Making uio_impl.h the common header interface between Linux and FreeBSD
so both OS's can share a common header file. This also helps reduce code
duplication for zfs_uio_t for each OS.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Brian Atkinson <batkinson@lanl.gov>
Closes#11622
Each zfs ioctl that changes on-disk state (e.g. set property, create
snapshot, destroy filesystem) is recorded in the zpool history, and is
printed by `zpool history -i`.
For performance diagnostic purposes, it would be useful to know how long
each of these ioctls took to run. This commit adds that functionality,
with a new `ZPOOL_HIST_ELAPSED_NS` member of the history nvlist.
Additionally, the time recorded in this history log is currently the
time that the history record is written to disk. But in many cases (CLI
args logging and ioctl logging), this happens asynchronously,
potentially many seconds after the operation completed. This commit
changes the timestamp to reflect when the history event was created,
rather than when it was written to disk.
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11440
The fnvlist_lookup_boolean_value() function should not be used
to check the force argument since it's optional. It may not be
provided or may have been created with the wrong flags.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#11281Closes#11284
For encrypted receives, where user accounting is initially disabled on
creation, both 'zfs userspace' and 'zfs groupspace' fails with
EOPNOTSUPP: this is because dmu_objset_id_quota_upgrade_cb() forgets to
set OBJSET_FLAG_USERACCOUNTING_COMPLETE on the objset flags after a
successful dmu_objset_space_upgrade().
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes#9501Closes#9596
The output of ZFS channel programs is logged on-disk in the zpool
history, and printed by `zpool history -i`. Channel programs can use
10MB of memory by default, and up to 100MB by using the `zfs program -m`
flag. Therefore their output can be up to some fraction of 100MB.
In addition to being somewhat wasteful of the limited space reserved for
the pool history (which for large pools is 1GB), in extreme cases this
can result in a failure of `ASSERT(length <= DMU_MAX_ACCESS);` in
`dmu_buf_hold_array_by_dnode()`.
This commit limits the output size that will be logged to 1MB. Larger
outputs will not be logged, instead a entry will be logged indicating
the size of the omitted output.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11194
In C, const indicates to the reader that mutation will not occur.
It can also serve as a hint about ownership.
Add const in a few places where it makes sense.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <freqlabs@FreeBSD.org>
Closes#10997
This causes "zfs send -vt ..." to fail with:
cannot resume send: Unknown error 1030
It turns out that some of the name/value pairs in the verification
list for zfs_ioc_send_space(), zfs_keys_send_space, had the wrong
name, so the ioctl got kicked out in zfs_check_input_nvpairs().
Update the names accordingly.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: John Poduska <jpoduska@datto.com>
Closes#10978
nvlist does allow us to support different data types and systems.
To encapsulate user data to/from nvlist, the libzfsbootenv library is
provided.
Reviewed-by: Arvind Sankar <nivedita@alum.mit.edu>
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Signed-off-by: Toomas Soome <tsoome@me.com>
Closes#10774
Duplicate io and checksum ereport events can misrepresent that
things are worse than they seem. Ideally the zpool events and the
corresponding vdev stat error counts in a zpool status should be
for unique errors -- not the same error being counted over and over.
This can be demonstrated in a simple example. With a single bad
block in a datafile and just 5 reads of the file we end up with a
degraded vdev, even though there is only one unique error in the pool.
The proposed solution to the above issue, is to eliminate duplicates
when posting events and when updating vdev error stats. We now save
recent error events of interest when posting events so that we can
easily check for duplicates when posting an error.
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes#10861
Allow to rename file systems without remounting if it is possible.
It is possible for file systems with 'mountpoint' property set to
'legacy' or 'none' - we don't have to change mount directory for them.
Currently such file systems are unmounted on rename and not even
mounted back.
This introduces layering violation, as we need to update
'f_mntfromname' field in statfs structure related to mountpoint (for
the dataset we are renaming and all its children).
In my opinion it is worth it, as it allow to update FreeBSD in even
cleaner way - in ZFS-only configuration root file system is ZFS file
system with 'mountpoint' property set to 'legacy'. If root dataset is
named system/rootfs, we can snapshot it (system/rootfs@upgrade), clone
it (system/oldrootfs), update FreeBSD and if it doesn't boot we can
boot back from system/oldrootfs and rename it back to system/rootfs
while it is mounted as /. Before it was not possible, because
unmounting / was not possible.
Authored by: Pawel Jakub Dawidek <pjd@FreeBSD.org>
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported by: Matt Macy <mmacy@freebsd.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10839
This PR adds two new compression types, based on ZStandard:
- zstd: A basic ZStandard compression algorithm Available compression.
Levels for zstd are zstd-1 through zstd-19, where the compression
increases with every level, but speed decreases.
- zstd-fast: A faster version of the ZStandard compression algorithm
zstd-fast is basically a "negative" level of zstd. The compression
decreases with every level, but speed increases.
Available compression levels for zstd-fast:
- zstd-fast-1 through zstd-fast-10
- zstd-fast-20 through zstd-fast-100 (in increments of 10)
- zstd-fast-500 and zstd-fast-1000
For more information check the man page.
Implementation details:
Rather than treat each level of zstd as a different algorithm (as was
done historically with gzip), the block pointer `enum zio_compress`
value is simply zstd for all levels, including zstd-fast, since they all
use the same decompression function.
The compress= property (a 64bit unsigned integer) uses the lower 7 bits
to store the compression algorithm (matching the number of bits used in
a block pointer, as the 8th bit was borrowed for embedded block
pointers). The upper bits are used to store the compression level.
It is necessary to be able to determine what compression level was used
when later reading a block back, so the concept used in LZ4, where the
first 32bits of the on-disk value are the size of the compressed data
(since the allocation is rounded up to the nearest ashift), was
extended, and we store the version of ZSTD and the level as well as the
compressed size. This value is returned when decompressing a block, so
that if the block needs to be recompressed (L2ARC, nop-write, etc), that
the same parameters will be used to result in the matching checksum.
All of the internal ZFS code ( `arc_buf_hdr_t`, `objset_t`,
`zio_prop_t`, etc.) uses the separated _compress and _complevel
variables. Only the properties ZAP contains the combined/bit-shifted
value. The combined value is split when the compression_changed_cb()
callback is called, and sets both objset members (os_compress and
os_complevel).
The userspace tools all use the combined/bit-shifted value.
Additional notes:
zdb can now also decode the ZSTD compression header (flag -Z) and
inspect the size, version and compression level saved in that header.
For each record, if it is ZSTD compressed, the parameters of the decoded
compression header get printed.
ZSTD is included with all current tests and new tests are added
as-needed.
Per-dataset feature flags now get activated when the property is set.
If a compression algorithm requires a feature flag, zfs activates the
feature when the property is set, rather than waiting for the first
block to be born. This is currently only used by zstd but can be
extended as needed.
Portions-Sponsored-By: The FreeBSD Foundation
Co-authored-by: Allan Jude <allanjude@freebsd.org>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Co-authored-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Co-authored-by: Michael Niewöhner <foss@mniewoehner.de>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Signed-off-by: Allan Jude <allanjude@freebsd.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Signed-off-by: Michael Niewöhner <foss@mniewoehner.de>
Closes#6247Closes#9024Closes#10277Closes#10278
We limit the size of nvlists passed to the kernel so a user cannot make
the kernel do an unreasonably large allocation. On FreeBSD this limit
was 128 kiB, which turns out to be a bit too small when doing some
operations involving a large number of datasets or snapshots, for
example replication.
Make this limit tunable, with a platform-specific auto default.
Linux keeps its limit at KMALLOC_MAX_SIZE. FreeBSD uses 1/4 of the
system limit on user wired memory, which allows it to scale depending
on system configuration.
Reviewed-by: Matt Macy <mmacy@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <freqlabs@FreeBSD.org>
Issue #6572Closes#10706
The GRUB restrictions are based around the pool's bootfs property.
Given the current situation where GRUB is not staying current with
OpenZFS pool features, having either a non-ZFS /boot or a separate
pool with limited features are pretty much the only long-term answers
for GRUB support. Only the second case matters in this context. For
the restrictions to be useful, the bootfs property would have to be set
on the boot pool, because that is where we need the restrictions, as
that is the pool that GRUB reads from. The documentation for bootfs
describes it as pointing to the root pool. That's also how it's used in
the initramfs. ZFS does not allow setting bootfs to point to a dataset
in another pool. (If it did, it'd be difficult-to-impossible to enforce
these restrictions cross-pool). Accordingly, bootfs is pretty much
useless for GRUB scenarios moving forward.
Even for users who have only one pool, the existing restrictions for
GRUB are incomplete. They don't prevent you from enabling the
unsupported checksums, for example. For that reason, I have ripped out
all the GRUB restrictions.
A little longer-term, I think extending the proposed features=portable
system to define a features=grub is a much more useful approach. The
user could set that on the boot pool at creation, and things would
Just Work.
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8627
Linux and FreeBSD will most likely never see this issue.
On macOS when kext is unloaded, but zed is still connected, zed
will be issued ENODEV. As the cdevsw is released, the kernel
will not have zfsdev_release() called to release minor/onexit/events,
and it "leaks". This ensures it is cleaned up before unload.
Changed the for loop from zsprev, to zsnext style, for less
code duplication.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Jorgen Lundman <lundman@lundman.net>
Closes#10700
ZFS recv should return a useful error message when an invalid index
property value is provided in the send stream properties nvlist
With a compression= property outside of the understood range:
Before:
```
receiving full stream of zof/zstd_send@send2 into testpool/recv@send2
internal error: Invalid argument
Aborted (core dumped)
```
Note: the recv completes successfully, the abort() is likely just to
make it easier to track the unexpected error code.
After:
```
receiving full stream of zof/zstd_send@send2 into testpool/recv@send2
cannot receive compression property on testpool/recv: invalid property
value received 28.9M stream in 1 seconds (28.9M/sec)
```
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Closes#10631
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10623
The device_rebuild feature enables sequential reconstruction when
resilvering. Mirror vdevs can be rebuilt in LBA order which may
more quickly restore redundancy depending on the pools average block
size, overall fragmentation and the performance characteristics
of the devices. However, block checksums cannot be verified
as part of the rebuild thus a scrub is automatically started after
the sequential resilver completes.
The new '-s' option has been added to the `zpool attach` and
`zpool replace` command to request sequential reconstruction
instead of healing reconstruction when resilvering.
zpool attach -s <pool> <existing vdev> <new vdev>
zpool replace -s <pool> <old vdev> <new vdev>
The `zpool status` output has been updated to report the progress
of sequential resilvering in the same way as healing resilvering.
The one notable difference is that multiple sequential resilvers
may be in progress as long as they're operating on different
top-level vdevs.
The `zpool wait -t resilver` command was extended to wait on
sequential resilvers. From this perspective they are no different
than healing resilvers.
Sequential resilvers cannot be supported for RAIDZ, but are
compatible with the dRAID feature being developed.
As part of this change the resilver_restart_* tests were moved
in to the functional/replacement directory. Additionally, the
replacement tests were renamed and extended to verify both
resilvering and rebuilding.
Original-patch-by: Isaac Huang <he.huang@intel.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: John Poduska <jpoduska@datto.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#10349
Mark functions used only in the same translation unit as static. This
only includes functions that do not have a prototype in a header file
either.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Closes#10470
As it uses kmem_strdup() and kmem_strfree() which both rely on
strlen() being the same, but saved_poolname can be truncated causing:
SPL: kernel memory allocator:
buffer freed to wrong cache
SPL: buffer was allocated from kmem_alloc_16,
SPL: caller attempting free to kmem_alloc_8.
SPL: buffer=0xffffff90acc66a38 bufctl=0x0 cache: kmem_alloc_8
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Jorgen Lundman <lundman@lundman.net>
Closes#10469
Correct various typos in the comments and tests.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Closes#10423
In Illumos it is possible to call ioctl functions from within the
kernel by passing the FKIOCTL flag. Neither FreeBSD nor Linux support
that, but it doesn't hurt to keep it around, as all the code is there.
Before this commit it was a dead code and zc_iflags was always zero.
Restore this functionality by allowing to pass a flag to the
zfsdev_ioctl_common() function.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Pawel Jakub Dawidek <pawel@dawidek.net>
Closes#10417
The strcpy() and sprintf() functions are deprecated on some platforms.
Care is needed to ensure correct size is used. If some platforms
miss snprintf, we can add a #define to sprintf, likewise strlcpy().
The biggest change is adding a size parameter to zfs_id_to_fuidstr().
The various *_impl_get() functions are only used on linux and have
not yet been updated.
Reviewed by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Jorgen Lundman <lundman@lundman.net>
Closes#10400
Modern bootloaders leverage data stored in the root filesystem to
enable some of their powerful features. GRUB specifically has a grubenv
file which can store large amounts of configuration data that can be
read and written at boot time and during normal operation. This allows
sysadmins to configure useful features like automated failover after
failed boot attempts. Unfortunately, due to the Copy-on-Write nature
of ZFS, the standard behavior of these tools cannot handle writing to
ZFS files safely at boot time. We need an alternative way to store
data that allows the bootloader to make changes to the data.
This work is very similar to work that was done on Illumos to enable
similar functionality in the FreeBSD bootloader. This patch is different
in that the data being stored is a raw grubenv file; this file can store
arbitrary variables and values, and the scripting provided by grub is
powerful enough that special structures are not required to implement
advanced behavior.
We repurpose the second padding area in each label to store the grubenv
file, protected by an embedded checksum. We add two ioctls to get and
set this data, and libzfs_core and libzfs functions to access them more
easily. There are no direct command line interfaces to these functions;
these will be added directly to the bootloader utilities.
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#10009
Deduplicated send streams (i.e. `zfs send -D` and `zfs receive` of such
streams) are deprecated. Deduplicated send streams can be received by
first converting them to non-deduplicated with the `zstream redup`
command.
This commit removes the code for sending and receiving deduplicated send
streams. `zfs send -D` will now print a warning, ignore the `-D` flag,
and generate a regular (non-deduplicated) send stream. `zfs receive` of
a deduplicated send stream will print an error message and fail.
The resulting code simplification (especially in the kernel's support
for receiving dedup streams) should help enable future performance
enhancements.
Several new tests are added which leverage `zstream redup`.
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Issue #7887
Issue #10117
Issue #10156Closes#10212
The progress of a send is supposed to be reported by `zfs send -v`, but
it is not. This works by creating a new user thread (with
pthread_create()) which does ZFS_IOC_SEND_PROGRESS ioctls to check how
much progress has been made. This IOCTL finds the specified send (since
there may be multiple concurrent sends in the system). The IOCTL also
checks that the specified send was started by the current process.
On Linux, different threads of the same process are represented as
different `struct task_struct`s (and, confusingly, have different
PID's). To check if if two threads are in the same process, we need to
check if they have the same `struct task_struct:group_leader`.
We used to to this correctly, but it was inadvertently changed by
30af21b025 (Redacted Send) to simply check if the current
`struct task_struct` is the one that started the send.
This commit changes the code back to checking if the send was started by
a `struct task_struct` with the same `group_leader` as the calling
thread.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Chris Wedgwood <cw@f00f.org>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10215Closes#10216
Add a mechanism to wait for delete queue to drain.
When doing redacted send/recv, many workflows involve deleting files
that contain sensitive data. Because of the way zfs handles file
deletions, snapshots taken quickly after a rm operation can sometimes
still contain the file in question, especially if the file is very
large. This can result in issues for redacted send/recv users who
expect the deleted files to be redacted in the send streams, and not
appear in their clones.
This change duplicates much of the zpool wait related logic into a
zfs wait command, which can be used to wait until the internal
deleteq has been drained. Additional wait activities may be added
in the future.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: John Gallagher <john.gallagher@delphix.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#9707
By adding a zfs_file_private accessor to the common
interfaces and some extensions to FreeBSD platform
code it is now possible to share the implementations
for the aforementioned functions.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10073
* Add dedicated donde_set_dirtyctx routine.
* Add empty dirty record on destroy assertion.
* Make much more extensive use of the SET_ERROR macro.
Reviewed-by: Will Andrews <wca@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9924
This feature allows copying existing bookmarks using
zfs bookmark fs#target fs#newbookmark
There are some niche use cases for such functionality,
e.g. when using bookmarks as markers for replication progress.
Copying redaction bookmarks produces a normal bookmark that
cannot be used for redacted send (we are not duplicating
the redaction object).
ZCP support for bookmarking (both creation and copying) will be
implemented in a separate patch based on this work.
Overview:
- Terminology:
- source = existing snapshot or bookmark
- new/bmark = new bookmark
- Implement bookmark copying in `dsl_bookmark.c`
- create new bookmark node
- copy source's `zbn_phys` to new's `zbn_phys`
- zero-out redaction object id in copy
- Extend existing bookmark ioctl nvlist schema to accept
bookmarks as sources
- => `dsl_bookmark_create_nvl_validate` is authoritative
- use `dsl_dataset_is_before` check for both snapshot
and bookmark sources
- Adjust CLI
- refactor shortname expansion logic in `zfs_do_bookmark`
- Update man pages
- warn about redaction bookmark handling
- Add test cases
- CLI
- pyyzfs libzfs_core bindings
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Christian Schwarz <me@cschwarz.com>
Closes#9571
When we finish a zfs receive, dmu_recv_end_sync() calls
zvol_create_minors(async=TRUE). This kicks off some other threads that
create the minor device nodes (in /dev/zvol/poolname/...). These async
threads call zvol_prefetch_minors_impl() and zvol_create_minor(), which
both call dmu_objset_own(), which puts a "long hold" on the dataset.
Since the zvol minor node creation is asynchronous, this can happen
after the `ZFS_IOC_RECV[_NEW]` ioctl and `zfs receive` process have
completed.
After the first receive ioctl has completed, userland may attempt to do
another receive into the same dataset (e.g. the next incremental
stream). This second receive and the asynchronous minor node creation
can interfere with one another in several different ways, because they
both require exclusive access to the dataset:
1. When the second receive is finishing up, dmu_recv_end_check() does
dsl_dataset_handoff_check(), which can fail with EBUSY if the async
minor node creation already has a "long hold" on this dataset. This
causes the 2nd receive to fail.
2. The async udev rule can fail if zvol_id and/or systemd-udevd try to
open the device while the the second receive's async attempt at minor
node creation owns the dataset (via zvol_prefetch_minors_impl). This
causes the minor node (/dev/zd*) to exist, but the udev-generated
/dev/zvol/... to not exist.
3. The async minor node creation can silently fail with EBUSY if the
first receive's zvol_create_minor() trys to own the dataset while the
second receive's zvol_prefetch_minors_impl already owns the dataset.
To address these problems, this change synchronously creates the minor
node. To avoid the lock ordering problems that the asynchrony was
introduced to fix (see #3681), we create the minor nodes from open
context, with no locks held, rather than from syncing contex as was
originally done.
Implementation notes:
We generally do not need to traverse children or prefetch anything (e.g.
when running the recv, snapshot, create, or clone subcommands of zfs).
We only need recursion when importing/opening a pool and when loading
encryption keys. The existing recursive, asynchronous, prefetching code
is preserved for use in these cases.
Channel programs may need to create zvol minor nodes, when creating a
snapshot of a zvol with the snapdev property set. We figure out what
snapshots are created when running the LUA program in syncing context.
In this case we need to remember what snapshots were created, and then
try to create their minor nodes from open context, after the LUA code
has completed.
There are additional zvol use cases that asynchronously own the dataset,
which can cause similar problems. E.g. changing the volmode or snapdev
properties. These are less problematic because they are not recursive
and don't touch datasets that are not involved in the operation, there
is still potential for interference with subsequent operations. In the
future, these cases should be similarly converted to create the zvol
minor node synchronously from open context.
The async tasks of removing and renaming minors do not own the objset,
so they do not have this problem. However, it may make sense to also
convert these operations to happen synchronously from open context, in
the future.
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-65948
Closes#7863Closes#9885
This commit adds the --saved (-S) to the 'zfs send' command.
This flag allows a user to send a partially received dataset,
which can be useful when migrating a backup server to new
hardware. This flag is compatible with resumable receives, so
even if the saved send is interrupted, it can be resumed.
The flag does not require any user / kernel ABI changes or any
new feature flags in the send stream format.
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Alek Pinchuk <apinchuk@datto.com>
Reviewed-by: Paul Zuchowski <pzuchowski@datto.com>
Reviewed-by: Christian Schwarz <me@cschwarz.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#9007
The quota functions are common to all implementations and can be
moved to common code. As a simplification they were moved to the
Linux platform code in the initial refactoring.
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@ixsystems.com>
Closes#9710
The zfsvfs->z_sb field is Linux specified and should be abstracted.
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9697
FreeBSD needs to cope with multiple version of the zfs_cmd_t
structure. Allowing the platform code to pre and post
process the cmd structure makes it possible to work with
legacy tooling.
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9624
Provide a common zfs_file_* interface which can be implemented on all
platforms to perform normal file access from either the kernel module
or the libzpool library.
This allows all non-portable vnode_t usage in the common code to be
replaced by the new portable zfs_file_t. The associated vnode and
kobj compatibility functions, types, and macros have been removed
from the SPL. Moving forward, vnodes should only be used in platform
specific code when provided by the native operating system.
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9556
It's mostly a noop on ZoL and it conflicts with platforms that
support dtrace. Remove this header to resolve the conflict.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9497
In the FreeBSD kernel the strdup signature is:
```
char *strdup(const char *__restrict, struct malloc_type *);
```
It's unfortunate that the developers have chosen to change
the signature of libc functions - but it's what I have to
deal with.
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9433
Refactor the zfs ioctls in to platform dependent and independent bits.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Signed-off-by: Matthew Macy <mmacy@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@ixsystems.com>
Closes#9301
Refactor the zvol in to platform dependent and independent bits.
Reviewed-by: Allan Jude <allanjude@freebsd.org>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9295
Currently the best way to wait for the completion of a long-running
operation in a pool, like a scrub or device removal, is to poll 'zpool
status' and parse its output, which is neither efficient nor convenient.
This change adds a 'wait' subcommand to the zpool command. When invoked,
'zpool wait' will block until a specified type of background activity
completes. Currently, this subcommand can wait for any of the following:
- Scrubs or resilvers to complete
- Devices to initialized
- Devices to be replaced
- Devices to be removed
- Checkpoints to be discarded
- Background freeing to complete
For example, a scrub that is in progress could be waited for by running
zpool wait -t scrub <pool>
This also adds a -w flag to the attach, checkpoint, initialize, replace,
remove, and scrub subcommands. When used, this flag makes the operations
kicked off by these subcommands synchronous instead of asynchronous.
This functionality is implemented using a new ioctl. The type of
activity to wait for is provided as input to the ioctl, and the ioctl
blocks until all activity of that type has completed. An ioctl was used
over other methods of kernel-userspace communiction primarily for the
sake of portability.
Porting Notes:
This is ported from Delphix OS change DLPX-44432. The following changes
were made while porting:
- Added ZoL-style ioctl input declaration.
- Reorganized error handling in zpool_initialize in libzfs to integrate
better with changes made for TRIM support.
- Fixed check for whether a checkpoint discard is in progress.
Previously it also waited if the pool had a checkpoint, instead of
just if a checkpoint was being discarded.
- Exposed zfs_initialize_chunk_size as a ZoL-style tunable.
- Updated more existing tests to make use of new 'zpool wait'
functionality, tests that don't exist in Delphix OS.
- Used existing ZoL tunable zfs_scan_suspend_progress, together with
zinject, in place of a new tunable zfs_scan_max_blks_per_txg.
- Added support for a non-integral interval argument to zpool wait.
Future work:
ZoL has support for trimming devices, which Delphix OS does not. In the
future, 'zpool wait' could be extended to add the ability to wait for
trim operations to complete.
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: John Gallagher <john.gallagher@delphix.com>
Closes#9162
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Closes#9240
Previously, the permissions were checked on the pool which was obviously
incorrect.
After this change, zfs_check_userprops() only validates the properties
without any permission checks. The permissions are checked individually
for each snapshotted dataset.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Andriy Gapon <avg@FreeBSD.org>
Closes#9179Closes#9180
Cast to uintptr_t first for portability on integer to/from pointer
conversion.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@gmail.com>
Closes#9065
The "zfs remap" command was disabled by
6e91a72fe3, because it has little utility
and introduced some tricky bugs. This commit removes the code for it,
the associated ZFS_IOC_REMAP ioctl, and tests.
Note that the ioctl and property will remain, but have no functionality.
This allows older software to fail gracefully if it attempts to use
these, and avoids a backwards incompatibility that would be introduced if
we renumbered the later ioctls/props.
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#8944
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#7958
Per suggestion from @behlendorf in #8777, remove vn_set_fs_pwd() and
vn_set_pwd() which are only used in zfs_ioctl.c:_init() while loading
zfs.ko.
The rest of initialization functions being called here after cwd set
to / don't depend on cwd of the process except for spa_config_load().
spa_config_load() uses a relative path ".//etc/zfs/zpool.cache" when
`rootdir` is non-NULL, which is "/etc/zfs/zpool.cache" given cwd is /,
so just unconditionally use the absolute path without "./", so that
`vn_set_pwd("/")` as well as the entire functions can be removed.
This is also what FreeBSD does.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@osnexus.com>
Closes#8826
This commits fixes a double-free in zfs_ioc_pool_create() triggered by
specifying an unsupported combination of properties when creating a pool
with encryption enabled.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes#8791
UNMAP/TRIM support is a frequently-requested feature to help
prevent performance from degrading on SSDs and on various other
SAN-like storage back-ends. By issuing UNMAP/TRIM commands for
sectors which are no longer allocated the underlying device can
often more efficiently manage itself.
This TRIM implementation is modeled on the `zpool initialize`
feature which writes a pattern to all unallocated space in the
pool. The new `zpool trim` command uses the same vdev_xlate()
code to calculate what sectors are unallocated, the same per-
vdev TRIM thread model and locking, and the same basic CLI for
a consistent user experience. The core difference is that
instead of writing a pattern it will issue UNMAP/TRIM commands
for those extents.
The zio pipeline was updated to accommodate this by adding a new
ZIO_TYPE_TRIM type and associated spa taskq. This new type makes
is straight forward to add the platform specific TRIM/UNMAP calls
to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are
handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs.
This makes it possible to largely avoid changing the pipieline,
one exception is that TRIM zio's may exceed the 16M block size
limit since they contain no data.
In addition to the manual `zpool trim` command, a background
automatic TRIM was added and is controlled by the 'autotrim'
property. It relies on the exact same infrastructure as the
manual TRIM. However, instead of relying on the extents in a
metaslab's ms_allocatable range tree, a ms_trim tree is kept
per metaslab. When 'autotrim=on', ranges added back to the
ms_allocatable tree are also added to the ms_free tree. The
ms_free tree is then periodically consumed by an autotrim
thread which systematically walks a top level vdev's metaslabs.
Since the automatic TRIM will skip ranges it considers too small
there is value in occasionally running a full `zpool trim`. This
may occur when the freed blocks are small and not enough time
was allowed to aggregate them. An automatic TRIM and a manual
`zpool trim` may be run concurrently, in which case the automatic
TRIM will yield to the manual TRIM.
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Contributions-by: Tim Chase <tim@chase2k.com>
Contributions-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#8419Closes#598