accessor functions for its benefit now thaat FILE is opaque.
I'm sure there's a better way. I leave that for people to work
on in a src tree that isn't broken.
Pointy hat: jhb
move the definition of the type backing FILE (struct __sFILE) into an
internal header.
- Remove macros to inline certain operations from stdio.h. Applications
will now always call the functions instead.
- Move the various foo_unlocked() functions from unlocked.c into foo.c.
This lets some of the inlining macros (e.g. __sfeof()) move into
foo.c.
- Update a few comments.
- struct __sFILE can now go back to using mbstate_t, pthread_t, and
pthread_mutex_t instead of knowing about their private, backing types.
MFC after: 1 month
Reviewed by: kan
__sFILE. This was supposed to be done in 6.0. Some notes:
- Where possible I restored the various lines to their pre-__sFILEX state.
- Retire INITEXTRA() and just initialize the wchar bits (orientation and
mbstate) explicitly instead. The various places that used INITEXTRA
didn't need the locking fields or _up initialized. (Some places needed
_up to exist and not be off the end of a NULL or garbage pointer, but
they didn't require it to be initialized to a specific value.)
- For now, stdio.h "knows" that pthread_t is a 'struct pthread *' to
avoid namespace pollution of including all the pthread types in stdio.h.
Once we remove all the inlines and make __sFILE private it can go back
to using pthread_t, etc.
- This does not remove any of the inlines currently and does not change
any of the public ABI of 'FILE'.
MFC after: 1 month
Reviewed by: peter
deals with the usual __opendir2() calls, and the rest part with an interface
translator to expose fdopendir(3) functionality. Manual page was obtained from
kib@'s work for *at(2) system calls.
locked. This is intended primarily to support the userland equivalent
of the various *_ASSERT_LOCKED() macros we have in the kernel.
MFC after: 2 weeks
fields in FTS and FTSENT structs being too narrow. In addition,
the narrow types creep from there into fts.c. As a result, fts(3)
consumers, e.g., find(1) or rm(1), can't handle file trees an ordinary
user can create, which can have security implications.
To fix the historic implementation of fts(3), OpenBSD and NetBSD
have already changed <fts.h> in somewhat incompatible ways, so we
are free to do so, too. This change is a superset of changes from
the other BSDs with a few more improvements. It doesn't touch
fts(3) functionality; it just extends integer types used by it to
match modern reality and the C standard.
Here are its points:
o For C object sizes, use size_t unless it's 100% certain that
the object will be really small. (Note that fts(3) can construct
pathnames _much_ longer than PATH_MAX for its consumers.)
o Avoid the short types because on modern platforms using them
results in larger and slower code. Change shorts to ints as
follows:
- For variables than count simple, limited things like states,
use plain vanilla `int' as it's the type of choice in C.
- For a limited number of bit flags use `unsigned' because signed
bit-wise operations are implementation-defined, i.e., unportable,
in C.
o For things that should be at least 64 bits wide, use long long
and not int64_t, as the latter is an optional type. See
FTSENT.fts_number aka FTS.fts_bignum. Extending fts_number `to
satisfy future needs' is pointless because there is fts_pointer,
which can be used to link to arbitrary data from an FTSENT.
However, there already are fts(3) consumers that require fts_number,
or fts_bignum, have at least 64 bits in it, so we must allow for them.
o For the tree depth, use `long'. This is a trade-off between making
this field too wide and allowing for 64-bit inode numbers and/or
chain-mounted filesystems. On the one hand, `long' is almost
enough for 32-bit filesystems on a 32-bit platform (our ino_t is
uint32_t now). On the other hand, platforms with a 64-bit (or
wider) `long' will be ready for 64-bit inode numbers, as well as
for several 32-bit filesystems mounted one under another. Note
that fts_level has to be signed because -1 is a magic value for it,
FTS_ROOTPARENTLEVEL.
o For the `nlinks' local var in fts_build(), use `long'. The logic
in fts_build() requires that `nlinks' be signed, but our nlink_t
currently is uint16_t. Therefore let's make the signed var wide
enough to be able to represent 2^16-1 in pure C99, and even 2^32-1
on a 64-bit platform. Perhaps the logic should be changed just
to use nlink_t, but it can be done later w/o breaking fts(3) ABI
any more because `nlinks' is just a local var.
This commit also inludes supporting stuff for the fts change:
o Preserve the old versions of fts(3) functions through libc symbol
versioning because the old versions appeared in all our former releases.
o Bump __FreeBSD_version just in case. There is a small chance that
some ill-written 3-rd party apps may fail to build or work correctly
if compiled after this change.
o Update the fts(3) manpage accordingly. In particular, remove
references to fts_bignum, which was a FreeBSD-specific hack to work
around the too narrow types of FTSENT members. Now fts_number is
at least 64 bits wide (long long) and fts_bignum is an undocumented
alias for fts_number kept around for compatibility reasons. According
to Google Code Search, the only big consumers of fts_bignum are in
our own source tree, so they can be fixed easily to use fts_number.
o Mention the change in src/UPDATING.
PR: bin/104458
Approved by: re (quite a while ago)
Discussed with: deischen (the symbol versioning part)
Reviewed by: -arch (mostly silence); das (generally OK, but we didn't
agree on some types used; assuming that no objections on
-arch let me to stick to my opinion)
loop count.
2. Add function pthread_mutex_setyieldloops_np to turn a mutex's yield
loop count.
3. Make environment variables PTHREAD_SPINLOOPS and PTHREAD_YIELDLOOPS
to be only used for turnning PTHREAD_MUTEX_ADAPTIVE_NP mutex.
when particular function can't be found in nsswitch-module. For
example, getgrouplist(3) will use module-supplied 'getgroupmembership'
function (which can work in an optimal way for such source as LDAP) and
will fall back to the stanard iterate-through-all-groups implementation
otherwise.
PR: ports/114655
Submitted by: Michael Hanselmann <freebsd AT hansmi DOT ch>
Reviewed by: brooks (mentor)
is also implemented in glibc and is used by a number of existing
applications (mysql, firefox, etc).
This mutex type is a default mutex with the additional property that
it spins briefly when attempting to acquire a contested lock, doing
trylock operations in userland before entering the kernel to block if
eventually unsuccessful.
The expectation is that applications requesting this mutex type know
that the mutex is likely to be only held for very brief periods, so it
is faster to spin in userland and probably succeed in acquiring the
mutex, than to enter the kernel and sleep, only to be woken up almost
immediately. This can help significantly in certain cases when
pthread mutexes are heavily contended and held for brief durations
(such as mysql).
Spin up to 200 times before entering the kernel, which represents only
a few us on modern CPUs. No performance degradation was observed with
this value and it is sufficient to avoid a large performance drop in
mysql performance in the heavily contended pthread mutex case.
The libkse implementation is a NOP.
Reviewed by: jeff
MFC after: 3 days
for wide characters locales in the argument range >= 0x80 - they may
return false positives.
Example 1: for UTF-8 locale we currently have:
iswspace(0xA0)==1 and isspace(0xA0)==1
(because iswspace() and isspace() are the same code)
but must have
iswspace(0xA0)==1 and isspace(0xA0)==0
(because there is no such character and all others in the range
0x80..0xff for the UTF-8 locale, it keeps ASCII only in the single byte
range because our internal wchar_t representation for UTF-8 is UCS-4).
Example 2: for all wide character locales isalpha(arg) when arg > 0xFF may
return false positives (must be 0).
(because iswalpha() and isalpha() are the same code)
This change address this issue separating single byte and wide ctype
and also fix iswascii() (currently iswascii() is broken for
arguments > 0xFF).
This change is 100% binary compatible with old binaries.
Reviewied by: i18n@