changed and
that it can only be lowered not increased from the device max.
Reviewed by: mav
Approved by: pjd (mentor)
maximum sizes for said methods, which are used when processing BIO_DELETE
requests. This includes updating UNMAP support discovery to be based on
SBC-3 T10/1799-D Revision 31 specification.
Added ATA TRIM support to cam scsi devices via ATA Pass-Through(16)
sys/cam/scsi/scsi_da.c:
- Added ATA Data Set Management TRIM support via ATA Pass-Through(16)
as a delete_method
- Added four new probe states used to identity available methods and their
limits for the processing of BIO_DELETE commands via both UNMAP and the
new ATA TRIM commands.
- Renamed Probe states to better indicate their use
- Added delete method descriptions used when informing user of issues.
- Added automatic calculation of the optimum delete mode based on which
method presents the largest maximum request size as this is most likely
to result in the best performance.
- Added WRITE SAME max block limits
- Updated UNMAP range generation to mirror that used by ATA TRIM, this
optimises the generation of ranges and fixes a potential overflow
issue in the count when combining multiple BIO_DELETE requests
- Added output of warnings about short deletes. This should only ever
be triggered on devices that fail to correctly advertise their supported
delete modes / max sizes.
- Fixed WS16 requests being incorrectly limited to 65535 in length.
Reviewed by: mav
Approved by: pjd (mentor)
MFC after: 2 weeks
CAM. This can significantly improve performance particularly for SSDs
which don't suffer from seek latencies.
The sysctl / tunable kern.cam.sort_io_queues provides the systems default
setting where:-
0 = queued BIOs are NOT sorted
1 = queued BIOs are sorted (default)
Each device gets its own sysctl kern.cam.<type>.<id>.sort_io_queue
Valid values are:-
-1 = use system default (default)
0 = queued BIOs are NOT sorted
1 = queued BIOs are sorted
Note: Additional patch will look to add automatic use of none sorted queues
for none rotating media e.g. SSD's
Reviewed by: scottl
Approved by: pjd (mentor)
MFC after: 2 weeks
but execute the commands in regular way. There is no any reason to cook CPU
while the system is still fully operational. After this change polling in
CAM is used only for kernel dumping.
driver's periphs, acquiring and releaseing periph references while doing it.
Use it to iterate over the lists of ada and da periphs when flushing caches
and putting devices to sleep on shutdown and suspend. Previous code could
panic in theory if some device disappear in the middle of the process.
The vnode-backed md(4) has to map the unmapped bio because VOP_READ()
and VOP_WRITE() interfaces do not allow to pass unmapped requests to
the filesystem. Vnode-backed md(4) uses pbufs instead of relying on
the bio_transient_map, to avoid usual md deadlock.
Sponsored by: The FreeBSD Foundation
Tested by: pho, scottl
PREVENT ALLOW MEDIUM REMOVAL commands return errors on these devices
without returning sense data. In some cases unrelated following commands
start to return errors too, that makes device to be dropped by CAM.
to avoid sending extra READ CAPACITY requests by dastart(). Schedule periph
again on reprobe completion, or otherwise it may stuck indefinitely long.
This should fix USB explore thread hanging on device unplug, waiting for
periph destruction.
Reported by: hselasky
and da_default_timeout where their current hardcoded values matched the current
default value for said tunables.
PR: kern/169976
Reviewed by: pjd (mentor)
Approved by: mav
DISKFLAG_CANDELETE. While this change makes this layer consistent
other layers such as UFS and ZFS BIO_DELETE support may not notice
any change made manually via these device sysctls until the device
is reopened via a mount.
Also corrected var order in dadeletemethodsysctl
PR: kern/169801
Reviewed by: pjd (mentor)
Approved by: mav
MFC after: 2 weeks
It includes three parts:
1) Modifications to CAM to detect media media changes and report them to
disk(9) layer. For modern SATA (and potentially UAS) devices it utilizes
Asynchronous Notification mechanism to receive events from hardware.
Active polling with TEST UNIT READY commands with 3 seconds period is used
for incapable hardware. After that both CD and DA drivers work the same way,
detecting two conditions: "NOT READY: Medium not present" after medium was
detected previously, and "UNIT ATTENTION: Not ready to ready change, medium
may have changed". First one reported to disk(9) as media removal, second
as media insert/change. To reliably receive second event new
AC_UNIT_ATTENTION async added to make UAs broadcasted to all periphs by
generic error handling code in cam_periph_error().
2) Modifications to GEOM core to handle media remove and change events.
Media removal handled by spoiling all consumers attached to the provider.
Media change event also schedules provider retaste after spoiling to probe
new media. New flag G_CF_ORPHAN was added to consumers to reflect that
consumer is in process of destruction. It allows retaste to create new
geom instance of the same class, while previous one is still dying.
3) Modifications to some GEOM classes: DEV -- to report media change
events to devd; VFS -- to handle spoiling same as orphan to prevent
accessing replaced media. PART class already handles spoiling alike to
orphan.
Reviewed by: silence on geom@ and scsi@
Tested by: avg
Sponsored by: iXsystems, Inc. / PC-BSD
MFC after: 2 months
kern.cam.da.send_ordered, more in line with the other da sysctls/tunables.
PR: 169765
Submitted by: Steven Hartland <steven.hartland@multiplay.co.uk>
Reviewed by: mav
a da(4) instance going away while GEOM is still probing it.
In this case, the GEOM disk class instance has been created by
disk_create(), and the taste of the disk is queued in the GEOM
event queue.
While that event is queued, the da(4) instance goes away. When the
open call comes into the da(4) driver, it dereferences the freed
(but non-NULL) peripheral pointer provided by GEOM, which results
in a panic.
The solution is to add a callback to the GEOM disk code that is
called when all of its resources are cleaned up. This is
implemented inside GEOM by adding an optional callback that is
called when all consumers have detached from a provider, and the
provider is about to be deleted.
scsi_cd.c,
scsi_da.c: In the register routine for the cd(4) and da(4)
routines, acquire a reference to the CAM peripheral
instance just before we call disk_create().
Use the new GEOM disk d_gone() callback to register
a callback (dadiskgonecb()/cddiskgonecb()) that
decrements the peripheral reference count once GEOM
has finished cleaning up its resources.
In the cd(4) driver, clean up open and close
behavior slightly. GEOM makes sure we only get one
open() and one close call, so there is no need to
set an open flag and decrement the reference count
if we are not the first open.
In the cd(4) driver, use cam_periph_release_locked()
in a couple of error scenarios to avoid extra mutex
calls.
geom.h: Add a new, optional, providergone callback that
is called when a provider is about to be deleted.
geom_disk.h: Add a new d_gone() callback to the GEOM disk
interface.
Bump the DISK_VERSION to version 2. This probably
should have been done after a couple of previous
changes, especially the addition of the d_getattr()
callback.
geom_disk.c: Add a providergone callback for the disk class,
g_disk_providergone(), that calls the user's
d_gone() callback if it exists.
Bump the DISK_VERSION to 2.
geom_subr.c: In g_destroy_provider(), call the providergone
callback if it has been provided.
In g_new_geomf(), propagate the class's
providergone callback to the new geom instance.
blkfront.c: Callers of disk_create() are supposed to pass in
DISK_VERSION, not an explicit disk API version
number. Update the blkfront driver to do that.
disk.9: Update the disk(9) man page to include information
on the new d_gone() callback, as well as the
previously added d_getattr() callback, d_descr
field, and HBA PCI ID fields.
MFC after: 5 days
reporting. It includes:
- removing of error messages controlled by bootverbose, replacing them
with more universal and informative debugging on CAM_DEBUG_INFO level,
that is now built into the kernel by default;
- more close following to the arguments submitted by caller, such as
SF_PRINT_ALWAYS, SF_QUIET_IR and SF_NO_PRINT; consumer knows better which
errors are usual/expected at this point and which are really informative;
- adding two new flags SF_NO_RECOVERY and SF_NO_RETRY to allow caller
specify how much assistance it needs at this point; previously consumers
controlled that by not calling cam_periph_error() at all, but that made
behavior inconsistent and debugging complicated;
- tuning debug messages and taken actions order to make debugging output
more readable and cause-effect relationships visible;
- making camperiphdone() (common device recovery completion handler) to
also use cam_periph_error() in most cases, instead of own dumb code;
- removing manual sense fetching code from cam_periph_error(); I was told
by number of people that it is SIM obligation to fetch sense data, so this
code is useless and only significantly complicates recovery logic;
- making ada, da and pass driver to use cam_periph_error() with new limited
recovery options to handle error recovery and debugging in common way;
as one of results, CAM_REQUEUE_REQ and other retrying statuses are now
working fine with pass driver, that caused many problems before.
- reverting r186891 by raj@ to avoid burning few seconds in tight DELAY()
loops on device probe, while device simply loads media; I think that problem
may already be fixed in other way, and even if it is not, solution must be
different.
Sponsored by: iXsystems, Inc.
MFC after: 2 weeks
Olympus FE-210 camera
LG UP3S MP3 player
Laser MP3-2GA13 MP3
PR: usb/119201
Submitted by: Peter Jeremy <peterjeremy@optushome.com.au>
Approved by: cperciva
MFC after: 1 week
checked PROTECT bit in INQUIRY data for all SPC devices, while it is defined
only since SPC-3. But there are some SPC-2 USB devices were reported, that
have PROTECT bit set, return no error for READ CAPACITY(16) command, but
return wrong sector count value in response.
MFC after: 3 days
of the default one.
Without this change setting kern.cam.ada.default_timeout to 1 instead of 30
allowed me to trigger several false positive command timeouts under heavy
ZFS load on a SiI3132 siis(4) controller with 5 HDDs on a port multiplier.
MFC after: 1 week
data changes.
cam_ccb.h: Add a new advanced information type, CDAI_TYPE_RCAPLONG,
for long read capacity data.
cam_xpt_internal.h:
Add a read capacity data pointer and length to struct cam_ed.
cam_xpt.c: Free the read capacity buffer when a device goes away.
While we're here, make sure we don't leak memory for other
malloced fields in struct cam_ed.
scsi_all.c: Update the scsi_read_capacity_16() to take a uint8_t * and
a length instead of just a pointer to the parameter data
structure. This will hopefully make this function somewhat
immune to future changes in the parameter data.
scsi_all.h: Add some extra bit definitions to struct
scsi_read_capacity_data_long, and bump up the structure
size to the full size specified by SBC-3.
Change the prototype for scsi_read_capacity_16().
scsi_da.c: Register changes in read capacity data with the transport
layer. This allows the transport layer to send out an
async notification to interested parties. Update the
dasetgeom() API.
Use scsi_extract_sense_len() instead of
scsi_extract_sense().
scsi_xpt.c: Add support for the new CDAI_TYPE_RCAPLONG advanced
information type.
Make sure we set the physpath pointer to NULL after freeing
it. This allows blindly freeing it in the struct cam_ed
destructor.
sys/param.h: Bump __FreeBSD_version from 1000005 to 1000006 to make it
easier for third party drivers to determine that the read
capacity data async notification is available.
camcontrol.c,
mptutil/mpt_cam.c:
Update these for the new scsi_read_capacity_16() argument
structure.
Sponsored by: Spectra Logic
Depending on device capabilities use different methods to implement it.
Currently used method can be read/set via kern.cam.da.X.delete_method
sysctls. Possible values are:
NONE - no provisioning support reported by the device;
DISABLE - provisioning support was disabled because of errors;
ZERO - use WRITE SAME (10) command to write zeroes;
WS10 - use WRITE SAME (10) command with UNMAP bit set;
WS16 - use WRITE SAME (16) command with UNMAP bit set;
UNMAP - use UNMAP command (equivalent of the ATA DSM TRIM command).
The last two methods (UNMAP and WS16) are defined by SBC specification and
the UNMAP method is the most advanced one. The rest of methods I've found
supported in Linux, and as soon as they were trivial to implement, then
why not? Hope they will be useful in some cases.
Unluckily I have no devices properly reporting parameters of the logical
block provisioning support via respective VPD pages (0xB0 and 0xB2). So
all info I have/use now is the flag telling whether logical block
provisioning is supported or not. As result, specific methods chosen now
by trying different ones in order (UNMAP, WS16, DISABLE) and checking
completion status to fallback if needed. I don't expect problems from this,
as if something go wrong, it should just disable itself. It may disable
even too aggressively if only some command parameter misfit.
Unlike Linux, which executes each delete with separate request, I've
implemented here the same request aggregation as implemented in ada driver.
Tests on SSDs I have show much better results doing it this way: above
8GB/s of the linear delete on Intel SATA SSD on LSI SAS HBA (mps).
Reviewed by: silence on scsi@
MFC after: 2 month
Sponsored by: iXsystems, Inc.
in the CAM XPT bus traversal code, and a number of other periph level
issues.
cam_periph.h,
cam_periph.c: Modify cam_periph_acquire() to test the CAM_PERIPH_INVALID
flag prior to allowing a reference count to be gained
on a peripheral. Callers of this function will receive
CAM_REQ_CMP_ERR status in the situation of attempting to
reference an invalidated periph. This guarantees that
a peripheral scheduled for a deferred free will not
be accessed during its wait for destruction.
Panic during attempts to drop a reference count on
a peripheral that already has a zero reference count.
In cam_periph_list(), use a local sbuf with SBUF_FIXEDLEN
set so that mallocs do not occur while the xpt topology
lock is held, regardless of the allocation policy of the
passed in sbuf.
Add a new routine, cam_periph_release_locked_buses(),
that can be called when the caller already holds
the CAM topology lock.
Add some extra debugging for duplicate peripheral
allocations in cam_periph_alloc().
Treat CAM_DEV_NOT_THERE much the same as a selection
timeout (AC_LOST_DEVICE is emitted), but forgo retries.
cam_xpt.c: Revamp the way the EDT traversal code does locking
and reference counting. This was broken, since it
assumed that the EDT would not change during
traversal, but that assumption is no longer valid.
So, to prevent devices from going away while we
traverse the EDT, make sure we properly lock
everything and hold references on devices that
we are using.
The two peripheral driver traversal routines should
be examined. xptpdperiphtraverse() holds the
topology lock for the entire time it runs.
xptperiphtraverse() is now locked properly, but
only holds the topology lock while it is traversing
the list, and not while the traversal function is
running.
The bus locking code in xptbustraverse() should
also be revisited at a later time, since it is
complex and should probably be simplified.
scsi_da.c: Pay attention to the return value from cam_periph_acquire().
Return 0 always from daclose() even if the disk is now gone.
Add some rudimentary error injection support.
scsi_sg.c: Fix reference counting in the sg(4) driver.
The sg driver was calling cam_periph_release() on close,
but never called cam_periph_acquire() (which increments
the reference count) on open.
The periph code correctly complained that the sg(4)
driver was trying to decrement the refcount when it
was already 0.
Sponsored by: Spectra Logic
MFC after: 2 weeks
cam_periph_runccb() since the beginning checks it and releases device queue.
After r203108 it even clears CAM_DEV_QFRZN flag after that to avoid double
release, so removed code is unreachable now.
MFC after: 1 month
As soon as not all devices support READ CAPACITY(16), automatically fall
back to READ CAPACITY(10) if CAM_REQ_INVALID or SSD_KEY_ILLEGAL_REQUEST
status returned.
It also provides first bits of information about Logical Block Provisioning
(aka UNMAP/TRIM) support by the device.
connected via SAS or USB. Unluckily I've found that SAS (mps) and USB-SATA
I have translate models in different ways, requiring twice more quirks.
Unluckily for Hitachi, their model names are trimmed on SAS, making
impossible to identify 4K sector drives that way.
The SYSCTL_NODE macro defines a list that stores all child-elements of
that node. If there's no SYSCTL_DECL macro anywhere else, there's no
reason why it shouldn't be static.
CAM.
Desriptor sense is a new sense data format that originated in SPC-3. Among
other things, it allows for an 8-byte info field, which is necessary to
pass back block numbers larger than 4 bytes.
This change adds a number of new functions to scsi_all.c (and therefore
libcam) that abstract out most access to sense data.
This includes a bump of CAM_VERSION, because the CCB ABI has changed.
Userland programs that use the CAM pass(4) driver will need to be
recompiled.
camcontrol.c: Change uses of scsi_extract_sense() to use
scsi_extract_sense_len().
Use scsi_get_sks() instead of accessing sense key specific
data directly.
scsi_modes: Update the control mode page to the latest version (SPC-4).
scsi_cmds.c,
scsi_target.c: Change references to struct scsi_sense_data to struct
scsi_sense_data_fixed. This should be changed to allow the
user to specify fixed or descriptor sense, and then use
scsi_set_sense_data() to build the sense data.
ps3cdrom.c: Use scsi_set_sense_data() instead of setting sense data
manually.
cam_periph.c: Use scsi_extract_sense_len() instead of using
scsi_extract_sense() or accessing sense data directly.
cam_ccb.h: Bump the CAM_VERSION from 0x15 to 0x16. The change of
struct scsi_sense_data from 32 to 252 bytes changes the
size of struct ccb_scsiio, but not the size of union ccb.
So the version must be bumped to prevent structure
mis-matches.
scsi_all.h: Lots of updated SCSI sense data and other structures.
Add function prototypes for the new sense data functions.
Take out the inline implementation of scsi_extract_sense().
It is now too large to put in a header file.
Add macros to calculate whether fields are present and
filled in fixed and descriptor sense data
scsi_all.c: In scsi_op_desc(), allow the user to pass in NULL inquiry
data, and we'll assume a direct access device in that case.
Changed the SCSI RESERVED sense key name and description
to COMPLETED, as it is now defined in the spec.
Change the error recovery action for a number of read errors
to prevent lots of retries when the drive has said that the
block isn't accessible. This speeds up reconstruction of
the block by any RAID software running on top of the drive
(e.g. ZFS).
In scsi_sense_desc(), allow for invalid sense key numbers.
This allows calling this routine without checking the input
values first.
Change scsi_error_action() to use scsi_extract_sense_len(),
and handle things when invalid asc/ascq values are
encountered.
Add a new routine, scsi_desc_iterate(), that will call the
supplied function for every descriptor in descriptor format
sense data.
Add scsi_set_sense_data(), and scsi_set_sense_data_va(),
which build descriptor and fixed format sense data. They
currently default to fixed format sense data.
Add a number of scsi_get_*() functions, which get different
types of sense data fields from either fixed or descriptor
format sense data, if the data is present.
Add a number of scsi_*_sbuf() functions, which print
formatted versions of various sense data fields. These
functions work for either fixed or descriptor sense.
Add a number of scsi_sense_*_sbuf() functions, which have a
standard calling interface and print the indicated field.
These functions take descriptors only.
Add scsi_sense_desc_sbuf(), which will print a formatted
version of the given sense descriptor.
Pull out a majority of the scsi_sense_sbuf() function and
put it into scsi_sense_only_sbuf(). This allows callers
that don't use struct ccb_scsiio to easily utilize the
printing routines. Revamp that function to handle
descriptor sense and use the new sense fetching and
printing routines.
Move scsi_extract_sense() into scsi_all.c, and implement it
in terms of the new function, scsi_extract_sense_len().
The _len() version takes a length (which should be the
sense length - residual) and can indicate which fields are
present and valid in the sense data.
Add a couple of new scsi_get_*() routines to get the sense
key, asc, and ascq only.
mly.c: Rename struct scsi_sense_data to struct
scsi_sense_data_fixed.
sbp_targ.c: Use the new sense fetching routines to get sense data
instead of accessing it directly.
sbp.c: Change the firewire/SCSI sense data transformation code to
use struct scsi_sense_data_fixed instead of struct
scsi_sense_data. This should be changed later to use
scsi_set_sense_data().
ciss.c: Calculate the sense residual properly. Use
scsi_get_sense_key() to fetch the sense key.
mps_sas.c,
mpt_cam.c: Set the sense residual properly.
iir.c: Use scsi_set_sense_data() instead of building sense data by
hand.
iscsi_subr.c: Use scsi_extract_sense_len() instead of grabbing sense data
directly.
umass.c: Use scsi_set_sense_data() to build sense data.
Grab the sense key using scsi_get_sense_key().
Calculate the sense residual properly.
isp_freebsd.h: Use scsi_get_*() routines to grab asc, ascq, and sense key
values.
Calculate and set the sense residual.
MFC after: 3 days
Sponsored by: Spectra Logic Corporation
DEVFS, and make it accessible via the diskinfo utility.
Extend GEOM's generic attribute query mechanism into generic disk consumers.
sys/geom/geom_disk.c:
sys/geom/geom_disk.h:
sys/cam/scsi/scsi_da.c:
sys/cam/ata/ata_da.c:
- Allow disk providers to implement a new method which can override
the default BIO_GETATTR response, d_getattr(struct bio *). This
function returns -1 if not handled, otherwise it returns 0 or an
errno to be passed to g_io_deliver().
sys/cam/scsi/scsi_da.c:
sys/cam/ata/ata_da.c:
- Don't copy the serial number to dp->d_ident anymore, as the CAM XPT
is now responsible for returning this information via
d_getattr()->(a)dagetattr()->xpt_getatr().
sys/geom/geom_dev.c:
- Implement a new ioctl, DIOCGPHYSPATH, which returns the GEOM
attribute "GEOM::physpath", if possible. If the attribute request
returns a zero-length string, ENOENT is returned.
usr.sbin/diskinfo/diskinfo.c:
- If the DIOCGPHYSPATH ioctl is successful, report physical path
data when diskinfo is executed with the '-v' option.
Submitted by: will
Reviewed by: gibbs
Sponsored by: Spectra Logic Corporation
Add generic attribute change notification support to GEOM.
sys/sys/geom/geom.h:
Add a new attrchanged method field to both g_class
and g_geom.
sys/sys/geom/geom.h:
sys/geom/geom_event.c:
- Provide the g_attr_changed() function that providers
can use to advertise attribute changes.
- Perform delivery of attribute change notifications
from a thread context via the standard GEOM event
mechanism.
sys/geom/geom_subr.c:
Inherit the attrchanged method from class to geom (class instance).
sys/geom/geom_disk.c:
Provide disk_attr_changed() to provide g_attr_changed() access
to consumers of the disk API.
sys/cam/scsi/scsi_pass.c:
sys/cam/scsi/scsi_da.c:
sys/geom/geom_dev.c:
sys/geom/geom_disk.c:
Use attribute changed events to track updates to physical path
information.
sys/cam/scsi/scsi_da.c:
Add AC_ADVINFO_CHANGED to the registered asynchronous CAM
events for this driver. When this event occurs, and
the updated buffer type references our physical path
attribute, emit a GEOM attribute changed event via the
disk_attr_changed() API.
sys/cam/scsi/scsi_pass.c:
Add AC_ADVINFO_CHANGED to the registered asynchronous CAM
events for this driver. When this event occurs, update
the physical patch devfs alias for this pass instance.
Submitted by: gibbs
Sponsored by: Spectra Logic Corporation
- Only attempt the closing synchronize cache on a disk
if it is still there.
- When a device is lost, report the number of outstanding
I/Os as they are drained.
- When a device is lost, return any unprocessed bios with
ENXIO instead of EIO.
- Filter asynchronous events, but always allow cam_periph_async()
to see them too.
Sponsored by: Spectra Logic Corporation
reading. (This was already done for writing to a sysctl). This
requires all SYSCTL setups to specify a type. Most of them are now
checked at compile-time.
Remove SYSCTL_*X* sysctl additions as the print being in hex should be
controlled by the -x flag to sysctl(8).
Succested by: bde
Add the BIO_ORDERED flag for struct bio and update bio clients to use it.
The barrier semantics of bioq_insert_tail() were broken in two ways:
o In bioq_disksort(), an added bio could be inserted at the head of
the queue, even when a barrier was present, if the sort key for
the new entry was less than that of the last queued barrier bio.
o The last_offset used to generate the sort key for newly queued bios
did not stay at the position of the barrier until either the
barrier was de-queued, or a new barrier (which updates last_offset)
was queued. When a barrier is in effect, we know that the disk
will pass through the barrier position just before the
"blocked bios" are released, so using the barrier's offset for
last_offset is the optimal choice.
sys/geom/sched/subr_disk.c:
sys/kern/subr_disk.c:
o Update last_offset in bioq_insert_tail().
o Only update last_offset in bioq_remove() if the removed bio is
at the head of the queue (typically due to a call via
bioq_takefirst()) and no barrier is active.
o In bioq_disksort(), if we have a barrier (insert_point is non-NULL),
set prev to the barrier and cur to it's next element. Now that
last_offset is kept at the barrier position, this change isn't
strictly necessary, but since we have to take a decision branch
anyway, it does avoid one, no-op, loop iteration in the while
loop that immediately follows.
o In bioq_disksort(), bypass the normal sort for bios with the
BIO_ORDERED attribute and instead insert them into the queue
with bioq_insert_tail(). bioq_insert_tail() not only gives
the desired command order during insertion, but also provides
barrier semantics so that commands disksorted in the future
cannot pass the just enqueued transaction.
sys/sys/bio.h:
Add BIO_ORDERED as bit 4 of the bio_flags field in struct bio.
sys/cam/ata/ata_da.c:
sys/cam/scsi/scsi_da.c
Use an ordered command for SCSI/ATA-NCQ commands issued in
response to bios with the BIO_ORDERED flag set.
sys/cam/scsi/scsi_da.c
Use an ordered tag when issuing a synchronize cache command.
Wrap some lines to 80 columns.
sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_geom.c
sys/geom/geom_io.c
Mark bios with the BIO_FLUSH command as BIO_ORDERED.
Sponsored by: Spectra Logic Corporation
MFC after: 1 month
the case of immediate unconfigure after configure. Hold the periph an
extra count while we have the task to create sysctl context outstanding
so that the periph doesn't go away unexpectedly.
Sponsored by: Panasas
Reviewed by: scsi@
MFC after: 1 month
- Unify bus reset/probe sequence. Whenever bus attached at boot or later,
CAM will automatically reset and scan it. It allows to remove duplicate
code from many drivers.
- Any bus, attached before CAM completed it's boot-time initialization,
will equally join to the process, delaying boot if needed.
- New kern.cam.boot_delay loader tunable should help controllers that
are still unable to register their buses in time (such as slow USB/
PCCard/ CardBus devices), by adding one more event to wait on boot.
- To allow synchronization between different CAM levels, concept of
requests priorities was extended. Priorities now split between several
"run levels". Device can be freezed at specified level, allowing higher
priority requests to pass. For example, no payload requests allowed,
until PMP driver enable port. ATA XPT negotiate transfer parameters,
periph driver configure caching and so on.
- Frozen requests are no more counted by request allocation scheduler.
It fixes deadlocks, when frozen low priority payload requests occupying
slots, required by higher levels to manage theit execution.
- Two last changes were holding proper ATA reinitialization and error
recovery implementation. Now it is done: SATA controllers and Port
Multipliers now implement automatic hot-plug and should correctly
recover from timeouts and bus resets.
- Improve SCSI error recovery for devices on buses without automatic sense
reporting, such as ATAPI or USB. For example, it allows CAM to wait, while
CD drive loads disk, instead of immediately return error status.
- Decapitalize diagnostic messages and make them more readable and sensible.
- Teach PMP driver to limit maximum speed on fan-out ports.
- Make boot wait for PMP scan completes, and make rescan more reliable.
- Fix pass driver, to return CCB to user level in case of error.
- Increase number of retries in cd driver, as device may return several UAs.
- Remove CAM_PERIPH_POLLED flag. It is broken by design. Polling can't be
periph flag. May be SIM, may be CCB, but now it works fine just without it.
- Remove check unused for at least five years. If we will ever have non-BIO
devices in CAM, this check is smallest of what we will need.
- If several controllers complete requests same time, call swi_sched()
only once.
disk is first probed. dagetcapacity is called whenever the disk is opened from
geom via d_open(), a zero sector size will cause geom to panic later on.
- Reduce code duplication in ATA XPT and PMP driver.
- Move PIO size setting from ada driver to ATA XPT. It is XPT business
to negotiate transfer details. ada driver is now stateless.
- Report PIO size to SIM. It is required for correct PATA SIM operation.
- Tune PMP scan timings. It workarounds some problems with SiI.
- If reset hapens during PMP initialization - restart it.
- Introduce early-initialized periph drivers, which are used during initial
scan process. Use it for xpt, probe, aprobe and pmp. It gives pmp chance
to finish scan before mountroot and numerate devices in right order.
modularize it so that new transports can be created.
Add a transport for SATA
Add a periph+protocol layer for ATA
Add a driver for AHCI-compliant hardware.
Add a maxio field to CAM so that drivers can advertise their max
I/O capability. Modify various drivers so that they are insulated
from the value of MAXPHYS.
The new ATA/SATA code supports AHCI-compliant hardware, and will override
the classic ATA driver if it is loaded as a module at boot time or compiled
into the kernel. The stack now support NCQ (tagged queueing) for increased
performance on modern SATA drives. It also supports port multipliers.
ATA drives are accessed via 'ada' device nodes. ATAPI drives are
accessed via 'cd' device nodes. They can all be enumerated and manipulated
via camcontrol, just like SCSI drives. SCSI commands are not translated to
their ATA equivalents; ATA native commands are used throughout the entire
stack, including camcontrol. See the camcontrol manpage for further
details. Testing this code may require that you update your fstab, and
possibly modify your BIOS to enable AHCI functionality, if available.
This code is very experimental at the moment. The userland ABI/API has
changed, so applications will need to be recompiled. It may change
further in the near future. The 'ada' device name may also change as
more infrastructure is completed in this project. The goal is to
eventually put all CAM busses and devices until newbus, allowing for
interesting topology and management options.
Few functional changes will be seen with existing SCSI/SAS/FC drivers,
though the userland ABI has still changed. In the future, transports
specific modules for SAS and FC may appear in order to better support
the topologies and capabilities of these technologies.
The modularization of CAM and the addition of the ATA/SATA modules is
meant to break CAM out of the mold of being specific to SCSI, letting it
grow to be a framework for arbitrary transports and protocols. It also
allows drivers to be written to support discrete hardware without
jeopardizing the stability of non-related hardware. While only an AHCI
driver is provided now, a Silicon Image driver is also in the works.
Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware
is possible and encouraged. Help with new transports is also encouraged.
Submitted by: scottl, mav
Approved by: re
because the media was removed, the periph would get its refcount dropped
and ultimately freed before getting unlocked. This created a dangling
pointer that was easy to trip over. This fixes a common source of
crashes with removaable media, but problems remain and will get tracked
down.