extra read from PxCI/PxSACT registers. If only NCQ commands are running, we
don't really need PxCI. If only non-NCQ commands are running we don't need
PxSACT. Mixed set may happen only on controllers with FIS-based switching
when port multiplier is attached, and then we have to read both registers.
MFC after: 1 month
every architecture's busdma_machdep.c. It is done by unifying the
bus_dmamap_load_buffer() routines so that they may be called from MI
code. The MD busdma is then given a chance to do any final processing
in the complete() callback.
The cam changes unify the bus_dmamap_load* handling in cam drivers.
The arm and mips implementations are updated to track virtual
addresses for sync(). Previously this was done in a type specific
way. Now it is done in a generic way by recording the list of
virtuals in the map.
Submitted by: jeff (sponsored by EMC/Isilon)
Reviewed by: kan (previous version), scottl,
mjacob (isp(4), no objections for target mode changes)
Discussed with: ian (arm changes)
Tested by: marius (sparc64), mips (jmallet), isci(4) on x86 (jharris),
amd64 (Fabian Keil <freebsd-listen@fabiankeil.de>)
I am not exactly sure about the naming due to lack of specs on AMD site,
but it is better to have some identification then none at all.
MFC after: 1 month
subdevice ahciem. Emulate SEMB SES device from AHCI LED interface to expose
it to users in form of ses(4) CAM device. If we ever see AHCI controllers
supporting SES of SAF-TE over I2C as described by specification, they should
fit well into this new picture.
Sponsored by: iXsystems, Inc.
Return PROTO_ATA protocol in response to XPT_PATH_INQ.
smartmontools uses it to identify ATA devices and I don't know any other
place now where it is important. It could probably use XPT_GDEV_TYPE
instead for more accurate protocol information, but let it live for now.
Reported by: matthew
MFC after: 3 days
until transport will do some probe actions (at least soft reset).
Make ATA/SATA SIMs to not report bogus and confusing PROTO_ATA protocol.
Make ATA/SATA transport to fill that gap by reporting protocol to SIM with
XPT_SET_TRAN_SETTINGS and patching XPT_GET_TRAN_SETTINGS results if needed.
to allow drivers to handle request completion directly without passing
them to the CAM SWI thread removing extra context switch.
Modify all ATA/SATA drivers to use them.
Reviewed by: gibbs, ken
MFC after: 2 weeks
interface supported by mvs(4) are 88SX, while AHCI-like chips are 88SE.
PR: kern/165271
Submitted by: Jia-Shiun Li <jiashiun@gmail.com>
MFC after: 1 week
to known AHCI-capable chips (AMD/NVIDIA), configured for legacy emulation.
Enabled by default to get additional performance and functionality of AHCI
when it can't be enabled by BIOS. Can be disabled to honor BIOS settings if
needed for some reason.
MFC after: 1 month
to kern/subr_bus.c. Simplify this function so that it no longer
depends on malloc() to execute. Identify a few other places where
it makes sense to use device_delete_all_children().
MFC after: 1 week
completely skipping them, create ahcich devices for them to allocate unit
numbers, but mark them as disabled to prevent driver probe and attach.
Last time some BIOSes tend to report unused channels as "not implemented".
This change makes ahcichX devices numbering consistent, independently of
connected disks. It makes per-channel driver hints usable and CAM devices
wiring possible on such systems.
Mac with this chipset does not initialize AHCI mode unless it is started
from EFI loader. However, legacy ATA mode works.
Submitted by: jkim@ (original version)
Approved by: re (kib)
MFC after: 1 week
Slot field of the PxCMD register may point to an empty command slot.
That breaks command timeout detection logic, making impossible to find
what command actually caused timeout, and leading to infinite wait.
Workaround that by checking whether pointed command slot is really used
and can timeout in its time. And if not, fallback to the dumb algorithm
used with FBS -- let all commands to time out and then fail all of them.
Approved by: re (kib)
MFC after: 1 week
without waiting for device readiness (or at least not updating FIS receive
area in time). To workaround that, special quirk was added earlier to wait
for the FIS receive area update. But it was found that under same PCI ID
0x91231b4b and revision 0x11 there are two completely different chip
versions (firmware?): HBA and RAID. The problem is that RAID version in
some cases, such as hot-plug, does not update FIS receive area at all!
To workaround that, differentiate the chip versions by their capabilities,
and, if RAID version found, skip FIS receive area update waiting and read
device signature from the PxSIG register instead. This method doesn't work
for HBA version when PMP attached, so keep using previous workaround there.
(SEMB) is unable to communicate to Storage Enclosure Processor (SEP), in
response to hard and soft resets it should among other things return value
0x7F in Status register. The weird side is that it means DRQ bit set, which
tells that reset request is not completed. It would be fine if SEMB was the
only device on port. But if SEMB connected to PMP or built into it, it may
block access to other devices sharing same SATA port.
Make some tunings/fixes to soft-reset handling to workaround the issue:
- ahci(4): request CLO on the port after soft reset to ignore DRQ bit;
- siis(4): gracefully reinitialize port after soft reset timeout (hardware
doesn't detect reset request completion in this case);
- mvs(4): if PMP is used, send dummy soft-reset to the PMP port to make it
clear DRQ bit for us.
For now this makes quirks in ata_pmp.c, hiding SEMB ports of SiI3726/SiI4726
PMPs, less important. Further, if hardware permit, I hope to implement real
SEMB support.
When supported by hardware, this allows to control per-port activity, locate
and fault LEDs via the led(4) API for localization and status reporting
purposes. Supporting AHCI controllers may transmit that information to the
backplane controllers via SGPIO interface. Backplane controllers interpret
received statuses in some way (IBPI standard) to report them using present
indicators.