counting in incrementing the interrupt nesting level. This fixes a number
of bugs in which the interrupt thread could be preempted by an IPI,
indefinitely delaying acknowledgement of the interrupt to the PIC, causing
interrupt starvation and hangs.
Reported by: linimon
Reviewed by: marcel, jhb
MFC after: 1 week
the scratchpage is updated, the PVO's physical address is updated as well.
This makes pmap_extract() begin returning non-zero values again, causing
the panic partially fixed in r204297. Fix this by excluding addresses
beyond virtual_end from consideration as KVA addresses, instead of allowing
addresses up to VM_MAX_KERNEL_ADDRESS.
its PVO to map physical address 0 instead of kernelstart. This fixes a
situation in which a user process could attempt to return this address
via KVM, have it fault while being modified, and then panic the kernel
because (a) it is supposed to map a valid address and (b) it lies in the
no-fault region between VM_MIN_KERNEL_ADDRESS and virtual_avail.
While here, move msgbuf and dpcpu make into regular KVA space for
consistency with other implementations.
physical address is changed, there is a brief window during which its PTE
is invalid. Since moea64_set_scratchpage_pa() does not and cannot hold
the page table lock, it was possible for another CPU to insert a new PTE
into the scratch page's PTEG slot during this interval, corrupting both
mappings.
Solve this by creating a new flag, LPTE_LOCKED, such that
moea64_pte_insert will avoid claiming locked PTEG slots even if they
are invalid. This change also incorporates some additional paranoia
added to solve things I thought might be this bug.
Reported by: linimon
such that a fancier thermal management algorithm can be run from user
space, but the kernel will at least ensure your machine does not either
sound like a wind tunnel or catch fire.
UMA segments at their physical addresses instead of into KVA. This emulates
the direct mapping behavior of OEA32 in an ad-hoc way. To make this work
properly required sharing the entire kernel PMAP with Open Firmware, so
ofw_pmap is transformed into a stub on 64-bit CPUs.
Also implement some more tweaks to get more mileage out of our limited
amount of KVA, principally by extending KVA into segment 16 until the
beginning of the first OFW mapping.
Reported by: linimon
of its argument before atomically replacing it, which could occasionally
return the wrong value on an SMP system. This resulted in user mutex
operations hanging when using threaded applications.
questions on the thermal calibration), and to read and set fan RPMs from
software. While here, fix a number of bugs.
Calibration code from: OpenBSD
MFC after: 2 weeks
PVOs, and so the modified state of the page can no longer be communicated
to the VM layer, causing pages not to be flushed to swap when needed, in
turn causing memory corruption. Also make several correctness adjustments
to I-Cache synchronization and TLB invalidation for 64-bit Book-S CPUs.
Obtained from: projects/ppc64
Discussed with: grehan
MFC after: 2 weeks
the 'debugging' section of any HEAD kernel and enable for the mainstream
ones, excluding the embedded architectures.
It may, of course, enabled on a case-by-case basis.
Sponsored by: Sandvine Incorporated
Requested by: emaste
Discussed with: kib
1. checking whether there's a link before initializing devices
on the bus. When there's no link any access onto the bus
will wedge the CPU.
2. synthesizing the class & subclass so that the host controller
appears as a standard PCI bridge, rather than a PowerPC CPU.
PCI Express, rather than a bit-field (boolean). Saving the capability
pointer this way makes access to capability-specific configuration
registers easy and efficient.
programming I/F. New SoC designs have different device IDs, but
don't need special treatment. Consequently, we fail to probe and
attach for no other reason than not having added the device ID to
the code.
Bank on Freescale's sense of backward compatibility and assume
that if we find a host controller, we know how work with it.
This fixes detection of the PCI Express host controllers on
Freescale's QorIQ family of processors (P1, P2 and P4).
sys/conf/makeLINT.mk to only do certain things for certain
architectures.
Note that neither arm nor mips have the Makefile there, thus
essentially not (yet) supporting LINT. This would enable them
do add special treatment to sys/conf/makeLINT.mk as well chosing
one of the many configurations as LINT.
This is a hack of doing this and keeping it in a separate commit
will allow us to more easily identify and back it out.
Discussed on/with: arch, jhb (as part of the LINT-VIMAGE thread)
MFC after: 1 month
This replaces d_mmap() with the d_mmap2() implementation and also
changes the type of offset to vm_ooffset_t.
Purge d_mmap2().
All driver modules will need to be rebuilt since D_VERSION is also
bumped.
Reviewed by: jhb@
MFC after: Not in this lifetime...
Introduce ATA_CAM kernel option, turning ata(4) controller drivers into
cam(4) interface modules. When enabled, this options deprecates all ata(4)
peripheral drivers (ad, acd, ...) and interfaces and allows cam(4) drivers
(ada, cd, ...) and interfaces to be natively used instead.
As side effect of this, ata(4) mode setting code was completely rewritten
to make controller API more strict and permit above change. While doing
this, SATA revision was separated from PATA mode. It allows DMA-incapable
SATA devices to operate and makes hw.ata.atapi_dma tunable work again.
Also allow ata(4) controller drivers (except some specific or broken ones)
to handle larger data transfers. Previous constraint of 64K was artificial
and is not really required by PCI ATA BM specification or hardware.
Submitted by: nwitehorn (powerpc part)
more. This provides three new sysctls to user space:
hw.cpu_features - A bitmask of available CPU features
hw.floatingpoint - Whether or not there is hardware FP support
hw.altivec - Whether or not Altivec is available
PR: powerpc/139154
MFC after: 10 days
from CD on 64-bit hardware to replace existing band-aids. This occurred
when the preloaded mdroot required too many mappings for the static
buffer.
Since we only use the translations buffer once, allocate a dynamic
buffer on the stack. This early in the boot process, the call chain
is quite short and we can be assured of having sufficient stack space.
Reviewed by: grehan
that use many translation regions in firmware, and add bounds checking
to prevent buffer overflows in case even the new value is exceeded.
Reported by: Jacob Lambert
MFC after: 3 days