This is actually several different bugs:
- The code is not designed to handle inpcb deletion after interface deletion
- add reference for inpcb membership
- The multicast address has to be removed from interface lists when the refcount
goes to zero OR when the interface goes away
- decouple list disconnect from refcount (v6 only for now)
- ifmultiaddr can exist past being on interface lists
- add flag for tracking whether or not it's enqueued
- deferring freeing moptions makes the incpb cleanup code simpler but opens the
door wider still to races
- call inp_gcmoptions synchronously after dropping the the inpcb lock
Fundamentally multicast needs a rewrite - but keep applying band-aids for now.
Tested by: kp
Reported by: novel, kp, lwhsu
created and before exec.start is called. [1]
- Bump __FreeBSD_version.
This allows to attach ZFS datasets and various other things to be
done before any command/service/rc-script is started in the new
jail.
PR: 228066 [1]
Reviewed by: jamie [1]
Submitted by: Stefan Grönke <stefan@gronke.net> [1]
Differential Revision: https://reviews.freebsd.org/D15330 [1]
So that I don't have to keep grepping around the codebase to remember what each
one does. And maybe it saves someone else some time.
Fix a trivial whitespace issue while here.
No functional change.
Sponsored by: Dell EMC Isilon
Ensure that the valid PCID state is created for proc0 pmap, since it
might be used by efirt enter() before first context switch on the BSP.
Sponsored by: The FreeBSD Foundation
MFC after: 6 days
The isonum_* functions are defined to take unsigend char* as an argument,
but the structure fields are defined as char. Change to u_char where needed.
Probably the full structure should be changed, but I'm not sure about the
side affects.
While there, add __packed attribute.
Differential Revision: https://reviews.freebsd.org/D16564
hashfilters. Two because the driver needs to look up a hashfilter by
its 4-tuple or tid.
A couple of fixes while here:
- Reject attempts to add duplicate hashfilters.
- Do not assume that any part of the 4-tuple that isn't specified is 0.
This makes it consistent with all other mandatory parameters that
already require explicit user input.
MFC after: 2 weeks
Sponsored by: Chelsio Communications
Remove the non-INTRNG code.
Remove left over cut and paste code from the lpc code that was the start for the port.
Set KERNPHYSADDR and KERNVIRTADDR
Tested on Buffalo_WZR2-G300N
Differential Revision: https://reviews.freebsd.org/D16622
The libkqueue tests have several places that leak memory by using an
idiom like:
puts(kevent_to_str(kevp));
Rework to save the pointer returned from kevent_to_str() and then
free() it after it has been used.
Reported by: asomers (pointer to Coverity), Coverity
CID: 1296063, 1296064, 1296065, 1296066, 1296067, 1350287, 1394960
Sponsored by: Dell EMC
Currently, the limits are quite high. On machines with millions of
mbuf clusters, the reassembly queue limits can also run into
the millions. Lower these values.
Also, try to ensure that no bucket will have a reassembly
queue larger than approximately 100 items. This limits the cost to
find the correct reassembly queue when processing an incoming
fragment.
Due to the low limits on each bucket's length, increase the size of
the hash table from 64 to 1024.
Reviewed by: jhb
Security: FreeBSD-SA-18:10.ip
Security: CVE-2018-6923
In particular, try to ensure that no bucket will have a reassembly
queue larger than approximately 100 items. This limits the cost to
find the correct reassembly queue when processing an incoming
fragment.
Due to the low limits on each bucket's length, increase the size of
the hash table from 64 to 1024.
Reviewed by: jhb
Security: FreeBSD-SA-18:10.ip
Security: CVE-2018-6923
On the guest entry in bhyve, flush L1 data cache, using either L1D
flush command MSR if available, or by reading enough uninteresting
data to fill whole cache.
Flush is automatically enabled on CPUs which do not report RDCL_NO,
and can be disabled with the hw.vmm.l1d_flush tunable/kenv.
Security: CVE-2018-3646
Reviewed by: emaste. jhb, Tony Luck <tony.luck@intel.com>
Sponsored by: The FreeBSD Foundation
Currently, we process IPv6 fragments with 0 bytes of payload, add them
to the reassembly queue, and do not recognize them as duplicating or
overlapping with adjacent 0-byte fragments. An attacker can exploit this
to create long fragment queues.
There is no legitimate reason for a fragment with no payload. However,
because IPv6 packets with an empty payload are acceptable, allow an
"atomic" fragment with no payload.
Reviewed by: jhb
Security: FreeBSD-SA-18:10.ip
Security: CVE-2018-6923
There is a hashing algorithm which should distribute IPv6 reassembly
queues across the available buckets in a relatively even way. However,
if there is a flaw in the hashing algorithm which allows a large number
of IPv6 fragment reassembly queues to end up in a single bucket, a per-
bucket limit could help mitigate the performance impact of this flaw.
Implement such a limit, with a default of twice the maximum number of
reassembly queues divided by the number of buckets. Recalculate the
limit any time the maximum number of reassembly queues changes.
However, allow the user to override the value using a sysctl
(net.inet6.ip6.maxfragbucketsize).
Reviewed by: jhb
Security: FreeBSD-SA-18:10.ip
Security: CVE-2018-6923
The IPv4 fragment reassembly code supports a limit on the number of
fragments per packet. The default limit is currently 17 fragments.
Among other things, this limit serves to limit the number of fragments
the code must parse when trying to reassembly a packet.
Add a limit to the IPv6 reassembly code. By default, limit a packet
to 65 fragments (64 on the queue, plus one final fragment to complete
the packet). This allows an average fragment size of 1,008 bytes, which
should be sufficient to hold a fragment. (Recall that the IPv6 minimum
MTU is 1280 bytes. Therefore, this configuration allows a full-size
IPv6 packet to be fragmented on a link with the minimum MTU and still
carry approximately 272 bytes of headers before the fragmented portion
of the packet.)
Users can adjust this limit using the net.inet6.ip6.maxfragsperpacket
sysctl.
Reviewed by: jhb
Security: FreeBSD-SA-18:10.ip
Security: CVE-2018-6923
The IPv6 reassembly fragment limit is based on the number of mbuf clusters,
which are a global resource. However, the limit is currently applied
on a per-VNET basis. Given enough VNETs (or given sufficient customization
on enough VNETs), it is possible that the sum of all the VNET fragment
limits will exceed the number of mbuf clusters available in the system.
Given the fact that the fragment limits are intended (at least in part) to
regulate access to a global resource, the IPv6 fragment limit should
be applied on a global basis.
Note that it is still possible to disable fragmentation for a particular
VNET by setting the net.inet6.ip6.maxfragpackets sysctl to 0 for that
VNET. In addition, it is now possible to disable fragmentation globally
by setting the net.inet6.ip6.maxfrags sysctl to 0.
Reviewed by: jhb
Security: FreeBSD-SA-18:10.ip
Security: CVE-2018-6923
There is a hashing algorithm which should distribute IPv4 reassembly
queues across the available buckets in a relatively even way. However,
if there is a flaw in the hashing algorithm which allows a large number
of IPv4 fragment reassembly queues to end up in a single bucket, a per-
bucket limit could help mitigate the performance impact of this flaw.
Implement such a limit, with a default of twice the maximum number of
reassembly queues divided by the number of buckets. Recalculate the
limit any time the maximum number of reassembly queues changes.
However, allow the user to override the value using a sysctl
(net.inet.ip.maxfragbucketsize).
Reviewed by: jhb
Security: FreeBSD-SA-18:10.ip
Security: CVE-2018-6923
The IP reassembly fragment limit is based on the number of mbuf clusters,
which are a global resource. However, the limit is currently applied
on a per-VNET basis. Given enough VNETs (or given sufficient customization
of enough VNETs), it is possible that the sum of all the VNET limits
will exceed the number of mbuf clusters available in the system.
Given the fact that the fragment limit is intended (at least in part) to
regulate access to a global resource, the fragment limit should
be applied on a global basis.
VNET-specific limits can be adjusted by modifying the
net.inet.ip.maxfragpackets and net.inet.ip.maxfragsperpacket
sysctls.
To disable fragment reassembly globally, set net.inet.ip.maxfrags to 0.
To disable fragment reassembly for a particular VNET, set
net.inet.ip.maxfragpackets to 0.
Reviewed by: jhb
Security: FreeBSD-SA-18:10.ip
Security: CVE-2018-6923
Currently, all IPv6 fragment reassembly queues are kept in a flat
linked list. This has a number of implications. Two significant
implications are: all reassembly operations share a common lock,
and it is possible for the linked list to grow quite large.
Improve IPv6 reassembly performance by hashing fragments into buckets,
each of which has its own lock. Calculate the hash key using a Jenkins
hash with a random seed.
Reviewed by: jhb
Security: FreeBSD-SA-18:10.ip
Security: CVE-2018-6923
Currently, IPv4 fragments are hashed into buckets based on a 32-bit
key which is calculated by (src_ip ^ ip_id) and combined with a random
seed. However, because an attacker can control the values of src_ip
and ip_id, it is possible to construct an attack which causes very
deep chains to form in a given bucket.
To ensure more uniform distribution (and lower predictability for
an attacker), calculate the hash based on a key which includes all
the fields we use to identify a reassembly queue (dst_ip, src_ip,
ip_id, and the ip protocol) as well as a random seed.
Reviewed by: jhb
Security: FreeBSD-SA-18:10.ip
Security: CVE-2018-6923
We always zero the invalidated PTE/PDE for superpage, which means that
L1TF CPU vulnerability (CVE-2018-3620) can be only used for reading
from the page at zero.
Note that both i386 and amd64 exclude the page from phys_avail[]
array, so this change is redundant, but I think that phys_avail[] on
UEFI-boot does not need to do that. Eventually the blacklisting
should be made conditional on CPUs which report that they are not
vulnerable to L1TF.
Reviewed by: emaste. jhb
Sponsored by: The FreeBSD Foundation
curpmap.
When performing context switch on a machine without PCID, if current
%cr3 equals to the new pmap %cr3, which is typical for kernel_pmap
vs. kernel process, I overlooked to update PCPU curpmap value. Remove
check for %cr3 not equal to pm_cr3 for doing the update. It is
believed that this case cannot happen at all, due to other changes in
this revision.
Also, do not set the very first curpmap to kernel_pmap, it should be
vmspace0 pmap instead to match curproc.
Move the common code to activate the initial pmap both on BSP and APs
into pmap_activate_boot() helper.
Reported by: eadler, ambrisko
Discussed with: kevans
Reviewed by: alc, markj (previous version)
Tested by: ambrisko (previous version)
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
Differential revision: https://reviews.freebsd.org/D16618
Rather than hard-coding the number of CPUs to 2, look up the PVPE field
in MVPConf0, as the valid VPE numbers are from 0 to PVPE inclusive.
Submitted by: "James Clarke" <jrtc4@cam.ac.uk>
Reviewed by: br
Sponsored by: DARPA, AFRL
Differential Revision: https://reviews.freebsd.org/D16644