functions in the child after a fork() from a threaded process,
use __sys_setprocmask() rather than setprocmask() to keep our
signal handling sane. Without this fix, signals are essentially
ignored in said child and things such as protection violations
result in an endless busy loop.
Reviewed by: deischen
o Don't reinitialise the atfork() handler list in the child. We
are meant to call the child handler, and on subsequent fork()s
should call all three functions as normal.
o Don't reinitialise the thread specific keyed data in the
child after a fork. Applications may require this for context.
o Reinitialise curthread->tlflags after removing ourselves from
(and reinitialising) the various internal thread lists.
o Reinitialise __malloc_lock in the child after fork() (to balance
our explicitly taking the lock prior to the fork()).
With these changes, it is possible to enable the NOTYET code in
thr_kern.c to allow the use of non-async-safe functions after
fork()ing from a threaded program.
Reviewed by: Daniel Eischen <deischen@freebsd.org>
[_malloc_lock reinitialisation has since been moved to avoid polluting the
!NOTYET code]
signals instead of having more intricate knowledge of thread state
within signal handling.
Simplify signal code because of above (by David Xu).
Use macros for libpthread usage of pthread_cleanup_push() and
pthread_cleanup_pop(). This removes some instances of malloc()
and free() from the semaphore and pthread_once() implementations.
When single threaded and forking(), make sure that the current
thread's signal mask is inherited by the forked thread.
Use private mutexes for libc and libpthread. Signals are
deferred while threads hold private mutexes. This fix also
breaks www/linuxpluginwrapper; a patch that fixes it is at
http://people.freebsd.org/~deischen/kse/linuxpluginwrapper.diff
Fix race condition in condition variables where handling a
signal (pthread_kill() or kill()) may not see a wakeup
(pthread_cond_signal() or pthread_cond_broadcast()).
In collaboration with: davidxu
put DEAD thread on GC list, this closes a race between pthread_join
and thr_cleanup.
2. Introduce a mutex to protect tcb initialization, tls allocation and
deallocation code in rtld seems no lock protection or it is broken,
under stress testing, memory is corrupted.
Reviewed by: deischen
patch partly provided by: deischen
a knob to force process scope threads. If the environment variable
LIBPTHREAD_PROCESS_SCOPE is set, force all threads to be process
scope threads regardless of how the application creates them. If
LIBPTHREAD_SYSTEM_SCOPE is set (forcing system scope threads), it
overrides LIBPTHREAD_PROCESS_SCOPE.
$ # To force system scope threads
$ LIBPTHREAD_SYSTEM_SCOPE=anything threaded_app
$ # To force process scope threads
$ LIBPTHREAD_PROCESS_SCOPE=anything threaded_app
LIBPTHREAD_SYSTEM_SCOPE in the environment.
You can still force libpthread to be built in strictly 1:1 by
adding -DSYSTEM_SCOPE_ONLY to CFLAGS. This is kept for archs
that don't yet support M:N mode.
Requested by: rwatson
Reviewed by: davidxu
1. Add global varible _libkse_debug, debugger uses the varible to identify
libpthread. when the varible is written to non-zero by debugger, libpthread
will take some special action at context switch time, it will check
TMDF_DOTRUNUSER flags, if a thread has the flags set by debugger, it won't
be scheduled, when a thread leaves KSE critical region, thread checks
the flag, if it was set, the thread relinquish CPU.
2. Add pq_first_debug to select a thread allowd to run by debugger.
3. Some names prefixed with _thr are renamed to _thread prefix.
which is allowed to run by debugger.
mode (where the forked thread is the one and only thread and
is marked as system scope), set the system scope flag before
initializing the signal mask. This prevents trying to use
internal locks that haven't yet been initialized.
Reported by: Dan Nelson <dnelson at allantgroup.com>
Reviewed by: davidxu
_thr_leave_cancellation_point to _thr_cancel_leave, add a parameter
to _thr_cancel_leave to indicate whether cancellation point should be
checked, this gives us an option to not check cancallation point if
a syscall successfully returns to avoid any leaks, current I have
creat(), open() and fcntl(F_DUPFD) to not check cancellation point
after they sucessfully returned.
Replace some members in structure kse with bit flags to same some
memory.
Conditionally compile THR_ASSERT to nothing if _PTHREAD_INVARIANTS is
not defined.
Inline some small functions in thr_cancel.c.
Use __predict_false in thr_kern.c for some executed only once code.
Reviewd by: deischen
through branch predict as suggested in INTEL IA32 optimization guide.
2.Allocate siginfo arrary separately to avoid pthread to be allocated at
2K boundary, which hits L1 address alias problem and causes context
switch to be slow down.
3.Simplify context switch code by removing redundant code, code size is
reduced, so it is expected to run faster.
Reviewed by: deischen
Approved by: re (scottl)
signal handling mode, there is no chance to handle the signal, something
must be wrong in the library, just call kse_thr_interrupt to dump its core.
I have the code for a long time, but forgot to commit it.
Aside from the POSIX requirements for pthread_atfork(), when
fork()ing, take the malloc lock to keep malloc state consistent
in the child.
Reviewed by: davidxu
pthread_md.h. This commit only moves the definition; it does not
change it for any of the platforms. This more easily allows 64-bit
architectures (in particular) to pick a slightly larger stack size.
to avoid potential memory leak, also fix a bug in pthread_create, contention
scope should be inherited when PTHREAD_INHERIT_SCHED is set, and also check
right field for PTHREAD_INHERIT_SCHED, scheduling inherit flag is in sched_inherit.
2. Execute hooks registered by atexit() on thread stack but not on scheduler
stack.
3. Simplify some code in _kse_single_thread by calling xxx_destroy functions.
Reviewed by: deischen
yet, so we can protect some locking code from being interrupted by signal
handling. When KSE mode is turned on, reset the thread flag to scope process
except we are running in 1:1 mode which we needn't turn it off.
Also remove some unused member variables in structure kse.
Tested by: deischen
archs that can (or are required to) have per-thread registers.
Tested on i386, amd64; marcel is testing on ia64 and will
have some follow-up commits.
Reviewed by: davidxu
This eliminates ping-ponging of locks, where the idle KSE wakes
up only to find the lock it needs is being held. This gives
little or no gain to M:N mode but greatly speeds up 1:1 mode.
Reviewed & Tested by: davidxu
is system bound thread and when it is blocked, no upcall is generated.
o Add ability to libkse to allow it run in pure 1:1 threading mode,
defining SYSTEM_SCOPE_ONLY in Makefile can turn on this option.
o Eliminate code for installing dummy signal handler for sigwait call.
o Add hash table to find thread.
Reviewed by: deischen
signals were changed in kernel, it will retrieve the pending set and
try to find a thread to dispatch the signal. The dispatching process
can be rolled back if the signal is no longer in kernel.
o Create two functions _thr_signal_init() and _thr_signal_deinit(),
all signal action settings are retrieved from kernel when threading
mode is turned on, after a fork(), child process will reset them to
user settings by calling _thr_signal_deinit(). when threading mode
is not turned on, all signal operations are direct past to kernel.
o When a thread generated a synchoronous signals and its context returned
from completed list, UTS will retrieve the signal from its mailbox and try
to deliver the signal to thread.
o Context signal mask is now only used when delivering signals, thread's
current signal mask is always the one in pthread structure.
o Remove have_signals field in pthread structure, replace it with
psf_valid in pthread_signal_frame. when psf_valid is true, in context
switch time, thread will backout itself from some mutex/condition
internal queues, then begin to process signals. when a thread is not
at blocked state and running, check_pending indicates there are signals
for the thread, after preempted and then resumed time, UTS will try to
deliver signals to the thread.
o At signal delivering time, not only pending signals in thread will be
scanned, process's pending signals will be scanned too.
o Change sigwait code a bit, remove field sigwait in pthread_wait_data,
replace it with oldsigmask in pthread structure, when a thread calls
sigwait(), its current signal mask is backuped to oldsigmask, and waitset
is copied to its signal mask and when the thread gets a signal in the
waitset range, its current signal mask is restored from oldsigmask,
these are done in atomic fashion.
o Two additional POSIX APIs are implemented, sigwaitinfo() and sigtimedwait().
o Signal code locking is better than previous, there is fewer race conditions.
o Temporary disable most of code in _kse_single_thread as it is not safe
after fork().
by moving the definition of struct ksd to pthread_md.h and removing
the inclusion of ksd.h from thr_private.h (which has the definition
of struct kse and kse_critical_t). This allows ksd.h to have inline
functions that use struct kse and kse_critical_t and generally
yields a cleaner implementation at the cost of not having all ksd
related types/definitions in one header.
Implement the ksd functionality on ia64 by using inline functions
and permanently remove ksd.c from the ia64 specific makefile.
This change does not clean up the i386 specific version of ksd.h.
NOTE: The ksd code on ia64 abuses the tp register in the same way
as it is abused in libthr in that it is incompatible with the
runtime specification. This will be address when support for TLS
hits the tree.