Read boot.help before parsing boot.config. We were parsing
boot.config first, which could result in boot.help being read
from a different location (or not found), which would probably
just cause surprise, without being useful.
can seek back to the first PT_LOAD and doing a close/reopen if it cannot.
This is because the first PT_LOAD section includes the ELF headers.
This fixes gzipped kernels on the i386, it should solve mike's problem
for the Alpha.
independent elf loader and have access to kld modules. Jordan and I were
not sure how to create boot floppies, and the things we tried just made
SRM laugh in our faces - but it was upset at boot1 which was not touched
by these changes. Essentially this has been untested. :-(
What this does is to steal the last three slots from the nine spare longs
in the bootinfo_v1 struct to pass the module base pointer through.
The startup code now to set up and fills in the module and environment
structures, hopefully close enough to the i386 layout to be able to use
the same kernel code. We now pass though the updated end of the kernel
space used, rather than _end. (like the i386).
If this does not work, it needs to be beaten into shape pronto. Otherwise
it should be backed out before 3.0.
Pre-approved in principle by: dfr
Drastically quieten down the verbose load progress messages. They were
more useful for debugging than anything, but are beyond a joke when loading
a few dozen modules.
Simplify the ELF extended symbol table load format. Just take the main
symbol table and the string table that corresponds. This is what we will
be getting local symbols from. (needed for the alpha stack tracebacks).
Use the (optional) full symbol tables in lookups. This means we have to
furhter distinguish between symbols that can come from the dynamic linking
table and the complete table.
The alpha boot code now needs to be adapted as ddb/db_elf.c cannot use
the simpler format.
I have not implemented loading the extended symbol tables from the syscall
interface yet, just for preloaded modules.
I am not sure about the symbol resolution. I *think* it's possible that
a local symbol can be found in preference to a global, depending on the
search sequence and dependency tree.
difference, but might later on when we implement some sort of multi-head
console mode. Select a console after probing them all.
Don't strdup a potentially NULL return from getenv().
If we don't select an active console, choose the first regardless.
Call the console init function, at startup time and on a manual change.
The env_setenv() function needs EV_VOLATILE because it's pointing to
data that isn't malloc'ed and will cause a fault if it's freed later.
Cosmetic change to the init-time character eater (like, make it increment
the index counter - if there's a problem, it would sit there in an infinite
loop instead of only running 10 times).
Also, make sure we set %dx each time around otherwise the commands
suddenly start trying to work on things like com92 instead of com1.
Make sure comc_init() is only run once.
Cosmetic change to init-time character eater.
should be MD code since one day we'll have to recover pages from deleted
preload data. MI code can't be expected to know how to deal with pmap
internals, assuming it gets done via pmap that is. :-)
- get dependency info from PT_DYNAMIC's DT_NEEDED tags.
- store MODINFOMD_DYNAMIC for the kernel's later use
setenv kernelname when we have it
Fix firstaddr/lastaddr calculation (duh! :-)
Explicitly skip string table with section names in it.
KLD modules are *not* PIC. (Shared libs are pic to avoid relocations
causing copy-on-write, that's irrelevant here).
setenv kernelname when we load it.
Use MODINFO_SSYM/ESYM for each symbol section when (if) there are
more than one being loaded.
Remove Mike's explicit data structures for dependency info. This is
done via DT_NEEDED etc in the dynamic section for now. This may need
to be revisited later on.