21 Commits

Author SHA1 Message Date
John Baldwin
eaf86d1678 Add preliminary support for binding interrupts to CPUs:
- Add a new intr_event method ie_assign_cpu() that is invoked when the MI
  code wishes to bind an interrupt source to an individual CPU.  The MD
  code may reject the binding with an error.  If an assign_cpu function
  is not provided, then the kernel assumes the platform does not support
  binding interrupts to CPUs and fails all requests to do so.
- Bind ithreads to CPUs on their next execution loop once an interrupt
  event is bound to a CPU.  Only shared ithreads are bound.  We currently
  leave private ithreads for drivers using filters + ithreads in the
  INTR_FILTER case unbound.
- A new intr_event_bind() routine is used to bind an interrupt event to
  a CPU.
- Implement binding on amd64 and i386 by way of the existing pic_assign_cpu
  PIC method.
- For x86, provide a 'intr_bind(IRQ, cpu)' wrapper routine that looks up
  an interrupt source and binds its interrupt event to the specified CPU.
  MI code can currently (ab)use this by doing:

	intr_bind(rman_get_start(irq_res), cpu);

  however, I plan to add a truly MI interface (probably a bus_bind_intr(9))
  where the implementation in the x86 nexus(4) driver would end up calling
  intr_bind() internally.

Requested by:	kmacy, gallatin, jeff
Tested on:	{amd64, i386} x {regular, INTR_FILTER}
2008-03-14 19:41:48 +00:00
John Baldwin
fb610ca1f9 Minor fixes and tweaks to the x86 interrupt code:
- Split the intr_table_lock into an sx lock used for most things, and a
  spin lock to protect intrcnt_index.  Originally I had this as a spin lock
  so interrupt code could use it to lookup sources.  However, we don't
  actually do that because it would add a lot of overhead to interrupts,
  and if we ever do support removing interrupt sources, we can use other
  means to safely do so w/o locking in the interrupt handling code.
- Replace is_enabled (boolean) with is_handlers (a count of handlers) to
  determine if a source is enabled or not.  This allows us to notice when
  a source is no longer in use.  When that happens, we now invoke a new
  PIC method (pic_disable_intr()) to inform the PIC driver that the
  source is no longer in use.  The I/O APIC driver frees the APIC IDT
  vector when this happens.  The MSI driver no longer needs to have a
  hack to clear is_enabled during msi_alloc() and msix_alloc() as a result
  of this change as well.
- Add an apic_disable_vector() to reset an IDT vector back to Xrsvd to
  complement apic_enable_vector() and use it in the I/O APIC and MSI code
  when freeing an IDT vector.
- Add a new nexus hook: nexus_add_irq() to ask the nexus driver to add an
  IRQ to its irq_rman.  The MSI code uses this when it creates new
  interrupt sources to let the nexus know about newly valid IRQs.
  Previously the msi_alloc() and msix_alloc() passed some extra stuff
  back to the nexus methods which then added the IRQs.  This approach is
  a bit cleaner.
- Change the MSI sx lock to a mutex.  If we need to create new sources,
  drop the lock, create the required number of sources, then get the lock
  and try the allocation again.
2007-05-08 21:29:14 +00:00
John Baldwin
e706f7f0c7 Revamp the MSI/MSI-X code a bit to achieve two main goals:
- Simplify the amount of work that has be done for each architecture by
  pushing more of the truly MI code down into the PCI bus driver.
- Don't bind MSI-X indicies to IRQs so that we can allow a driver to map
  multiple MSI-X messages into a single IRQ when handling a message
  shortage.

The changes include:
- Add a new pcib_if method: PCIB_MAP_MSI() which is called by the PCI bus
  to calculate the address and data values for a given MSI/MSI-X IRQ.
  The x86 nexus drivers map this into a call to a new 'msi_map()' function
  in msi.c that does the mapping.
- Retire the pcib_if method PCIB_REMAP_MSIX() and remove the 'index'
  parameter from PCIB_ALLOC_MSIX().  MD code no longer has any knowledge
  of the MSI-X index for a given MSI-X IRQ.
- The PCI bus driver now stores more MSI-X state in a child's ivars.
  Specifically, it now stores an array of IRQs (called "message vectors" in
  the code) that have associated address and data values, and a small
  virtual version of the MSI-X table that specifies the message vector
  that a given MSI-X table entry uses.  Sparse mappings are permitted in
  the virtual table.
- The PCI bus driver now configures the MSI and MSI-X address/data
  registers directly via custom bus_setup_intr() and bus_teardown_intr()
  methods.  pci_setup_intr() invokes PCIB_MAP_MSI() to determine the
  address and data values for a given message as needed.  The MD code
  no longer has to call back down into the PCI bus code to set these
  values from the nexus' bus_setup_intr() handler.
- The PCI bus code provides a callout (pci_remap_msi_irq()) that the MD
  code can call to force the PCI bus to re-invoke PCIB_MAP_MSI() to get
  new values of the address and data fields for a given IRQ.  The x86
  MSI code uses this when an MSI IRQ is moved to a different CPU, requiring
  a new value of the 'address' field.
- The x86 MSI psuedo-driver loses a lot of code, and in fact the separate
  MSI/MSI-X pseudo-PICs are collapsed down into a single MSI PIC driver
  since the only remaining diff between the two is a substring in a
  bootverbose printf.
- The PCI bus driver will now restore MSI-X state (including programming
  entries in the MSI-X table) on device resume.
- The interface for pci_remap_msix() has changed.  Instead of accepting
  indices for the allocated vectors, it accepts a mini-virtual table
  (with a new length parameter).  This table is an array of u_ints, where
  each value specifies which allocated message vector to use for the
  corresponding MSI-X message.  A vector of 0 forces a message to not
  have an associated IRQ.  The device may choose to only use some of the
  IRQs assigned, in which case the unused IRQs must be at the "end" and
  will be released back to the system.  This allows a driver to use the
  same remap table for different shortage values.  For example, if a driver
  wants 4 messages, it can use the same remap table (which only uses the
  first two messages) for the cases when it only gets 2 or 3 messages and
  in the latter case the PCI bus will release the 3rd IRQ back to the
  system.

MFC after:	1 month
2007-05-02 17:50:36 +00:00
John Baldwin
4c5bec1161 Change the x86 interrupt code to use FreeBSD CPU IDs (i.e. PCPU_GET(cpuid))
rather than local APIC IDs to keep track of CPUs which can handle
interrupts.
2007-03-06 17:16:47 +00:00
Paolo Pisati
ef544f6312 o break newbus api: add a new argument of type driver_filter_t to
bus_setup_intr()

o add an int return code to all fast handlers

o retire INTR_FAST/IH_FAST

For more info: http://docs.freebsd.org/cgi/getmsg.cgi?fetch=465712+0+current/freebsd-current

Reviewed by: many
Approved by: re@
2007-02-23 12:19:07 +00:00
John Baldwin
5fe82bca57 Expand the MSI/MSI-X API to address some deficiencies in the MSI-X support.
- First off, device drivers really do need to know if they are allocating
  MSI or MSI-X messages.  MSI requires allocating powerof2() messages for
  example where MSI-X does not.  To address this, split out the MSI-X
  support from pci_msi_count() and pci_alloc_msi() into new driver-visible
  functions pci_msix_count() and pci_alloc_msix().  As a result,
  pci_msi_count() now just returns a count of the max supported MSI
  messages for the device, and pci_alloc_msi() only tries to allocate MSI
  messages.  To get a count of the max supported MSI-X messages, use
  pci_msix_count().  To allocate MSI-X messages, use pci_alloc_msix().
  pci_release_msi() still handles both MSI and MSI-X messages, however.
  As a result of this change, drivers using the existing API will only
  use MSI messages and will no longer try to use MSI-X messages.
- Because MSI-X allows for each message to have its own data and address
  values (and thus does not require all of the messages to have their
  MD vectors allocated as a group), some devices allow for "sparse" use
  of MSI-X message slots.  For example, if a device supports 8 messages
  but the OS is only able to allocate 2 messages, the device may make the
  best use of 2 IRQs if it enables the messages at slots 1 and 4 rather
  than default of using the first N slots (or indicies) at 1 and 2.  To
  support this, add a new pci_remap_msix() function that a driver may call
  after a successful pci_alloc_msix() (but before allocating any of the
  SYS_RES_IRQ resources) to allow the allocated IRQ resources to be
  assigned to different message indices.  For example, from the earlier
  example, after pci_alloc_msix() returned a value of 2, the driver would
  call pci_remap_msix() passing in array of integers { 1, 4 } as the
  new message indices to use.  The rid's for the SYS_RES_IRQ resources
  will always match the message indices.  Thus, after the call to
  pci_remap_msix() the driver would be able to access the first message
  in slot 1 at SYS_RES_IRQ rid 1, and the second message at slot 4 at
  SYS_RES_IRQ rid 4.  Note that the message slots/indices are 1-based
  rather than 0-based so that they will always correspond to the rid
  values (SYS_RES_IRQ rid 0 is reserved for the legacy INTx interrupt).
  To support this API, a new PCIB_REMAP_MSIX() method was added to the
  pcib interface to change the message index for a single IRQ.

Tested by:	scottl
2007-01-22 21:48:44 +00:00
John Baldwin
fde45e231a Sort function prototypes. 2006-12-12 19:24:45 +00:00
John Baldwin
4184900911 MD support for PCI Message Signalled Interrupts on amd64 and i386:
- Add a new apic_alloc_vectors() method to the local APIC support code
  to allocate N contiguous IDT vectors (aligned on a M >= N boundary).
  This function is used to allocate IDT vectors for a group of MSI
  messages.
- Add MSI and MSI-X PICs.  The PIC code here provides methods to manage
  edge-triggered MSI messages as x86 interrupt sources.  In addition to
  the PIC methods, msi.c also includes methods to allocate and release
  MSI and MSI-X messages.  For x86, we allow for up to 128 different
  MSI IRQs starting at IRQ 256 (IRQs 0-15 are reserved for ISA IRQs,
  16-254 for APIC PCI IRQs, and IRQ 255 is reserved).
- Add pcib_(alloc|release)_msi[x]() methods to the MD x86 PCI bridge
  drivers to bubble the request up to the nexus driver.
- Add pcib_(alloc|release)_msi[x]() methods to the x86 nexus drivers that
  ask the MSI PIC code to allocate resources and IDT vectors.

MFC after:	2 months
2006-11-13 22:23:34 +00:00
John Baldwin
520ffff83e Change the x86 interrupt code to suspend/resume interrupt controllers
(PICs) rather than interrupt sources.  This allows interrupt controllers
with no interrupt pics (such as the 8259As when APIC is in use) to
participate in suspend/resume.
- Always register the 8259A PICs even if we don't use any of their pins.
- Explicitly reset the 8259As on resume on amd64 if 'device atpic' isn't
  included.
- Add a "dummy" PIC for the local APIC on the BSP to reset the local APIC
  on resume.  This gets suspend/resume working with APIC on UP systems.
  SMP still needs more work to bring the APs back to life.

The MFC after is tentative.

Tested by:	anholt (i386)
Submitted by:	Andrea Bittau <a.bittau at cs.ucl.ac.uk> (3)
MFC after:	1 week
2006-10-10 23:23:12 +00:00
John Baldwin
6e20fe33ba Oops, fix sign bug in #ifdef for value of INTRCNT_COUNT.
PR:		kern/99870
Submitted by:	jkim
MFC after:	3 days
2006-10-10 19:26:35 +00:00
John Baldwin
215e7c161a Rework how we wire up interrupt sources to CPUs:
- Throw out all of the logical APIC ID stuff.  The Intel docs are somewhat
  ambiguous, but it seems that the "flat" cluster model we are currently
  using is only supported on Pentium and P6 family CPUs.  The other
  "hierarchy" cluster model that is supported on all Intel CPUs with
  local APICs is severely underdocumented.  For example, it's not clear
  if the OS needs to glean the topology of the APIC hierarchy from
  somewhere (neither ACPI nor MP Table include it) and setup the logical
  clusters based on the physical hierarchy or not.  Not only that, but on
  certain Intel chipsets, even though there were 4 CPUs in a logical
  cluster, all the interrupts were only sent to one CPU anyway.
- We now bind interrupts to individual CPUs using physical addressing via
  the local APIC IDs.  This code has also moved out of the ioapic PIC
  driver and into the common interrupt source code so that it can be
  shared with MSI interrupt sources since MSI is addressed to APICs the
  same way that I/O APIC pins are.
- Interrupt source classes grow a new method pic_assign_cpu() to bind an
  interrupt source to a specific local APIC ID.
- The SMP code now tells the interrupt code which CPUs are avaiable to
  handle interrupts in a simpler and more intuitive manner.  For one thing,
  it means we could now choose to not route interrupts to HT cores if we
  wanted to (this code is currently in place in fact, but under an #if 0
  for now).
- For now we simply do static round-robin of IRQs to CPUs when the first
  interrupt handler just as before, with the change that IRQs are now
  bound to individual CPUs rather than groups of up to 4 CPUs.
- Because the IRQ to CPU mapping has now been moved up a layer, it would
  be easier to manage this mapping from higher levels.  For example, we
  could allow drivers to specify a CPU affinity map for their interrupts,
  or we could allow a userland tool to bind IRQs to specific CPUs.

The MFC is tentative, but I want to see if this fixes problems some folks
had with UP APIC kernels on 6.0 on SMP machines (an SMP kernel would work
fine, but a UP APIC kernel (such as GENERIC in RELENG_6) would lose
interrupts).

MFC after:	1 week
2006-02-28 22:24:55 +00:00
John Baldwin
2dce95a085 Change the i386 code to pass the interrupt vector as a separate argument
rather than embedding it in the intrframe as if_vec.  This reduces diffs
with amd64 somewhat.
- Remove cf_vec from clockframe (it wasn't used anyway) and stop pushing
  dummy vector arguments for ipi_bitmap_handler() and lapic_handle_timer()
  since clockframe == trapframe now.
- Fix ddb to handle stack traces across interrupt entry points that just
  have a trapframe on their stack and not a trapframe + vector.
- Change intr_execute_handlers() to take a trapframe rather than an
  intrframe pointer.
- Change lapic_handle_intr() and atpic_handle_intr() to take a vector and
  trapframe rather than an intrframe.
- GC struct intrframe now that nothing uses it anymore.
- GC CLOCK_TO_TRAPFRAME() and INTR_TO_TRAPFRAME().

Reviewed by:	bde
Requested by:	peter
2005-12-05 22:39:09 +00:00
John Baldwin
c7362ff7fb Change the x86 code to allocate IDT vectors on-demand when an interrupt
source is first enabled similar to how intr_event's now allocate ithreads
on-demand.  Previously, we would map IDT vectors 1:1 to IRQs.  Since we
only have 191 available IDT vectors for I/O interrupts, this limited us
to only supporting IRQs 0-190 corresponding to the first 190 I/O APIC
intpins.  On many machines, however, each PCI-X bus has its own APIC even
though it only has 1 or 2 devices, thus, we were reserving between 24 and
32 IRQs just for 1 or 2 devices and thus 24 or 32 IDT vectors.  With this
change, a machine with 100 IRQs but only 5 in use will only use up 5 IDT
vectors.  Also, this change provides an API (apic_alloc_vector() and
apic_free_vector()) that will allow a future MSI interrupt source driver to
request IDT vectors for use by MSI interrupts on x86 machines.

Tested on:	amd64, i386
2005-11-02 20:11:47 +00:00
John Baldwin
e0f66ef861 Reorganize the interrupt handling code a bit to make a few things cleaner
and increase flexibility to allow various different approaches to be tried
in the future.
- Split struct ithd up into two pieces.  struct intr_event holds the list
  of interrupt handlers associated with interrupt sources.
  struct intr_thread contains the data relative to an interrupt thread.
  Currently we still provide a 1:1 relationship of events to threads
  with the exception that events only have an associated thread if there
  is at least one threaded interrupt handler attached to the event.  This
  means that on x86 we no longer have 4 bazillion interrupt threads with
  no handlers.  It also means that interrupt events with only INTR_FAST
  handlers no longer have an associated thread either.
- Renamed struct intrhand to struct intr_handler to follow the struct
  intr_foo naming convention.  This did require renaming the powerpc
  MD struct intr_handler to struct ppc_intr_handler.
- INTR_FAST no longer implies INTR_EXCL on all architectures except for
  powerpc.  This means that multiple INTR_FAST handlers can attach to the
  same interrupt and that INTR_FAST and non-INTR_FAST handlers can attach
  to the same interrupt.  Sharing INTR_FAST handlers may not always be
  desirable, but having sio(4) and uhci(4) fight over an IRQ isn't fun
  either.  Drivers can always still use INTR_EXCL to ask for an interrupt
  exclusively.  The way this sharing works is that when an interrupt
  comes in, all the INTR_FAST handlers are executed first, and if any
  threaded handlers exist, the interrupt thread is scheduled afterwards.
  This type of layout also makes it possible to investigate using interrupt
  filters ala OS X where the filter determines whether or not its companion
  threaded handler should run.
- Aside from the INTR_FAST changes above, the impact on MD interrupt code
  is mostly just 's/ithread/intr_event/'.
- A new MI ddb command 'show intrs' walks the list of interrupt events
  dumping their state.  It also has a '/v' verbose switch which dumps
  info about all of the handlers attached to each event.
- We currently don't destroy an interrupt thread when the last threaded
  handler is removed because it would suck for things like ppbus(8)'s
  braindead behavior.  The code is present, though, it is just under
  #if 0 for now.
- Move the code to actually execute the threaded handlers for an interrrupt
  event into a separate function so that ithread_loop() becomes more
  readable.  Previously this code was all in the middle of ithread_loop()
  and indented halfway across the screen.
- Made struct intr_thread private to kern_intr.c and replaced td_ithd
  with a thread private flag TDP_ITHREAD.
- In statclock, check curthread against idlethread directly rather than
  curthread's proc against idlethread's proc. (Not really related to intr
  changes)

Tested on:	alpha, amd64, i386, sparc64
Tested on:	arm, ia64 (older version of patch by cognet and marcel)
2005-10-25 19:48:48 +00:00
John Baldwin
42f0ddd465 Tweak the ELCR support slightly. Explicitly probe the ELCR during boot
instead of burying that in the atpic(4) code as atpic(4) is not the only
user of elcr(4).  Change the elcr(4) code to export a global elcr_found
variable that other code can check to see if a valid ELCR was found.

MFC after:	1 month
2005-01-18 20:24:47 +00:00
John Baldwin
21bc8faa44 Add a simple 'intrcnt_add' function that other MD code can use to add a
single named counter to the interrupt counts without having to fake up an
entire interrupt source.
2004-12-23 20:34:18 +00:00
Scott Long
5ba0615c03 Optimize intr_execute_handlers() by combining the pic_disable_source() and
pic_eoi_source() into one call.  This halves the number of spinlock operations
and indirect function calls in the normal case of handling a normal (ithread)
interrupt.  Optimize the atpic and ioapic drivers to use inlines where
appropriate in supporting the intr_execute_handlers() change.

This knocks 900ns, or roughly 1350 cycles, off of the time spent servicing an
interrupt in the common case on my 1.5GHz P4 uniprocessor system.  SMP systems
likely won't see as much of a gain due to the ioapic being more efficient than
the atpic.  I'll investigate porting this to amd64 soon.

Reviewed by:	jhb
2004-08-02 15:31:10 +00:00
John Baldwin
4b1df14c60 - Add a new pic method pic_config_intr() to set the trigger mode and
polarity for a specified IRQ.  The intr_config_intr() function wraps
  this pic method hiding the IRQ to interrupt source lookup.
- Add a config_intr() method to the atpic(4) driver that reconfigures
  the interrupt using the ELCR if possible and returns an error otherwise.
- Add a config_intr() method to the apic(4) driver that just logs any
  requests that would change the existing programming under bootverbose.
  Currently, the only changes the apic(4) driver receives are due to bugs
  in the acpi(4) driver and its handling of link devices, hence the reason
  for such requests currently being ignored.
- Have the nexus(4) driver on i386 implement the bus_config_intr() function
  by calling intr_config_intr().
2004-05-04 21:02:56 +00:00
John Baldwin
030b156bf0 Add a simple mini-driver for the ELCR register. Originally, the ELCR
register controlled the trigger mode and polarity of EISA interrupts.
However, it appears that most (all?) PCI systems use the ELCR to manage
the trigger mode and polarity of ISA interrupts as well since ISA IRQs used
to route PCI interrupts need to be level triggered with active low
polarity.  We check to see if the ELCR exists by sanity checking the value
we get back ensuring that IRQS 0 (8254), 1 (atkbd), 2 (the link from the
slave PIC), and 8 (RTC) are all clear indicating edge trigger and active
high polarity.

This mini-driver will be used by the atpic driver to manage the trigger and
polarity of ISA IRQs.  Also, the mptable parsing code will use this mini
driver rather than examining the ELCR directly.
2004-05-04 20:07:46 +00:00
John Baldwin
3ab2ba59f4 Shuffle the APIC interrupt vectors around a bit:
- Move the IPI and local APIC interrupt vectors up into the 0xf0 - 0xff
  range.  The pmap lazyfix IPI was reordered down next to the TLB
  shootdowns to avoid conflicting with the spurious interrupt vector.
- Move the base of APIC interrupts up 16 so that the first 16 APIC
  interrupts do not overlap the vectors used by the ATPIC.
- Remove bogus interrupt vector reservations for LINT[01].
- Now that 0xc0 - 0xef are available, use them for device interrupts.
  This increases the number of APIC device interrupts to 191.
- Increase the system-wide number of global interrupts to 191 to catch up
  to more APIC interrupts.

Requested by:	peter (2)
2003-11-14 19:10:13 +00:00
John Baldwin
ecee5704ed New device interrupt code. This defines an interrupt source abstraction
that provides methods via a PIC driver to do things like mask a source,
unmask a source, enable it when the first interrupt handler is added, etc.
The interrupt code provides a table of interrupt sources indexed by IRQ
numbers, or vectors.  These vectors are what new-bus uses for its IRQ
resources and for bus_setup_intr()/bus_teardown_intr().  The interrupt
code then maps that vector a given interrupt source object.  When an
interrupt comes in, the low-level interrupt code looks up the interrupt
source for the source that triggered the interrupt and hands it off to
this code to execute the appropriate handlers.

By having an interrupt source abstraction, this allows us to have different
types of interrupt source providers within the shared IRQ address space.
For example, IRQ 0 may map to pin 0 of the master 8259A PIC, IRQs 1
through 60 may map to pins on various I/O APICs, and IRQs 120 through
128 may map to MSI interrupts for various PCI devices.
2003-11-03 21:25:52 +00:00