for manipulating pcb_flags. These inline functions are very similar to
atomic_set_char(9) and atomic_clear_char(9) but without unnecessary LOCK
prefix for SMP. Add comments about the rationale[1]. Use these functions
wherever possible. Although there are some places where it is not strictly
necessary (e.g., a PCB is copied to create a new PCB), it is done across
the board for sake of consistency. Turn pcb_full_iret into a PCB flag as
it is safe now. Move rarely used fields before pcb_flags and reduce size
of pcb_flags to one byte. Fix some style(9) nits in pcb.h while I am in
the neighborhood.
Reviewed by: kib
Submitted by: kib[1]
MFC after: 2 months
savectx() is only used for panic dump (dumppcb) and kdb (stoppcbs). Thus,
saving additional information does not hurt and it may be even beneficial.
Unfortunately, struct pcb has grown larger to accommodate more data.
Move 512-byte long pcb_user_save to the end of struct pcb while I am here.
- savectx() now saves FPU state unconditionally and copy it to the PCB of
FPU thread if necessary. This gives panic dump and kdb a chance to take
a look at the current FPU state even if the FPU is "supposedly" not used.
- Resuming CPU now unconditionally reinitializes FPU. If the saved FPU
state was irrelevant, it could be in an unknown state.
Suggested by: bde [1]
FPU/SSE hardware. Caller should provide a save area that is chained
into the stack of the areas; pcb save_area for usermode FPU state is
on top. The pcb now contains a pointer to the current FPU saved area,
used during FPUDNA handling and context switches. There is also a
facility to allow the kernel thread to use pcb save_area.
Change the dreaded warnings "npxdna in kernel mode!" into the panics
when FPU usage is not registered.
KPI discussed with: fabient
Tested by: pho, fabient
Hardware provided by: Sentex Communications
MFC after: 1 month
return path only when neither thread was context switched while
executing syscall code nor syscall explicitely modified LDT or MSRs.
Save segment registers in trap handlers before interrupts are enabled,
to not allow context switches to happen before registers are saved.
Use separated byte in pcb for indication of fast/full return, since
pcb_flags are not synchronized with context switches.
The change puts back syscall microbenchmark numbers that were slowed
down after commit of the support for LDT on amd64.
Reviewed by: jeff
Tested (and tested, and tested ...) by: pho
Approved by: re (kensmith)
the kernel on amd64. Fill and read segment registers for mcontext and
signals. Handle traps caused by restoration of the
invalidated selectors.
Implement user-mode creation and manipulation of the process-specific
LDT descriptors for amd64, see sysarch(2).
Implement support for TSS i/o port access permission bitmap for amd64.
Context-switch LDT and TSS. Do not save and restore segment registers on
the context switch, that is handled by kernel enter/leave trampolines
now. Remove segment restore code from the signal trampolines for
freebsd/amd64, freebsd/ia32 and linux/i386 for the same reason.
Implement amd64-specific compat shims for sysarch.
Linuxolator (temporary ?) switched to use gsbase for thread_area pointer.
TODO:
Currently, gdb is not adapted to show segment registers from struct reg.
Also, no machine-depended ptrace command is added to set segment
registers for debugged process.
In collaboration with: pho
Discussed with: peter
Reviewed by: jhb
Linuxolator tested by: dchagin
This code is heavily inspired by Takanori Watanabe's experimental SMP patch
for i386 and large portion was shamelessly cut and pasted from Peter Wemm's
AP boot code.
ABIs:
- Store the FPU initial control word in the pcb for each thread.
- When first using the FPU, load the initial control word after restoring
the clean state if it is not the standard control word.
- Provide a correct control word for Linux/i386 binaries under
FreeBSD/amd64.
- Adjust the control word returned for fpugetregs()/npxgetregs() when a
thread hasn't used the FPU yet to reflect the real initial control
word for the current ABI.
- The Linux/i386 ABI for FreeBSD/i386 now properly sets the right control
word instead of trashing whatever the current state of the FPU is.
Reviewed by: bde
location in GDT where the segment descriptor from pcb_gs32sd is
copied, and the location is in GDT local to CPU.
Noted and reviewed by: peter
MFC after: 1 week
the 32bit images on amd64.
Change the semantic of the PCB_32BIT pcb flag to request the context
switch code to operate on the segment registers. Its previous meaning
of saving or restoring the %gs base offset is assigned to the new
PCB_GS32BIT flag.
FreeBSD 32bit image activator sets the PCB_32BIT flag, while Linux 32bit
emulation sets PCB_32BIT | PCB_GS32BIT.
Reviewed by: peter
MFC after: 2 weeks
a PCB from a trapframe for purposes of unwinding the stack. The PCB
is used as the thread context and all but the thread that entered the
debugger has a valid PCB.
This function can also be used to create a context for the threads
running on the CPUs that have been stopped when the debugger got
entered. This however is not done at the time of this commit.
different context support for 32 vs 64 bit processes. This simply omits
the save/restore of the segment selector registers for non 32 bit
processes. This avoids the rdmsr/rwmsr juggling when restoring %gs
clobbers the kernel msr that holds the gsbase.
However, I suspect it might be better to conditionally do this at
user<->kernel transition where we wouldn't need to do the juggling in the
first place. Or have per-thread extended context save/restore hooks.
load_gs() calls into a single place that is less likely to go wrong.
Eliminate the per-process context switching of MSR_GSBASE, because it
should be constant for a single cpu. Instead, save/restore it during
the loading of the new %gs selector for the new process.
Approved by: re (amd64/* blanket)
stolen from the ia64/ia32 code (indeed there was a repocopy), but I've
redone the MD parts and added and fixed a few essential syscalls. It
is sufficient to run i386 binaries like /bin/ls, /usr/bin/id (dynamic)
and p4. The ia64 code has not implemented signal delivery, so I had
to do that.
Before you say it, yes, this does need to go in a common place. But
we're in a freeze at the moment and I didn't want to risk breaking ia64.
I will sort this out after the freeze so that the common code is in a
common place.
On the AMD64 side, this required adding segment selector context switch
support and some other support infrastructure. The %fs/%gs etc code
is hairy because loading %gs will clobber the kernel's current MSR_GSBASE
setting. The segment selectors are not used by the kernel, so they're only
changed at context switch time or when changing modes. This still needs
to be optimized.
Approved by: re (amd64/* blanket)
value on entry and exit. This isn't as easy as it sounds because when
we recursively trap or interrupt, we have to avoid duplicating the
swapgs instruction or we end up back with the userland %gs. I implemented
this by testing TF_CS to see if we're coming from supervisor mode
already, and check for returning to supervisor. To avoid a race with
interrupts in the brief period after beginning executing the handler and
before the swapgs, convert all trap gates to interrupt gates, and reenable
interrupts immediately after the swapgs. I am not happy with this.
There are other possible ways to do this that should be investigated.
(eg: storing the GS.base MSR value in the trapframe)
Add some sysarch functions to let the userland code get to this.
Approved by: re (blanket amd64/*)
a heavily stripped down FreeBSD/i386 (brutally stripped down actually) to
attempt to get a stable base to start from. There is a lot missing still.
Worth noting:
- The kernel runs at 1GB in order to cheat with the pmap code. pmap uses
a variation of the PAE code in order to avoid having to worry about 4
levels of page tables yet.
- It boots in 64 bit "long mode" with a tiny trampoline embedded in the
i386 loader. This simplifies locore.s greatly.
- There are still quite a few fragments of i386-specific code that have
not been translated yet, and some that I cheated and wrote dumb C
versions of (bcopy etc).
- It has both int 0x80 for syscalls (but using registers for argument
passing, as is native on the amd64 ABI), and the 'syscall' instruction
for syscalls. int 0x80 preserves all registers, 'syscall' does not.
- I have tried to minimize looking at the NetBSD code, except in a couple
of places (eg: to find which register they use to replace the trashed
%rcx register in the syscall instruction). As a result, there is not a
lot of similarity. I did look at NetBSD a few times while debugging to
get some ideas about what I might have done wrong in my first attempt.
remove global variable in_vm86call, set vm86 calling flag in PCB flags.
2.Fix vm86 BIOS calling preempted problem by changing vm86_lock mutex type
from MTX_DEF to MTX_SPIN. vm86pcb is not remembered in thread struct,
when the thread calling vm86 BIOS is preempted by interrupt thread,
and later switching back to the thread would cause incorrect context be
loaded into CPU registers, this leads to kernel crash.
disablement assumptions in kern_fork.c by adding another API call,
cpu_critical_fork_exit(). Cleanup the td_savecrit field by moving it
from MI to MD. Temporarily move cpu_critical*() from <arch>/include/cpufunc.h
to <arch>/<arch>/critical.c (stage-2 will clean this up).
Implement interrupt deferral for i386 that allows interrupts to remain
enabled inside critical sections. This also fixes an IPI interlock bug,
and requires uses of icu_lock to be enclosed in a true interrupt disablement.
This is the stage-1 commit. Stage-2 will occur after stage-1 has stabilized,
and will move cpu_critical*() into its own header file(s) + other things.
This commit may break non-i386 architectures in trivial ways. This should
be temporary.
Reviewed by: core
Approved by: core
enabled in critical sections and streamline critical_enter() and
critical_exit().
This commit allows an architecture to leave interrupts enabled inside
critical sections if it so wishes. Architectures that do not wish to do
this are not effected by this change.
This commit implements the feature for the I386 architecture and provides
a sysctl, debug.critical_mode, which defaults to 1 (use the feature). For
now you can turn the sysctl on and off at any time in order to test the
architectural changes or track down bugs.
This commit is just the first stage. Some areas of the code, specifically
the MACHINE_CRITICAL_ENTER #ifdef'd code, is strictly temporary and will
be cleaned up in the STAGE-2 commit when the critical_*() functions are
moved entirely into MD files.
The following changes have been made:
* critical_enter() and critical_exit() for I386 now simply increment
and decrement curthread->td_critnest. They no longer disable
hard interrupts. When critical_exit() decrements the counter to
0 it effectively calls a routine to deal with whatever interrupts
were deferred during the time the code was operating in a critical
section.
Other architectures are unaffected.
* fork_exit() has been conditionalized to remove MD assumptions for
the new code. Old code will still use the old MD assumptions
in regards to hard interrupt disablement. In STAGE-2 this will
be turned into a subroutine call into MD code rather then hardcoded
in MI code.
The new code places the burden of entering the critical section
in the trampoline code where it belongs.
* I386: interrupts are now enabled while we are in a critical section.
The interrupt vector code has been adjusted to deal with the fact.
If it detects that we are in a critical section it currently defers
the interrupt by adding the appropriate bit to an interrupt mask.
* In order to accomplish the deferral, icu_lock is required. This
is i386-specific. Thus icu_lock can only be obtained by mainline
i386 code while interrupts are hard disabled. This change has been
made.
* Because interrupts may or may not be hard disabled during a
context switch, cpu_switch() can no longer simply assume that
PSL_I will be in a consistent state. Therefore, it now saves and
restores eflags.
* FAST INTERRUPT PROVISION. Fast interrupts are currently deferred.
The intention is to eventually allow them to operate either while
we are in a critical section or, if we are able to restrict the
use of sched_lock, while we are not holding the sched_lock.
* ICU and APIC vector assembly for I386 cleaned up. The ICU code
has been cleaned up to match the APIC code in regards to format
and macro availability. Additionally, the code has been adjusted
to deal with deferred interrupts.
* Deferred interrupts use a per-cpu boolean int_pending, and
masks ipending, spending, and fpending. Being per-cpu variables
it is not currently necessary to lock; bus cycles modifying them.
Note that the same mechanism will enable preemption to be
incorporated as a true software interrupt without having to
further hack up the critical nesting code.
* Note: the old critical_enter() code in kern/kern_switch.c is
currently #ifdef to be compatible with both the old and new
methodology. In STAGE-2 it will be moved entirely to MD code.
Performance issues:
One of the purposes of this commit is to enhance critical section
performance, specifically to greatly reduce bus overhead to allow
the critical section code to be used to protect per-cpu caches.
These caches, such as Jeff's slab allocator work, can potentially
operate very quickly making the effective savings of the new
critical section code's performance very significant.
The second purpose of this commit is to allow architectures to
enable certain interrupts while in a critical section. Specifically,
the intention is to eventually allow certain FAST interrupts to
operate rather then defer.
The third purpose of this commit is to begin to clean up the
critical_enter()/critical_exit()/cpu_critical_enter()/
cpu_critical_exit() API which currently has serious cross pollution
in MI code (in fork_exit() and ast() for example).
The fourth purpose of this commit is to provide a framework that
allows kernel-preempting software interrupts to be implemented
cleanly. This is currently used for two forward interrupts in I386.
Other architectures will have the choice of using this infrastructure
or building the functionality directly into critical_enter()/
critical_exit().
Finally, this commit is designed to greatly improve the flexibility
of various architectures to manage critical section handling,
software interrupts, preemption, and other highly integrated
architecture-specific details.
we are required to do if we let user processes use the extra 128 bit
registers etc.
This is the base part of the diff I got from:
http://www.issei.org/issei/FreeBSD/sse.html
I believe this is by: Mr. SUZUKI Issei <issei@issei.org>
SMP support apparently by: Takekazu KATO <kato@chino.it.okayama-u.ac.jp>
Test code by: NAKAMURA Kazushi <kaz@kobe1995.net>, see
http://kobe1995.net/~kaz/FreeBSD/SSE.en.html
I have fixed a couple of style(9) deviations. I have some followup
commits to fix a couple of non-style things.
simpler for npx exceptions that start as traps (no assembly required...)
and works better for npx exceptions that start as interrupts (there is
no longer a problem for nested interrupts).
Submitted by: original (pre-SMPng) version by luoqi
depend on this. The linux ABI emulator tries to use it for some linux
binaries too. VM86 had a bigger cost than this and it was made default
a while ago.
Reviewed by: jhb, imp
in mi_switch() just before calling cpu_switch() so that the first switch
after a resched request will satisfy the request.
- While I'm at it, move a few things into mi_switch() and out of
cpu_switch(), specifically set the p_oncpu and p_lastcpu members of
proc in mi_switch(), and handle the sched_lock state change across a
context switch in mi_switch().
- Since cpu_switch() no longer handles the sched_lock state change, we
have to setup an initial state for sched_lock in fork_exit() before we
release it.
include:
* Mutual exclusion is used instead of spl*(). See mutex(9). (Note: The
alpha port is still in transition and currently uses both.)
* Per-CPU idle processes.
* Interrupts are run in their own separate kernel threads and can be
preempted (i386 only).
Partially contributed by: BSDi (BSD/OS)
Submissions by (at least): cp, dfr, dillon, grog, jake, jhb, sheldonh
is an application space macro and the applications are supposed to be free
to use it as they please (but cannot). This is consistant with the other
BSD's who made this change quite some time ago. More commits to come.