IEEE80211_MESH_RTCMD_ADD was invoking memcmp() to validate the
supplied address directly on the user pointer rather than first doing
a copyin() and validating the copied value.
IEEE80211_MESH_RTCMD_DELETE was passing the user pointer directly to
ieee80211_mesh_rt_del() rather than copying the user buffer into a
temporary kernel buffer.
Reviewed by: brooks, kib
Obtained from: CheriBSD
MFC after: 2 weeks
Sponsored by: DARPA
Differential Revision: https://reviews.freebsd.org/D24562
r357614 added CTLFLAG_NEEDGIANT to make it easier to find nodes that are
still not MPSAFE (or already are but aren’t properly marked).
Use it in preparation for a general review of all nodes.
This is non-functional change that adds annotations to SYSCTL_NODE and
SYSCTL_PROC nodes using one of the soon-to-be-required flags.
Mark all low hanging fruits as MPSAFE.
Reviewed by: markj
Approved by: kib (mentor, blanket)
Differential Revision: https://reviews.freebsd.org/D23626
- Perform ifp mismatch checks (to determine if a send tag is allocated
for a different ifp than the one the packet is being output on), in
ip_output() and ip6_output(). This avoids sending packets with send
tags to ifnet drivers that don't support send tags.
Since we are now checking for ifp mismatches before invoking
if_output, we can now try to allocate a new tag before invoking
if_output sending the original packet on the new tag if allocation
succeeds.
To avoid code duplication for the fragment and unfragmented cases,
add ip_output_send() and ip6_output_send() as wrappers around
if_output and nd6_output_ifp, respectively. All of the logic for
setting send tags and dealing with send tag-related errors is done
in these wrapper functions.
For pseudo interfaces that wrap other network interfaces (vlan and
lagg), wrapper send tags are now allocated so that ip*_output see
the wrapper ifp as the ifp in the send tag. The if_transmit
routines rewrite the send tags after performing an ifp mismatch
check. If an ifp mismatch is detected, the transmit routines fail
with EAGAIN.
- To provide clearer life cycle management of send tags, especially
in the presence of vlan and lagg wrapper tags, add a reference count
to send tags managed via m_snd_tag_ref() and m_snd_tag_rele().
Provide a helper function (m_snd_tag_init()) for use by drivers
supporting send tags. m_snd_tag_init() takes care of the if_ref
on the ifp meaning that code alloating send tags via if_snd_tag_alloc
no longer has to manage that manually. Similarly, m_snd_tag_rele
drops the refcount on the ifp after invoking if_snd_tag_free when
the last reference to a send tag is dropped.
This also closes use after free races if there are pending packets in
driver tx rings after the socket is closed (e.g. from tcpdrop).
In order for m_free to work reliably, add a new CSUM_SND_TAG flag in
csum_flags to indicate 'snd_tag' is set (rather than 'rcvif').
Drivers now also check this flag instead of checking snd_tag against
NULL. This avoids false positive matches when a forwarded packet
has a non-NULL rcvif that was treated as a send tag.
- cxgbe was relying on snd_tag_free being called when the inp was
detached so that it could kick the firmware to flush any pending
work on the flow. This is because the driver doesn't require ACK
messages from the firmware for every request, but instead does a
kind of manual interrupt coalescing by only setting a flag to
request a completion on a subset of requests. If all of the
in-flight requests don't have the flag when the tag is detached from
the inp, the flow might never return the credits. The current
snd_tag_free command issues a flush command to force the credits to
return. However, the credit return is what also frees the mbufs,
and since those mbufs now hold references on the tag, this meant
that snd_tag_free would never be called.
To fix, explicitly drop the mbuf's reference on the snd tag when the
mbuf is queued in the firmware work queue. This means that once the
inp's reference on the tag goes away and all in-flight mbufs have
been queued to the firmware, tag's refcount will drop to zero and
snd_tag_free will kick in and send the flush request. Note that we
need to avoid doing this in the middle of ethofld_tx(), so the
driver grabs a temporary reference on the tag around that loop to
defer the free to the end of the function in case it sends the last
mbuf to the queue after the inp has dropped its reference on the
tag.
- mlx5 preallocates send tags and was using the ifp pointer even when
the send tag wasn't in use. Explicitly use the ifp from other data
structures instead.
- Sprinkle some assertions in various places to assert that received
packets don't have a send tag, and that other places that overwrite
rcvif (e.g. 802.11 transmit) don't clobber a send tag pointer.
Reviewed by: gallatin, hselasky, rgrimes, ae
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D20117
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.
The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
No functional change intended.
When doing AMSDU offload, the driver (for now!) presents 802.11 frames with
the same sequence number and crypto sequence number / IV values up to the stack.
But, this will trip afoul over the sequence number detection.
So drivers now have a way to signify that a frame is part of an offloaded
AMSDU group, so we can just ensure that we pass those frames up to the
stack.
The logic will be a bit messy - the TL;DR will be that if it's part of
the previously seen sequence number then it belongs in the same burst.
But if we get a repeat of the same sequence number (eg we sent an ACK
but the receiver didn't hear it) then we shouldn't be passing those frames
up. So, we can't just say "all subframes go up", we need to track
whether we've seen the end of a burst of frames for the given sequence
number or not, so we know whether to actually pass them up or not.
The first part of doing all of this is to ensure the ieee80211_rx_stats
struct is available in the RX sequence number check path and the
RX ampdu reorder path. So, start by passing the pointer into these
functions to avoid doing another lookup.
The actual support will come in a subsequent commit once I know the
functionality actually works!
ieee80211.c:
add_chanlist(): 'error' variable will be uninitialized if
no channels were passed; return '0' instead.
ieee80211_action.c:
ieee80211_send_action_register(): drop 'break' after 'return'.
ieee80211_crypto_none.c:
none_encap(): 'keyid' is not used in non-debug builds; hide it
behind IEEE80211_DEBUG ifdef.
ieee80211_freebsd.c:
Staticize global 'ieee80211_debug' variable (used only in this
file).
ieee80211_hostap.c:
Fix a comment (associatio -> association).
ieee80211_ht.c:
ieee80211_setup_htrates(): initialize 'maxunequalmcs' to 0 to mute
compiler warning.
ieee80211_hwmp.c:
hwmp_recv_preq(): copy 'prep' between conditional blocks to fix
-Wshadow warning.
ieee80211_mesh.c:
mesh_newstate(): remove duplicate 'ni' definition.
mesh_recv_group_data(): fix -Wempty-body warning in non-debug
builds.
ieee80211_phy.c:
ieee80211_compute_duration(): remove 'break' after panic() call.
ieee80211_scan_sta.c:
Hide some TDMA-specific macros under IEEE80211_SUPPORT_TDMA ifdef
adhoc_pick_bss(): remove 'ic' pointer redefinition.
ieee80211_sta.c:
sta_beacon_miss(): remove 'ic' pointer redefinition.
ieee80211_superg.c:
superg_ioctl_set80211(): drop unreachable return.
Tested with clang 3.8.0, gcc 4.6.4 and gcc 5.3.0.
Hide subtype mask/shift (which is used for index calculation
in ieee80211_mgt_subtype_name[] array) in function call.
Tested with RTL8188CUS, STA mode.
Reviewed by: adrian
Differential Revision: https://reviews.freebsd.org/D5369
le*dec / le*enc functions.
Replace net80211 specific macros with system-wide bytestream
encoding/decoding functions:
- LE_READ_2 -> le16dec
- LE_READ_4 -> le32dec
- LE_WRITE_2 -> le16enc
- LE_WRITE_4 -> le32enc
+ drop ieee80211_input.h include, where it was included for these
operations only.
Reviewed by: adrian
Differential Revision: https://reviews.freebsd.org/D6030
- Add definitions for Timing Advertisement and Control Wrapper frames.
- Refresh ieee80211_mgt_subtype_name and ieee80211_ctl_subtype_name
arrays.
- Count Timing Advertisement frames as discarded management frames in all
modes.
Approved by: adrian (mentor)
Differential Revision: https://reviews.freebsd.org/D5331
Move error handling into ieee80211_parent_xmitpkt() instead of spreading it
between functions.
Submitted by: <s3erios@gmail.com>
Differential Revision: https://reviews.freebsd.org/D3772
DragonflyBSD uses the FreeBSD wireless stack and drivers. Their malloc()
API is named differently, so they don't have userland/kernel symbol
clashes like we do (think libuinet.)
So, to make it easier for them and to port to other BSDs/other operating
systems, start hiding the malloc specific bits behind defines in
ieee80211_freebsd.h.
DragonflyBSD can now put these portability defines in their local
ieee80211_dragonflybsd.h.
This should be a great big no-op for everyone running wifi.
TODO:
* kill M_WAITOK - some platforms just don't want you to use it
* .. and/or handle it returning NULL rather than waiting forever.
* MALLOC_DEFINE() ?
* Migrate the well-known malloc names (eg M_TEMP) to net80211
namespace defines.
Smart NICs with firmware (eg wpi, iwn, the new atheros parts, the intel 7260
series, etc) support doing a lot of things in firmware. This includes but
isn't limited to things like scanning, sending probe requests and receiving
probe responses. However, net80211 doesn't know about any of this - it still
drives the whole scan/probe infrastructure itself.
In order to move towards suppoting smart NICs, the receive path needs to
know about the channel/details for each received packet. In at least
the iwn and 7260 firmware (and I believe wpi, but I haven't tried it yet)
it will do the scanning, power-save and off-channel buffering for you -
all you need to do is handle receiving beacons and probe responses on
channels that aren't what you're currently on. However the whole receive
path is peppered with ic->ic_curchan and manual scan/powersave handling.
The beacon parsing code also checks ic->ic_curchan to determine if the
received beacon is on the correct channel or not.[1]
So:
* add freq/ieee values to ieee80211_rx_stats;
* change ieee80211_parse_beacon() to accept the 'current' channel
as an argument;
* modify the iv_input() and iv_recv_mgmt() methods to include the rx_stats;
* add a new method - ieee80211_lookup_channel_rxstats() - that looks up
a channel based on the contents of ieee80211_rx_stats;
* if it exists, use it in the mgmt path to switch the current channel
(which still defaults to ic->ic_curchan) over to something determined
by rx_stats.
This is enough to kick-start scan offload support in the Intel 7260
driver that Rui/I are working on. It also is a good start for scan
offload support for a handful of existing NICs (wpi, iwn, some USB
parts) and it'll very likely dramatically improve stability/performance
there. It's not the whole thing - notably, we don't need to do powersave,
we should not scan all channels, and we should leave probe request sending
to the firmware and not do it ourselves. But, this allows for continued
development on the above features whilst actually having a somewhat
working NIC.
TODO:
* Finish tidying up how the net80211 input path works.
Right now ieee80211_input / ieee80211_input_all act as the top-level
that everything feeds into; it should change so the MIMO input routines
are those and the legacy routines are phased out.
* The band selection should be done by the driver, not by the net80211
layer.
* ieee80211_lookup_channel_rxstats() only determines 11b or 11g channels
for now - this is enough for scanning, but not 100% true in all cases.
If we ever need to handle off-channel scan support for things like
static-40MHz or static-80MHz, or turbo-G, or half/quarter rates,
then we should extend this.
[1] This is a side effect of frequency-hopping and CCK modes - you
can receive beacons when you think you're on a different channel.
In particular, CCK (which is used by the low 11b rates, eg beacons!)
is decodable from adjacent channels - just at a low SNR.
FH is a side effect of having the hardware/firmware do the frequency
hopping - it may pick up beacons transmitted from other FH networks
that are in a different phase of hopping frequencies.
years for head. However, it is continuously misused as the mpsafe argument
for callout_init(9). Deprecate the flag and clean up callout_init() calls
to make them more consistent.
Differential Revision: https://reviews.freebsd.org/D2613
Reviewed by: jhb
MFC after: 2 weeks
results.
Right now the scan infrastructure assumes the channel is under net80211
control, and that when receiving beacon frames for scanning, the
current channel is indeed what ic_curchan is set to.
But firmware NICs with firmware scan support need more than this -
they can do background scans whilst hiding the off-channel behaviour
from net80211. Ie, net80211 still thinks everything is associated
and on the main channel, but it's getting scan results from all the
background traffic.
However sta_add() pays attention to ic_curchan and discards scan
results that aren't on the right channel. CCK beacon frames can be
decoded from adjacent channels so the receive path and sta_add
discard these as appropriate. This is fine for software scanning
like for ath(4), but not for firmware NICs. So with those, the
whole concept of background firmware scanning won't work without
major hacks (eg, overriding ic_curchan before calling the beacon
input / scan add.)
As part of my scan overhaul, modify sta_add() and the scan_add()
APIs to take an explicit current channel. The normal RX path
will set it to ic_curchan so it's a no-op. However, drivers may
decide to (eventually!) override the scan method to set the
"right" current channel based on what the firmware reports the
scan state is.
So for example, iwn, rsu and other NICs will eventually do this:
* driver issues scan start firmware command;
* firmware sends a "scan start on channel X" notify;
* firmware sends a bunch of beacon RX's as part of
the scan results;
* .. and the driver will replace scan_add() curchan with channel X,
so scan results are correct.
* firmware sends a "scan start on channel Y" notify;
* firmware sends more beacons...
* .. the driver replaces scan_add() curchan with channel Y.
Note:
* Eventually, net80211 should eventually grow the idea of a per-packet
current channel. It's possible in various modes (eg WAVE, P2P, etc)
that individual frames can come in from different channels and that
is under firmware control rather than driver/net80211 control, so
we should support that.
- Wrong integer type was specified.
- Wrong or missing "access" specifier. The "access" specifier
sometimes included the SYSCTL type, which it should not, except for
procedural SYSCTL nodes.
- Logical OR where binary OR was expected.
- Properly assert the "access" argument passed to all SYSCTL macros,
using the CTASSERT macro. This applies to both static- and dynamically
created SYSCTLs.
- Properly assert the the data type for both static and dynamic
SYSCTLs. In the case of static SYSCTLs we only assert that the data
pointed to by the SYSCTL data pointer has the correct size, hence
there is no easy way to assert types in the C language outside a
C-function.
- Rewrote some code which doesn't pass a constant "access" specifier
when creating dynamic SYSCTL nodes, which is now a requirement.
- Updated "EXAMPLES" section in SYSCTL manual page.
MFC after: 3 days
Sponsored by: Mellanox Technologies
The origin of WEP comes from IEEE Std 802.11-1997 where it defines
whether the frame body of MAC frame has been encrypted using WEP
algorithm or not.
IEEE Std. 802.11-2007 changes WEP to Protected Frame, indicates
whether the frame is protected by a cryptographic encapsulation
algorithm.
Reviewed by: adrian, rpaulo
to this event, adding if_var.h to files that do need it. Also, include
all includes that now are included due to implicit pollution via if_var.h
Sponsored by: Netflix
Sponsored by: Nginx, Inc.
upper layer(s).
This eliminates the if_snd queue from net80211. Yay!
This unfortunately has a few side effects:
* It breaks ALTQ to net80211 for now - sorry everyone, but fixing
parallelism and eliminating the if_snd queue is more important
than supporting this broken traffic scheduling model. :-)
* There's no VAP and IC flush methods just yet - I think I'll add
some NULL methods for now just as placeholders.
* It reduces throughput a little because now net80211 will drop packets
rather than buffer them if the driver doesn't do its own buffering.
This will be addressed in the future as I implement per-node software
queues.
Tested:
* ath(4) and iwn(4) in STA operation
the normal and the mesh transmit paths can use.
The API is a bit horrible because it both consumes the mbuf and frees
the node reference regardless of whether it succeeds or not.
It's a hold-over from how the code behaves; it'd be nice to have it
not free the node reference / mbuf if TX fails and let the caller
decide what to do.
This patchset implements a new TX lock, covering both the per-VAP (and
thus per-node) TX locking and the serialisation through to the underlying
physical device.
This implements the hard requirement that frames to the underlying physical
device are scheduled to the underlying device in the same order that they
are processed at the VAP layer. This includes adding extra encapsulation
state (such as sequence numbers and CCMP IV numbers.) Any order mismatch
here will result in dropped packets at the receiver.
There are multiple transmit contexts from the upper protocol layers as well
as the "raw" interface via the management and BPF transmit paths.
All of these need to be correctly serialised or bad behaviour will result
under load.
The specifics:
* add a new TX IC lock - it will eventually just be used for serialisation
to the underlying physical device but for now it's used for both the
VAP encapsulation/serialisation and the physical device dispatch.
This lock is specifically non-recursive.
* Methodize the parent transmit, vap transmit and ic_raw_xmit function
pointers; use lock assertions in the parent/vap transmit routines.
* Add a lock assertion in ieee80211_encap() - the TX lock must be held
here to guarantee sensible behaviour.
* Refactor out the packet sending code from ieee80211_start() - now
ieee80211_start() is just a loop over the ifnet queue and it dispatches
each VAP packet send through ieee80211_start_pkt().
Yes, I will likely rename ieee80211_start_pkt() to something that
better reflects its status as a VAP packet transmit path. More on
that later.
* Add locking around the management and BAR TX sending - to ensure that
encapsulation and TX are done hand-in-hand.
* Add locking in the mesh code - again, to ensure that encapsulation
and mesh transmit are done hand-in-hand.
* Add locking around the power save queue and ageq handling, when
dispatching to the parent interface.
* Add locking around the WDS handoff.
* Add a note in the mesh dispatch code that the TX path needs to be
re-thought-out - right now it's doing a direct parent device transmit
rather than going via the vap layer. It may "work", but it's likely
incorrect (as it bypasses any possible per-node power save and
aggregation handling.)
Why not a per-VAP or per-node lock?
Because in order to ensure per-VAP ordering, we'd have to hold the
VAP lock across parent->if_transmit(). There are a few problems
with this:
* There's some state being setup during each driver transmit - specifically,
the encryption encap / CCMP IV setup. That should eventually be dragged
back into the encapsulation phase but for now it lives in the driver TX path.
This should be locked.
* Two drivers (ath, iwn) re-use the node->ni_txseqs array in order to
allocate sequence numbers when doing transmit aggregation. This should
also be locked.
* Drivers may have multiple frames queued already - so when one calls
if_transmit(), it may end up dispatching multiple frames for different
VAPs/nodes, each needing a different lock when handling that particular
end destination.
So to be "correct" locking-wise, we'd end up needing to grab a VAP or
node lock inside the driver TX path when setting up crypto / AMPDU sequence
numbers, and we may already _have_ a TX lock held - mostly for the same
destination vap/node, but sometimes it'll be for others. That could lead
to LORs and thus deadlocks.
So for now, I'm sticking with an IC TX lock. It has the advantage of
papering over the above and it also has the added advantage that I can
assert that it's being held when doing a parent device transmit.
I'll look at splitting the locks out a bit more later on.
General outstanding net80211 TX path issues / TODO:
* Look into separating out the VAP serialisation and the IC handoff.
It's going to be tricky as parent->if_transmit() doesn't give me the
opportunity to split queuing from driver dispatch. See above.
* Work with monthadar to fix up the mesh transmit path so it doesn't go via
the parent interface when retransmitting frames.
* Push the encryption handling back into the driver, if it's at all
architectually sane to do so. I know it's possible - it's what mac80211
in Linux does.
* Make ieee80211_raw_xmit() queue a frame into VAP or parent queue rather
than doing a short-cut direct into the driver. There are QoS issues
here - you do want your management frames to be encapsulated and pushed
onto the stack sooner than the (large, bursty) amount of data frames
that are queued. But there has to be a saner way to do this.
* Fragments are still broken - drivers need to be upgraded to an if_transmit()
implementation and then fragmentation handling needs to be properly fixed.
Tested:
* STA - AR5416, AR9280, Intel 5300 abgn wifi
* Hostap - AR5416, AR9160, AR9280
* Mesh - some testing by monthadar@, more to come.
since the former is defined everywhere. This cuts off some code not
necessary on non strict aligment arches.
Reviewed by: adrian
Sponsored by: Nginx, Inc.
* Add the superg.h header to allow ieee80211_check_ff() to work
* Since the assert stuff creates assertions based on line numbers and there
was a conflict, just nudge things down a bit.
This is a code re-write. ic->raw_xmit need a pointer to ieee80211_node
for the destination node (da). I have reorganized the code so that
a pointer to the da node is searched for in the end & in one place.
* Make mesh_find_txnode public to be used by HWMP, renamed to
ieee80211_mesh_finx_txnode;
* changed the argument from ieee80211_node to ieee80211vap for all
hwmp_send_* functions;
* removed the 'sa' argument from hwmp_send_* functions as all HWMP frames
have the source address equal to vap->iv_myaddr;
* Modified hwmp_send_action so that if da is MULTCAST ni=vap->iv_bss
otherwise we called ieee80211_mesh_find_txnode. Also no need to hold
a reference in this functions if da is not MULTICAST as by finding the
node it became referenced in ieee80211_find_txnode;
Approved by: adrian (mentor)
* Modified mesh_find_txnode to be able to handle proxy marked entries by
recursively calling itself to find the txnode towards the active mesh gate;
* Mesh Gate: Added a new function that transmits data frames
similar to ieee80211_start;
* Modified ieee80211_mesh_forward_to_gates so that:
+ Frames are duplicated and sent to each valid Mesh Gate;
+ Route is marked invalid before return of function, this is
because we dont know yet which Mesh Gate is we will use;
Approved by: adrian (mentor)
* Send frames that have no path to a known valid Mesh Gate;
* Added the function ieee80211_mesh_forward_to_gates that sends the frame
to the first found Mesh Gate in the forwarding information;
* If we try to discover again while we are discovering queue frame,
the discovery callout will send the frames either to mesh gates
or discards them silently;
* Queue frame also if we try to discover to frequently;
Approved by: adrian (mentor)
* Add function ieee80211_mesh_mark_gate in ieee80211_mesh.h;
* When received a proactive PREQ or RANN with corresponding mesh gate
flag set, create a new entry in the known mesh gate list;
Approved by: adrian (mentor)
* Modified mesh_recv_action_meshgate to do following:
+ if mesh STA already knows the mesh gate of the recevied GANN frame
+ if mesh gate is know, check seq number according to 802.11 standard
+ if mesh gate is not know, add it to the list of known mesh gates
+ if forwarding is enabled and ttl >= 1 then propagate the GANN frame;
* Declare a new malloc type M_80211_MESH_GT_RT;
* Declare a struct to store GANN information, ieee80211_mesh_gate_route. And
add it as a TAILQ list to ieee80211_mesh_state;
Approved by: adrian (mentor)
A Mesh Gate should transmit a Mesh Action frame containing
ieee80211_meshgann_ie as its only information element periodically
every ieee80211_mesh_gateint ms. Unless the mesh gate is also configure
as a ROOT, then these frames should not be send.
This is according to 802.11 2012 standard;
* Introduce new SYSCTL net.wlan.mesh.gateint, with 10s default;
* Add two new functions mesh_gatemode_setup and mesh_gatemode_cb. This
is similar to how HWMP setups up a callout;
* Add two new action handlers mesh_recv_action_meshgate and
mesh_send_action_meshgate;
* Added ieee80211_add_meshgate to ieee80211_mesh.h;
* Modified mesh_send_action to look similar to hwmp_send_action. This is
because we need to send out broadcast management frames.
* Introduced a new flag for mesh state IEEE80211_MESHFLAGS_ROOT. This flag
is now set by HWMP code when a mesh STA is configured as a ROOT. This
is then checked by mesh_gatemode_cb before scheduling a new callout;
* Added to new field to ieee80211_mesh_state:
+ struct callout ms_gatetimer
+ ieee80211_mesh_seq ms_gateseq;
Approved by: adrian (mentor)
This problem happens when using ACL policy to filter mesh STA
but two nodes have different policy. Then one of them will try to
peer all the time. This can also help if for any reason one of the
peering mesh STA have problems sending/receiving peer frames.
* Modified struct ieee80211_node to include two new fields:
+ struct callout ni_mlhtimer /* link mesh backoff timer */
+ uint8_t ni_mlhcnt /* link mesh holding counter */
* Added two new sysctl (check sysctl -d for more info):
+ net.wlan.mesh.backofftimeout=5000
+ net.wlan.mesh.maxholding=2;
* When receiving a beacon and we are in IEEE80211_NODE_MESH_IDLE
check if ni_mlhcnt >= ieee80211_mesh_maxholding, if so do not do anything;
* In mesh_peer_timeout_cb when transitioning from IEEE80211_NODE_MESH_HOLDING
to IEEE80211_NODE_MESH_IDLE increment ni_mlhcnt, and eventually start
ieee80211_mesh_backofftimeout;
Approved by: adrian (mentor)
* Added a new discovery flag IEEE80211_MESHRT_FLAGS_DISCOVER;
* Modified ieee80211_ioctl.h to include IEEE80211_MESHRT_FLAGS_DISCOVER;
* Added hwmp_rediscover_cb, which will be called by a timeout to do
rediscovery if we have not reach max number of preq discovery;
* Modified hwmp_discover to setup a callout for path rediscovery;
* Added to ieee80211req_mesh_route to have a back pointer to ieee80211vap
for the discovery callout context;
* Modified mesh_rt_add_locked arguemnt from ieee80211_mesh_state to
ieee80211vap, this because we have to initialize the above back pointer;
Approved by: adrian