These (and a few others) will differ based on the underlying DMA
implementation.
For the EDMA NICs, simply stub them out in a fashion which will let
me focus on implementing the necessary descriptor API changes.
a tinderbox myself and caught the error.
Change to isp_send_cmd needs a final ecmd argument.
Sponsored by: Spectralogic
MFC after: 1 month
X-MFC: 238869
The correct ordering for non-aggregate TX is:
* call ath_hal_setuptxdesc() to setup the first TX descriptor complete
with the first TX rate/try count;
* call ath_hal_setupxtxdesc() to setup the multi-rate retry;
* .. or for 802.11n NICs, call ath_hal_set11nratescenario() for MRR and
802.11n flags;
* then call ath_hal_filltxdesc() to setup intermediary descriptors
in a multi-descriptor single frame.
The call to ath_hal_filltxdesc() routines seem to correctly (consistently?)
handle the intermediary descriptor flags, including copying the rate
control information to the final descriptor in the frame. That's used
by the rate control module rather than the hardware.
Tested:
* Only on AR9280 STA mode, however it should work on other chips in
both STA and AP mode.
wrapping.
The previous code was only wrapping descriptor "block" boundaries rather
than individual descriptors. It sounds equivalent but it isn't.
r238824 changed the descriptor allocation to enforce that an individual
descriptor doesn't wrap a 4KiB boundary rather than the whole block
of descriptors. Eg, for TX descriptors, they're allocated in blocks
of 10 descriptors for each ath_buf (for scatter/gather DMA.)
MISC CHANGES
Add a new async event- ISP_TARGET_NOTIFY_ACK, that will guarantee
eventual delivery of a NOTIFY ACK. This is tons better than just
ignoring the return from isp_notify_ack and hoping for the best.
Clean up the lower level lun enable code to be a bit more sensible.
Fix a botch in isp_endcmd which was messing up the sense data.
Fix notify ack for SRR to use a sensible error code in the case
of a reject.
Clean up and make clear what kind of firmware we've loaded and
what capabilities it has.
-----------
FULL (252 byte) SENSE DATA
In CTIOs for the ISP, there's only a limimted amount of space
to load SENSE DATA for associated CHECK CONDITIONS (24 or 26
bytes). This makes it difficult to send full SENSE DATA that can
be up to 252 bytes.
Implement MODE 2 responses which have us build the FCP Response
in system memory which the ISP will put onto the wire directly.
On the initiator side, the same problem occurs in that a command
status response only has a limited amount of space for SENSE DATA.
This data is supplemented by status continuation responses that
the ISP pushes onto the response queue after the status response.
We now pull them all together so that full sense data can be
returned to the periph driver.
This is supported on 23XX, 24XX and 25XX cards.
This is also preparation for doing >16 byte CDBs.
-----------
FC TAPE
Implement full FC-TAPE on both initiator and target mode side. This
capability is driven by firmware loaded, board type, board NVRAM
settings, or hint configuration options to enable or disable. This
is supported for 23XX, 24XX and 25XX cards.
On the initiator side, we pretty much just have to generate a command
reference number for each command we send out. This is FCP-4 compliant
in that we do this per ITL nexus to generate the allowed 1 thru 255
CRN.
In order to support the target side of FC-TAPE, we now pay attention
to more of the PRLI word 3 parameters which will tell us whether
an initiator wants confirmed responses. While we're at it, we'll
pay attention to the initiator view too and report it.
On sending back CTIOs, we will notice whether the initiator wants
confirmed responses and we'll set up flags to do so.
If a response or data frame is lost the initiator sends us an SRR
(Sequence Retransmit Request) ELS which shows up as an SRR notify
and all outstanding CTIOs are nuked with SRR Received status. The
SRR notify contains the offset that the initiator wants us to restart
the data transfer from or to retransmit the response frame.
If the ISP driver still has the CCB around for which the data segment
or response applies, it will retransmit.
However, we typically don't know about a lost data frame until we
send the FCP Response and the initiator totes up counters for data
moved and notices missing segments. In this case we've already
completed the data CCBs already and sent themn back up to the periph
driver. Because there's no really clean mechanism yet in CAM to
handle this, a hack has been put into place to complete the CTIO
CCB with the CAM_MESSAGE_RECV status which will have a MODIFY DATA
POINTER extended message in it. The internal ISP target groks this
and ctl(8) will be modified to deal with this as well.
At any rate, the data is retransmitted and an an FCP response is
sent. The whole point here is to successfully complete a command
so that you don't have to depend on ULP (SCSI) to have to recover,
which in the case of tape is not really possible (hence the name
FC-TAPE).
Sponsored by: Spectralogic
MFC after: 1 month
The existing method for testing for MRR is to call the "SetupXTXDesc"
HAL method and see if it returns AH_TRUE or AH_FALSE. This capability
explicitly lists what number of multi-rate attempts are possible.
"1" means "one rate attempt supported".
* shuffle things around so things fall on natural padding boundaries;
* add a couple of new flags to specify LDPC and whether to switch to the
low power RX chain configuration after this TX has completed.
Obtained from: Qualcomm Atheros
Specifically, however:
* AR9280 and later support 1-stream STBC RX;
* AR9280 and AR9287 support 1-stream STBC TX.
The STBC support isn't announced (yet) via net80211 and it isn't at all
chosen by the rate control code, so there's no real consumer of this
yet.
Obtained from: Qualcomm Atheros
(future) TPC support in the AR9300 HAL.
This is effectively a no-op for the moment as (a) TPC isn't really
supported, (b) the AR9300 HAL isn't yet public, and (c) the existing
HAL code doesn't use these fields.
Obtained from: Qualcomm Atheros
buffers.
ath_descdma is now being used for things other than the classical
combination of ath_buf + ath_desc allocations. In this particular case,
don't try to free and blank out the ath_buf list if it's not passed in.
of buffers, only the number of descriptors.
This involves:
* Change the allocation function to not use nbuf at all;
* When calling it, pass in "nbuf * ndesc" to correctly update how many
descriptors are being allocated.
Whilst here, fix the descriptor allocation code to correctly allocate
a larger buffer size if the Merlin 4KB WAR is required. It overallocates
descriptors when allocating a block that doesn't ever have a 4KB boundary
being crossed, but that can be fixed at a later stage.
http://info.iet.unipi.it/~luigi/vale/
VALE lets you dynamically instantiate multiple software bridges
that talk the netmap API (and are *extremely* fast), so you can test
netmap applications without the need for high end hardware.
This is particularly useful as I am completing a netmap-aware
version of ipfw, and VALE provides an excellent testing platform.
Also, I also have netmap backends for qemu mostly ready for commit
to the port, and this too will let you interconnect virtual machines
at high speed without fiddling with bridges, tap or other slow solutions.
The API for applications is unchanged, so you can use the code
in tools/tools/netmap (which i will update soon) on the VALE ports.
This commit also syncs the code with the one in my internal repository,
so you will see some conditional code for other platforms.
The code should run mostly unmodified on stable/9 so people interested
in trying it can just copy sys/dev/netmap/ and sys/net/netmap*.h
from HEAD
VALE is joint work with my colleague Giuseppe Lettieri, and
is partly supported by the EU Projects CHANGE and OPENLAB
subdevice ahciem. Emulate SEMB SES device from AHCI LED interface to expose
it to users in form of ses(4) CAM device. If we ever see AHCI controllers
supporting SES of SAF-TE over I2C as described by specification, they should
fit well into this new picture.
Sponsored by: iXsystems, Inc.
list of supported devices with the union of:
NetBSD src/sys/dev/usb/uslsa.c 1.18
OpenBSD src/sys/dev/usb/uslcom.c 1.24
Linux source/drivers/usb/serial/cp210x.c HEAD
Remove duplicate JABLOTRON PC60B entry.
Note that some of the devices added here are multi-port devices. The
uslcom(4) driver currently only supports the first port on such devices.
Update the man page to reflect the full list of supported devices.
Remove two caveats from the CAVEATS section, as both listed caveats no
longer apply. Add a caveat about multi-port devices.
MFC after: 2 weeks
- The USLCOM_SET_BAUD_DIV command (0x01)
- The USLCOM_SET_BAUD_RATE command (0x13)
Devices based on the CP1204 will only accept the latter command, and ignore
the former. As the latter command works on all chips that this driver
supports, switch to always using it.
A slight confusion here is that the previously used command was incorrectly
named USLCOM_BAUD_RATE - even though we no longer use it, rename it to
USLCOM_SET_BAUD_DIV to closer match the name used in the datasheet.
This change reflects a similar change made in the Linux driver, which was
submitted by preston.fick at silabs.com, and has been tested on all of the
uslcom(4) devices I have to hand.
MFC after: 2 weeks
one device (support for Motorola cables), this syncronises us with:
OpenBSD src/sys/dev/usb/uplcom.c 1.56
NetBSD src/sys/dev/usb/uplcom.c 1.73
Linux kernel.org HEAD
MFC after: 1 week
when used in qemu (and this driver is for non-PCIe cards,
so probably its largest use is in virtualized environments).
Approved by: Jack Vogel
MFC after: 3 days
The AR9300 and later descriptors are 128 bytes, however I'd like to make
sure that isn't used for earlier chips.
* Populate the TX descriptor length field in the softc with
sizeof(ath_desc)
* Use this field when allocating the TX descriptors
* Pre-AR93xx TX/RX descriptors will use the ath_desc size; newer ones will
query the HAL for these sizes.
The function keys on a Microsoft Natural Egronomic Keyboard 4000 have been
repurposed as "Help", "Undo", "Redo" etc., and a special "F Lock" key is
required to return them to their normal purpose.
This change enables the UQ_KBD_BOOTPROTO quirk for the MS Natural 4000
keyboard to get the keys working again. More extensive changes to the USB
keyboard infrastructure would be needed to fully support the "F Lock" mode
and the extended keys on this keyboard.
PR: usb/116947
Approved by: hselasky@
* Introduce TX DMA setup/teardown methods, mirroring what's done in
the RX path.
Although the TX DMA descriptor is setup via ath_desc_alloc() /
ath_desc_free(), there TX status descriptor ring will be allocated
in this path.
* Remove some of the TX EDMA capability probing from the RX path and
push it into the new TX EDMA path.
sized TX descriptor.
This is required for the AR93xx EDMA support which requires 128 byte
TX descriptors (which is significantly larger than the earlier
hardware.)