address of the dirhash, rather than the first sizeof(struct dirhash
*) bytes of the structure (which, thankfully, seem to be constant).
Submitted by: Ted Unangst <tedu@zeitbombe.org>
MFC after: 2 weeks
- include <machine/../linux32/linux.h> instead of <machine/../linux/linux.h>
if building with the COMPAT_LINUX32 option.
- make minimal changes to the i386 linprocfs_docpuinfo() function to support
amd64. We return a fake CPU family of 6 for now.
with the COMPAT_LINUX32 option. This is largely based on the i386 MD Linux
emulations bits, but also builds on the 32-bit FreeBSD and generic IA-32
binary emulation work.
Some of this is still a little rough around the edges, and will need to be
revisited before 32-bit and 64-bit Linux emulation support can coexist in
the same kernel.
on AMD64, and the general case where the emulated platform has different
size pointers than we use natively:
- declare certain structure members as l_uintptr_t and use the new PTRIN
and PTROUT macros to convert to and from native pointers.
- declare some structures __packed on amd64 when the layout would differ
from that used on i386.
- include <machine/../linux32/linux.h> instead of <machine/../linux/linux.h>
if compiling with COMPAT_LINUX32. This will need to be revisited before
32-bit and 64-bit Linux emulation support can coexist in the same kernel.
- other small scattered changes.
This should be a no-op on i386 and Alpha.
"debug.mpsafevm" results in (almost) Giant-free execution of zero-fill
page faults. (Giant is held only briefly, just long enough to determine
if there is a vnode backing the faulting address.)
Also, condition the acquisition and release of Giant around calls to
pmap_remove() on "debug.mpsafevm".
The effect on performance is significant. On my dual Opteron, I see a
3.6% reduction in "buildworld" time.
- Use atomic operations to update several counters in vm_fault().
before dereferencing sotounpcb() and checking its value, as so_pcb
is protected by protocol locking, not subsystem locking. This
prevents races during close() by one thread and use of ths socket
in another.
unp_bind() now assert the UNP lock, and uipc_bind() now acquires
the lock around calls to unp_bind().
wait for system wires to disappear, do so (much more trivially) by
instead only checking for system wires of user maps and not kernel maps.
Alternative by: tor
Reviewed by: alc
- pipespace is now able to resize non-empty pipes; this allows
for many more resizing opportunities
- Backing is no longer pre-allocated for the reverse direction
of pipes. This direction is rarely (if ever) used, so this cuts the
amount of map space allocated to a pipe in half.
- Pipe growth is now much more dynamic; a pipe will now grow when
the total amount of data it contains and the size of the write are
larger than the size of pipe. Previously, only individual writes greater
than the size of the pipe would cause growth.
- In low memory situations, pipes will now shrink during both read
and write operations, where possible. Once the memory shortage
ends, the growth code will cause these pipes to grow back to an appropriate
size.
- If the full PIPE_SIZE allocation fails when a new pipe is created, the
allocation will be retried with SMALL_PIPE_SIZE. This helps to deal
with the situation of a fragmented map after a low memory period has
ended.
- Minor documentation + code changes to support the above.
In total, these changes increase the total number of pipes that
can be allocated simultaneously, drastically reducing the chances that
pipe allocation will fail.
Performance appears unchanged due to dynamic resizing.
for EBus, ISA and PCI, by compiling ofw_isa.c and ofw_pci_if.m unconditio-
nally. The correct way is to rewrite OF_decode_addr() in ofw_machdep.c in
a bus-neutral way. That's certainly possible but we unfortunately didn't
make it for FreeBSD 5.3.
Approved by: tmm
contained "sanity" checks that could be violated if another CPU modified
the pmap between the emulation trap and locking the pmap in
pmap_emulate_reference(). As a result, the pte could be inconsistent
with the access that caused the emulation trap. In such cases,
pmap_emulate_reference() now flushes the current CPU's TLB entry and
returns.
- Make pmap_changebit() an inline function, reducing object code size.
Don't count busy buffers before the initial call to sync() and
don't skip the initial sync() if no busy buffers were called.
Always call sync() at least once if syncing is requested. This
defers the "Syncing disks, buffers remaining..." message until
after the initial sync() call and the first count of busy
buffers. This backs out changes in kern_shutdown 1.162.
Print a different message when there are no busy buffers after the
initial sync(), which is now the expected situation.
Print an additional message when syncing has completed successfully
in the unusual situation where the work of syncing was done by
boot().
Uppercase one message to make it consistent with all of the other
kernel shutdown messages.
Discussed with: bde (in a much earlier form, prior to 1.162)
Reviewed by: njl (in an earlier form)
logical CPUs on a system to be used as a dedicated watchdog to cause a
drop to the debugger and/or generate an NMI to the boot processor if
the kernel ceases to respond. A sysctl enables the watchdog running
out of the processor's idle thread; a callout is launched to reset a
timer in the watchdog. If the callout fails to reset the timer for ten
seconds, the watchdog will fire. The sysctl allows you to select which
CPU will run the watchdog.
A sample "debug.leak_schedlock" is included, which causes a sysctl to
spin holding sched_lock in order to trigger the watchdog. On my Xeons,
the watchdog is able to detect this failure mode and break into the
debugger, which cannot otherwise be done without an NMI button.
This option does not currently work with sched_ule due to ule's push
notion of scheduling, similar to machdep.hlt_logical_cpus failing to
work with that scheduler.
On face value, this might seem somewhat inefficient, but there are a
lot of dual-processor Xeons with HTT around, so using one as a watchdog
for testing is not as inefficient as one might fear.
of PS_STRINGS. This is a no-op at present, but it will be needed when
running 32-bit Linux binaries on amd64 to ensure PS_STRINGS is in
addressable memory.
Without this, the device cannot detect the end of ethernet packets
whose size is a multiple of the USB packat size.
PR: kern/70474
Submitted by: Andrew Thompson <andy@fud.org.nz>
MFC after: 1 week
a more complete subsystem, and removes the knowlege of how things are
implemented from the drivers. Include locking around filter ops, so a
module like aio will know when not to be unloaded if there are outstanding
knotes using it's filter ops.
Currently, it uses the MTX_DUPOK even though it is not always safe to
aquire duplicate locks. Witness currently doesn't support the ability
to discover if a dup lock is ok (in some cases).
Reviewed by: green, rwatson (both earlier versions)
attempt to IPI other cpus when entering the debugger in order to stop
them while in the debugger. The default remains to issue the stop;
however, that can result in a hang if another cpu has interrupts disabled
and is spinning, since the IPI won't be received and the KDB will wait
indefinitely. We probably need to add a timeout, but this is a useful
stopgap in the mean time.
Reviewed by: marcel
and that can be used as an identify function for all kinds of busses on a
certain platform. Expect for sparc64 these are only stubs right now. [1]
- For sparc64, add code to its uart_cpu_identify() for registering the on-
board ISA UARTs and their resources based on information obtained from
Open Firmware.
It would be better if this would be done in the OFW ISA code. However, due
to the common FreeBSD ISA code and PNP-IDs not always being present in the
properties of the ISA nodes there seems to be no good way to implement that.
Therefore special casing UARTs as the sole really relevant ISA devices on
sparc64 seemed reasonable. [2]
Approved by: marcel
Discussed with: marcel [1], tmm [2]
Tested by: make universe
without Open Firmware directly instead of using OF_getetheraddr(). This is
a bit painful though, as the MAC address is contained in the NA field of
the VPD of the EBus bridge, which is is another function of the same chip.
To make it worse, the VPD of the EBus bridge can't be accessed via the PCI
capability pointer but has to be digged out from the Boot PROM and has a
non-standard format.
The PCI VPD struct and macros used here should be part of the FreeBSD PCI
code nevertheless.
Approved by: tmm
Based on: NetBSD
Tested with: Sun X1032A (hme(4)-isp(4)-combo card) on alpha and i386