The overflow causes the wraparound with consequent corruption of the
(almost) whole address space mapping.
As Alan noted, pmap_copy() does not require the wrap-around checks
because it cannot be applied to the kernel's pmap. The checks there are
included for consistency.
Reported and tested by: kris (i386/pmap.c:pmap_remove() part)
Reviewed by: alc
MFC after: 1 week
multi-descriptor transmission attempt. Datasheet said nothing about
this requirements. This should fix a long-standing VLAN hardware
tagging issues with re(4).
Reported by: Giulio Ferro ( auryn AT zirakzigil DOT org )
Tested by: Giulio Ferro ( auryn AT zirakzigil DOT org )
to declaring a proper module. The module event handler is part of the
gpart core and will add the scheme to an internal list on module load
and will remove the scheme from the internal list on module unload.
This makes it possible to dynamically load and unload partitioning
schemes.
to it for tasting. This is useful when the class, through means outside
the scope of GEOM, can claim providers previously unclaimed.
The g_retaste() function posts an event which is handled by the
g_retaste_event().
Event suggested by: phk
exhaustion is encountered. There was a fix made previously for this
problem but the solution (breaking out of the receive loop) does not
seem to work. mbuf reuse strategy is already adopted by other drivers
such as if_bge. The problem was recreated and the patch is also
verified in the same test environment.
layouts different than the defaults:
o hint.npe.0.mac="A", "B", etc. specifies the window for MAC register accesses
o hint.npe.0.mii="A", "B", etc. specifies PHY registers
o hint.npe.1.phy=%d specifies the PHY to map to a port
This allows devices like NSLU to be setup w/o code changes and will
also be used for forthcoming support for more Avila boards.
Reviewed by: imp
MFC after 1 week
BO_LOCK/UNLOCK/MTX when manipulating the bufobj.
- Create a new lock in the bufobj to lock bufobj fields independently.
This leaves the vnode interlock as an 'identity' lock while the bufobj
is an io lock. The bufobj lock is ordered before the vnode interlock
and also before the mnt ilock.
- Exploit this new lock order to simplify softdep_check_suspend().
- A few sync related functions are marked with a new XXX to note that
we may not properly interlock against a non-zero bv_cnt when
attempting to sync all vnodes on a mountlist. I do not believe this
race is important. If I'm wrong this will make these locations easier
to find.
Reviewed by: kib (earlier diff)
Tested by: kris, pho (earlier diff)
code.
The bug:
There exists a race condition for timeout/untimeout(9) due to the
way that the softclock thread dequeues timeouts.
The softclock thread sets the c_func and c_arg of the callout to
NULL while holding the callout lock but not Giant. It then drops
the callout lock and acquires Giant.
It is at this point where untimeout(9) on another cpu/thread could
be called.
Since c_arg and c_func are cleared, untimeout(9) does not touch the
callout and returns as if the callout is canceled.
The softclock then tries to acquire Giant and likely blocks due to
the other cpu/thread holding it.
The other cpu/thread then likely deallocates the backing store that
c_arg points to and finishes working and hence drops Giant.
Softclock resumes and acquires giant and calls the function with
the now free'd c_arg and we have corruption/crash.
The fix:
We need to track curr_callout even for timeout(9) (LOCAL_ALLOC)
callouts. We need to free the callout after the softclock processes
it to deal with the race here.
Obtained from: Juniper Networks, iedowse
Reviewed by: jhb, iedowse
MFC After: 2 weeks.
around the check for the BV_BKGRDINPROG in the brelse() and bqrelse().
See the comment for the explanation why it is safe.
Tested by: pho
Submitted by: jeff
ffs_extread() when setting the IN_ACCESS flag by checking whether the
IN_ACCESS is already set. The possible race there is admissible.
Tested by: pho
Submitted by: jeff
to enter thread_suspend_check().
- Set TDF_ASTPENDING along with TDF_NEEDSUSPCHK so we can move the
thread_suspend_check() to ast() rather than userret().
- Check TDF_NEEDSUSPCHK in the sleepq_catch_signals() optimization so
that we don't miss a suspend request. If this is set use the
expensive signal path.
- Set NEEDSUSPCHK when creating a new thread in thr in case the
creating thread is due to be suspended as well but has not yet.
Reviewed by: davidxu (Authored original patch)
lock in the 8259A drivers as these drivers are only used on UP systems.
This slightly reduces the penalty of an SMP kernel (such as GENERIC) on
a UP x86 machine.
resource to a CPU. The default method is to pass the request up to the
parent similar to BUS_CONFIG_INTR() so that all busses don't have to
explicitly implement bus_bind_intr. A bus_bind_intr(9) wrapper routine
similar to bus_setup/teardown_intr() is added for device drivers to use.
Unbinding an interrupt is done by binding it to NOCPU. The IRQ resource
must be allocated, but it can happen in any order with respect to
bus_setup_intr(). Currently it is only supported on amd64 and i386 via
nexus(4) methods that simply call the intr_bind() routine.
Tested by: gallatin
putting the correct size in the fib header. Presumably the older firmware
silently ignored a bad size field.
(This change tested with a 3805 controller. Passthrough devices were
created when running firmware build 12814, but not 15323 or later. With
this change they're created for both old and new firmware versions.)
Submitted by: Adaptec
FSACTL_LNX_SEND_LARGE_FIB, and FSACTL_LNX_SEND_RAW_SRB, and correct size
checks on FIBs passed in from userspace. Both changes were obtained from
Adaptec's driver build 15317. Adaptec's commandline RAID tool arcconf uses
these ioctls when creating a RAID-10 array (and probably other operations
too).
so the annoying message is not printed.
o Don't warn about FUTEX_FD not being implemented
and return ENOSYS instead of 0 (eg. success).
o Clear FUTEX_PRIVATE_FLAG as we actually implement
only private futexes so there is no reason to
return ENOSYS when app asks for a private futex.
We don't reject shared futexes because they worked
just fine with our implementation so far.
Approved by: kib (mentor)
Tested by: bsam
MFC after: 1 week
work on architectures with a write-back cache as the PIO writes end up
in the cache which the sync(BUS_DMASYNC_POSTREAD) in usb_transfer_complete
then discards; compensate in the xfer methods that do PIO by pushing the
writes out of the cache before usb_transfer_complete is called.
This fixes USB on xscale and likely other places.
Sponsored by: hobnob
Reviewed by: cognet, imp
MFC after: 1 month
obtain the reference. In particular, this fixes the panic reported in
the PR. Remove the comments stating that this needs to be done.
PR: kern/119422
MFC after: 1 week
all uses) involve a read but usbd_start_transfer only does a PREWRITE; change
this to BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE as I'm not sure if any
users do write+read.
Reviewed by: cognet, imp
MFC after: 1 month
rqindex back in struct thread.
- Compile kern_switch.c independently again and stop #include'ing it from
schedulers.
- Remove the ts_thread backpointers and convert most code to go from
struct thread to struct td_sched.
- Cleanup the ts_flags #define garbage that was causing us to sometimes
do things that expanded to td->td_sched->ts_thread->td_flags in 4BSD.
- Export the kern.sched sysctl node in sysctl.h
This one line change makes the following code found in many ethernet device drivers
(at least em, igb, ixgbe, and cxgb) gratuitous
case SIOCSIFADDR:
if (ifa->ifa_addr->sa_family == AF_INET) {
/*
* XXX
* Since resetting hardware takes a very long time
* and results in link renegotiation we only
* initialize the hardware only when it is absolutely
* required.
*/
ifp->if_flags |= IFF_UP;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
EM_CORE_LOCK(adapter);
em_init_locked(adapter);
EM_CORE_UNLOCK(adapter);
}
arp_ifinit(ifp, ifa);
} else
error = ether_ioctl(ifp, command, data);
break;
thread_fini(). The schedulers initialize themselves properly during
sched_fork_thread() anyhow. fini is only called when we're returning
the memory to the allocator which surely doesn't care what state the
memory is in.