/* * Copyright (c) 2000 Orion Hodson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHERIN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THEPOSSIBILITY OF * SUCH DAMAGE. * * This driver exists largely as a result of other people's efforts. * Much of register handling is based on NetBSD CMI8x38 audio driver * by Takuya Shiozaki . Chen-Li Tien * clarified points regarding the DMA related * registers and the 8738 mixer devices. His Linux was driver a also * useful reference point. * * TODO: MIDI / suspend / resume * * SPDIF contributed by Gerhard Gonter . * * $FreeBSD$ */ #include #include #include #include #include #include "mixer_if.h" /* Supported chip ID's */ #define CMI8338A_PCI_ID 0x010013f6 #define CMI8338B_PCI_ID 0x010113f6 #define CMI8738_PCI_ID 0x011113f6 #define CMI8738B_PCI_ID 0x011213f6 /* Buffer size max is 64k for permitted DMA boundaries */ #define CMI_BUFFER_SIZE 16384 /* Interrupts per length of buffer */ #define CMI_INTR_PER_BUFFER 2 /* Clarify meaning of named defines in cmireg.h */ #define CMPCI_REG_DMA0_MAX_SAMPLES CMPCI_REG_DMA0_BYTES #define CMPCI_REG_DMA0_INTR_SAMPLES CMPCI_REG_DMA0_SAMPLES #define CMPCI_REG_DMA1_MAX_SAMPLES CMPCI_REG_DMA1_BYTES #define CMPCI_REG_DMA1_INTR_SAMPLES CMPCI_REG_DMA1_SAMPLES /* Our indication of custom mixer control */ #define CMPCI_NON_SB16_CONTROL 0xff /* Debugging macro's */ #ifndef DEB #define DEB(x) /* x */ #endif /* DEB */ #ifndef DEBMIX #define DEBMIX(x) /* x */ #endif /* DEBMIX */ /* ------------------------------------------------------------------------- */ /* Structures */ struct cmi_info; struct cmi_chinfo { struct cmi_info *parent; struct pcm_channel *channel; struct snd_dbuf *buffer; int dir; int bps; /* bytes per sample */ u_int32_t fmt, spd, phys_buf; u_int32_t dma_configured; }; struct cmi_info { device_t dev; u_int32_t type, rev; bus_space_tag_t st; bus_space_handle_t sh; bus_dma_tag_t parent_dmat; struct resource *reg, *irq; int regid, irqid; void *ih; struct cmi_chinfo pch, rch; }; /* Channel caps */ static u_int32_t cmi_fmt[] = { AFMT_U8, AFMT_STEREO | AFMT_U8, AFMT_S16_LE, AFMT_STEREO | AFMT_S16_LE, 0 }; static struct pcmchan_caps cmi_caps = {5512, 48000, cmi_fmt, 0}; /* ------------------------------------------------------------------------- */ /* Register Utilities */ static u_int32_t cmi_rd(struct cmi_info *cmi, int regno, int size) { switch (size) { case 1: return bus_space_read_1(cmi->st, cmi->sh, regno); case 2: return bus_space_read_2(cmi->st, cmi->sh, regno); case 4: return bus_space_read_4(cmi->st, cmi->sh, regno); default: DEB(printf("cmi_rd: failed 0x%04x %d\n", regno, size)); return 0xFFFFFFFF; } } static void cmi_wr(struct cmi_info *cmi, int regno, u_int32_t data, int size) { switch (size) { case 1: bus_space_write_1(cmi->st, cmi->sh, regno, data); break; case 2: bus_space_write_2(cmi->st, cmi->sh, regno, data); break; case 4: bus_space_write_4(cmi->st, cmi->sh, regno, data); break; } DELAY(10); } static void cmi_partial_wr4(struct cmi_info *cmi, int reg, int shift, u_int32_t mask, u_int32_t val) { u_int32_t r; r = cmi_rd(cmi, reg, 4); r &= ~(mask << shift); r |= val << shift; cmi_wr(cmi, reg, r, 4); } static void cmi_clr4(struct cmi_info *cmi, int reg, u_int32_t mask) { u_int32_t r; r = cmi_rd(cmi, reg, 4); r &= ~mask; cmi_wr(cmi, reg, r, 4); } static void cmi_set4(struct cmi_info *cmi, int reg, u_int32_t mask) { u_int32_t r; r = cmi_rd(cmi, reg, 4); r |= mask; cmi_wr(cmi, reg, r, 4); } /* ------------------------------------------------------------------------- */ /* Rate Mapping */ static int cmi_rates[] = {5512, 8000, 11025, 16000, 22050, 32000, 44100, 48000}; #define NUM_CMI_RATES (sizeof(cmi_rates)/sizeof(cmi_rates[0])) /* cmpci_rate_to_regvalue returns sampling freq selector for FCR1 * register - reg order is 5k,11k,22k,44k,8k,16k,32k,48k */ static u_int32_t cmpci_rate_to_regvalue(int rate) { int i, r; for(i = 0; i < NUM_CMI_RATES - 1; i++) { if (rate < ((cmi_rates[i] + cmi_rates[i + 1]) / 2)) { break; } } DEB(printf("cmpci_rate_to_regvalue: %d -> %d\n", rate, cmi_rates[i])); r = ((i >> 1) | (i << 2)) & 0x07; return r; } static int cmpci_regvalue_to_rate(u_int32_t r) { int i; i = ((r << 1) | (r >> 2)) & 0x07; DEB(printf("cmpci_regvalue_to_rate: %d -> %d\n", r, i)); return cmi_rates[i]; } /* ------------------------------------------------------------------------- */ /* ADC/DAC control */ static void cmi_dac_start(struct cmi_info *cmi, struct cmi_chinfo *ch) { if (ch->dma_configured == 0) { u_int32_t s, i, sz; ch->phys_buf = vtophys(sndbuf_getbuf(ch->buffer)); sz = (u_int32_t)sndbuf_getsize(ch->buffer); s = (sz + 1) / ch->bps - 1; i = (sz + 1) / (ch->bps * CMI_INTR_PER_BUFFER) - 1; cmi_wr(cmi, CMPCI_REG_DMA0_BASE, ch->phys_buf, 4); cmi_wr(cmi, CMPCI_REG_DMA0_MAX_SAMPLES, s, 2); cmi_wr(cmi, CMPCI_REG_DMA0_INTR_SAMPLES, i, 2); ch->dma_configured = 1; DEB(printf("cmi_dac_start: dma prog\n")); } cmi_clr4(cmi, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_DIR); cmi_clr4(cmi, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_PAUSE); cmi_set4(cmi, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE); cmi_set4(cmi, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE); } static void cmi_dac_stop(struct cmi_info *cmi) { cmi_clr4(cmi, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE); cmi_clr4(cmi, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE); } static void cmi_dac_reset(struct cmi_info *cmi, struct cmi_chinfo *ch) { cmi_dac_stop(cmi); cmi_set4(cmi, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET); cmi_clr4(cmi, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET); ch->dma_configured = 0; DEB(printf("cmi_dac_reset\n")); } static void cmi_adc_start(struct cmi_info *cmi, struct cmi_chinfo *ch) { if (ch->dma_configured == 0) { u_int32_t s, i, sz; ch->phys_buf = vtophys(sndbuf_getbuf(ch->buffer)); sz = (u_int32_t)sndbuf_getsize(ch->buffer); s = (sz + 1) / ch->bps - 1; i = (sz + 1) / (ch->bps * CMI_INTR_PER_BUFFER) - 1; cmi_wr(cmi, CMPCI_REG_DMA1_BASE, ch->phys_buf, 4); cmi_wr(cmi, CMPCI_REG_DMA1_MAX_SAMPLES, s, 2); cmi_wr(cmi, CMPCI_REG_DMA1_INTR_SAMPLES, i, 2); ch->dma_configured = 1; DEB(printf("cmi_adc_start: dma prog\n")); } cmi_set4(cmi, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR); cmi_clr4(cmi, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_PAUSE); cmi_set4(cmi, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE); cmi_set4(cmi, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE); } static void cmi_adc_stop(struct cmi_info *cmi) { cmi_clr4(cmi, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE); cmi_clr4(cmi, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE); } static void cmi_adc_reset(struct cmi_info *cmi, struct cmi_chinfo *ch) { cmi_adc_stop(cmi); cmi_set4(cmi, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET); cmi_clr4(cmi, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET); ch->dma_configured = 0; DEB(printf("cmi_adc_reset\n")); } static void cmi_spdif_speed(struct cmi_info *cmi, int speed) { u_int32_t fcr1, lcr, mcr; if (speed >= 44100) { fcr1 = CMPCI_REG_SPDIF0_ENABLE; lcr = CMPCI_REG_XSPDIF_ENABLE; mcr = (speed == 48000) ? CMPCI_REG_W_SPDIF_48L | CMPCI_REG_SPDIF_48K : 0; } else { fcr1 = mcr = lcr = 0; } cmi_partial_wr4(cmi, CMPCI_REG_MISC, 0, CMPCI_REG_W_SPDIF_48L | CMPCI_REG_SPDIF_48K, mcr); cmi_partial_wr4(cmi, CMPCI_REG_LEGACY_CTRL, 0, CMPCI_REG_XSPDIF_ENABLE, lcr); cmi_partial_wr4(cmi, CMPCI_REG_FUNC_1, 0, CMPCI_REG_SPDIF0_ENABLE, fcr1); } /* ------------------------------------------------------------------------- */ /* Channel Interface implementation */ static void * cmichan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b, struct pcm_channel *c, int dir) { struct cmi_info *cmi = devinfo; struct cmi_chinfo *ch = (dir == PCMDIR_PLAY) ? &cmi->pch : &cmi->rch; ch->parent = cmi; ch->channel = c; ch->bps = 1; ch->fmt = AFMT_U8; ch->spd = DSP_DEFAULT_SPEED; ch->dma_configured = 0; ch->buffer = b; if (sndbuf_alloc(ch->buffer, cmi->parent_dmat, CMI_BUFFER_SIZE) != 0) { DEB(printf("cmichan_init failed\n")); return NULL; } ch->dir = dir; if (dir == PCMDIR_PLAY) { cmi_clr4(ch->parent, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_DIR); } else { cmi_set4(ch->parent, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR); } return ch; } static int cmichan_setformat(kobj_t obj, void *data, u_int32_t format) { struct cmi_chinfo *ch = data; u_int32_t f; if (format & AFMT_S16_LE) { f = CMPCI_REG_FORMAT_16BIT; ch->bps = 2; } else { f = CMPCI_REG_FORMAT_8BIT; ch->bps = 1; } if (format & AFMT_STEREO) { f |= CMPCI_REG_FORMAT_STEREO; ch->bps *= 2; } else { f |= CMPCI_REG_FORMAT_MONO; } if (ch->dir == PCMDIR_PLAY) { cmi_partial_wr4(ch->parent, CMPCI_REG_CHANNEL_FORMAT, CMPCI_REG_CH0_FORMAT_SHIFT, CMPCI_REG_CH0_FORMAT_MASK, f); } else { cmi_partial_wr4(ch->parent, CMPCI_REG_CHANNEL_FORMAT, CMPCI_REG_CH1_FORMAT_SHIFT, CMPCI_REG_CH1_FORMAT_MASK, f); } ch->fmt = format; ch->dma_configured = 0; return 0; } static int cmichan_setspeed(kobj_t obj, void *data, u_int32_t speed) { struct cmi_chinfo *ch = data; u_int32_t r, rsp; r = cmpci_rate_to_regvalue(speed); if (ch->dir == PCMDIR_PLAY) { if (speed < 44100) /* disable if req before rate change */ cmi_spdif_speed(ch->parent, speed); cmi_partial_wr4(ch->parent, CMPCI_REG_FUNC_1, CMPCI_REG_DAC_FS_SHIFT, CMPCI_REG_DAC_FS_MASK, r); if (speed >= 44100) /* enable if req after rate change */ cmi_spdif_speed(ch->parent, speed); rsp = cmi_rd(ch->parent, CMPCI_REG_FUNC_1, 4); rsp >>= CMPCI_REG_DAC_FS_SHIFT; rsp &= CMPCI_REG_DAC_FS_MASK; } else { cmi_partial_wr4(ch->parent, CMPCI_REG_FUNC_1, CMPCI_REG_ADC_FS_SHIFT, CMPCI_REG_ADC_FS_MASK, r); rsp = cmi_rd(ch->parent, CMPCI_REG_FUNC_1, 4); rsp >>= CMPCI_REG_ADC_FS_SHIFT; rsp &= CMPCI_REG_ADC_FS_MASK; } ch->spd = cmpci_regvalue_to_rate(r); DEB(printf("cmichan_setspeed (%s) %d -> %d (%d)\n", (ch->dir == PCMDIR_PLAY) ? "play" : "rec", speed, ch->spd, cmpci_regvalue_to_rate(rsp))); return ch->spd; } static int cmichan_setblocksize(kobj_t obj, void *data, u_int32_t blocksize) { struct cmi_chinfo *ch = data; /* user has requested interrupts every blocksize bytes */ if (blocksize > CMI_BUFFER_SIZE / CMI_INTR_PER_BUFFER) { blocksize = CMI_BUFFER_SIZE / CMI_INTR_PER_BUFFER; } sndbuf_resize(ch->buffer, CMI_INTR_PER_BUFFER, blocksize); ch->dma_configured = 0; return sndbuf_getsize(ch->buffer); } static int cmichan_trigger(kobj_t obj, void *data, int go) { struct cmi_chinfo *ch = data; struct cmi_info *cmi = ch->parent; if (ch->dir == PCMDIR_PLAY) { switch(go) { case PCMTRIG_START: cmi_dac_start(cmi, ch); break; case PCMTRIG_ABORT: cmi_dac_reset(cmi, ch); break; } } else { switch(go) { case PCMTRIG_START: cmi_adc_start(cmi, ch); break; case PCMTRIG_ABORT: cmi_adc_reset(cmi, ch); break; } } return 0; } static int cmichan_getptr(kobj_t obj, void *data) { struct cmi_chinfo *ch = data; struct cmi_info *cmi = ch->parent; u_int32_t physptr, bufptr, sz; if (ch->dir == PCMDIR_PLAY) { physptr = cmi_rd(cmi, CMPCI_REG_DMA0_BASE, 4); } else { physptr = cmi_rd(cmi, CMPCI_REG_DMA1_BASE, 4); } sz = sndbuf_getsize(ch->buffer); bufptr = (physptr - ch->phys_buf + sz - ch->bps) % sz; return bufptr; } static void cmi_intr(void *data) { struct cmi_info *cmi = data; u_int32_t intrstat; intrstat = cmi_rd(cmi, CMPCI_REG_INTR_STATUS, 4); if ((intrstat & CMPCI_REG_ANY_INTR) == 0) { return; } /* Disable interrupts */ if (intrstat & CMPCI_REG_CH0_INTR) { cmi_clr4(cmi, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE); } if (intrstat & CMPCI_REG_CH1_INTR) { cmi_clr4(cmi, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE); } DEB(printf("cmi_intr - play %d rec %d\n", intrstat & CMPCI_REG_CH0_INTR, (intrstat & CMPCI_REG_CH1_INTR)>>1)); /* Signal interrupts to channel */ if (intrstat & CMPCI_REG_CH0_INTR) { chn_intr(cmi->pch.channel); } if (intrstat & CMPCI_REG_CH1_INTR) { chn_intr(cmi->rch.channel); } /* Enable interrupts */ if (intrstat & CMPCI_REG_CH0_INTR) { cmi_set4(cmi, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE); } if (intrstat & CMPCI_REG_CH1_INTR) { cmi_set4(cmi, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE); } return; } static struct pcmchan_caps * cmichan_getcaps(kobj_t obj, void *data) { return &cmi_caps; } static kobj_method_t cmichan_methods[] = { KOBJMETHOD(channel_init, cmichan_init), KOBJMETHOD(channel_setformat, cmichan_setformat), KOBJMETHOD(channel_setspeed, cmichan_setspeed), KOBJMETHOD(channel_setblocksize, cmichan_setblocksize), KOBJMETHOD(channel_trigger, cmichan_trigger), KOBJMETHOD(channel_getptr, cmichan_getptr), KOBJMETHOD(channel_getcaps, cmichan_getcaps), { 0, 0 } }; CHANNEL_DECLARE(cmichan); /* ------------------------------------------------------------------------- */ /* Mixer - sb16 with kinks */ static void cmimix_wr(struct cmi_info *cmi, u_int8_t port, u_int8_t val) { cmi_wr(cmi, CMPCI_REG_SBADDR, port, 1); cmi_wr(cmi, CMPCI_REG_SBDATA, val, 1); } static u_int8_t cmimix_rd(struct cmi_info *cmi, u_int8_t port) { cmi_wr(cmi, CMPCI_REG_SBADDR, port, 1); return (u_int8_t)cmi_rd(cmi, CMPCI_REG_SBDATA, 1); } struct sb16props { u_int8_t rreg; /* right reg chan register */ u_int8_t stereo:1; /* (no explanation needed, honest) */ u_int8_t rec:1; /* recording source */ u_int8_t bits:3; /* num bits to represent maximum gain rep */ u_int8_t oselect; /* output select mask */ u_int8_t iselect; /* right input select mask */ } static const cmt[SOUND_MIXER_NRDEVICES] = { [SOUND_MIXER_SYNTH] = {CMPCI_SB16_MIXER_FM_R, 1, 1, 5, CMPCI_SB16_SW_FM, CMPCI_SB16_MIXER_FM_SRC_R}, [SOUND_MIXER_CD] = {CMPCI_SB16_MIXER_CDDA_R, 1, 1, 5, CMPCI_SB16_SW_CD, CMPCI_SB16_MIXER_CD_SRC_R}, [SOUND_MIXER_LINE] = {CMPCI_SB16_MIXER_LINE_R, 1, 1, 5, CMPCI_SB16_SW_LINE, CMPCI_SB16_MIXER_LINE_SRC_R}, [SOUND_MIXER_MIC] = {CMPCI_SB16_MIXER_MIC, 0, 1, 5, CMPCI_SB16_SW_MIC, CMPCI_SB16_MIXER_MIC_SRC}, [SOUND_MIXER_SPEAKER] = {CMPCI_SB16_MIXER_SPEAKER, 0, 0, 2, 0, 0}, [SOUND_MIXER_PCM] = {CMPCI_SB16_MIXER_VOICE_R, 1, 0, 5, 0, 0}, [SOUND_MIXER_VOLUME] = {CMPCI_SB16_MIXER_MASTER_R, 1, 0, 5, 0, 0}, /* These controls are not implemented in CMI8738, but maybe at a future date. They are not documented in C-Media documentation, though appear in other drivers for future h/w (ALSA, Linux, NetBSD). */ [SOUND_MIXER_IGAIN] = {CMPCI_SB16_MIXER_INGAIN_R, 1, 0, 2, 0, 0}, [SOUND_MIXER_OGAIN] = {CMPCI_SB16_MIXER_OUTGAIN_R, 1, 0, 2, 0, 0}, [SOUND_MIXER_BASS] = {CMPCI_SB16_MIXER_BASS_R, 1, 0, 4, 0, 0}, [SOUND_MIXER_TREBLE] = {CMPCI_SB16_MIXER_TREBLE_R, 1, 0, 4, 0, 0}, /* The mic pre-amp is implemented with non-SB16 compatible registers. */ [SOUND_MIXER_MONITOR] = {CMPCI_NON_SB16_CONTROL, 0, 1, 4, 0}, }; #define MIXER_GAIN_REG_RTOL(r) (r - 1) static int cmimix_init(struct snd_mixer *m) { struct cmi_info *cmi = mix_getdevinfo(m); u_int32_t i,v; v = 0; for(i = 0; i < SOUND_MIXER_NRDEVICES; i++) { if (cmt[i].bits) v |= 1 << i; } mix_setdevs(m, v); v = 0; for(i = 0; i < SOUND_MIXER_NRDEVICES; i++) { if (cmt[i].rec) v |= 1 << i; } mix_setrecdevs(m, v); cmimix_wr(cmi, CMPCI_SB16_MIXER_RESET, 0); cmimix_wr(cmi, CMPCI_SB16_MIXER_ADCMIX_L, 0); cmimix_wr(cmi, CMPCI_SB16_MIXER_ADCMIX_R, 0); cmimix_wr(cmi, CMPCI_SB16_MIXER_OUTMIX, CMPCI_SB16_SW_CD | CMPCI_SB16_SW_MIC | CMPCI_SB16_SW_LINE); return 0; } static int cmimix_set(struct snd_mixer *m, unsigned dev, unsigned left, unsigned right) { struct cmi_info *cmi = mix_getdevinfo(m); u_int32_t r, l, max; u_int8_t v; max = (1 << cmt[dev].bits) - 1; if (cmt[dev].rreg == CMPCI_NON_SB16_CONTROL) { /* For time being this can only be one thing (mic in mic/aux reg) */ u_int8_t v; v = cmi_rd(cmi, CMPCI_REG_AUX_MIC, 1) & 0xf0; l = left * max / 100; /* 3 bit gain with LSB MICGAIN off(1),on(1) -> 4 bit value*/ v |= ((l << 1) | (~l >> 3)) & 0x0f; cmi_wr(cmi, CMPCI_REG_AUX_MIC, v, 1); return 0; } l = (left * max / 100) << (8 - cmt[dev].bits); if (cmt[dev].stereo) { r = (right * max / 100) << (8 - cmt[dev].bits); cmimix_wr(cmi, MIXER_GAIN_REG_RTOL(cmt[dev].rreg), l); cmimix_wr(cmi, cmt[dev].rreg, r); DEBMIX(printf("Mixer stereo write dev %d reg 0x%02x "\ "value 0x%02x:0x%02x\n", dev, MIXER_GAIN_REG_RTOL(cmt[dev].rreg), l, r)); } else { r = l; cmimix_wr(cmi, cmt[dev].rreg, l); DEBMIX(printf("Mixer mono write dev %d reg 0x%02x " \ "value 0x%02x:0x%02x\n", dev, cmt[dev].rreg, l, l)); } /* Zero gain does not mute channel from output, but this does... */ v = cmimix_rd(cmi, CMPCI_SB16_MIXER_OUTMIX); if (l == 0 && r == 0) { v &= ~cmt[dev].oselect; } else { v |= cmt[dev].oselect; } cmimix_wr(cmi, CMPCI_SB16_MIXER_OUTMIX, v); return 0; } static int cmimix_setrecsrc(struct snd_mixer *m, u_int32_t src) { struct cmi_info *cmi = mix_getdevinfo(m); u_int32_t i, ml, sl; ml = sl = 0; for(i = 0; i < SOUND_MIXER_NRDEVICES; i++) { if ((1<regid = PCIR_MAPS; cmi->reg = bus_alloc_resource(dev, SYS_RES_IOPORT, &cmi->regid, 0, BUS_SPACE_UNRESTRICTED, 1, RF_ACTIVE); if (!cmi->reg) { device_printf(dev, "cmi_attach: Cannot allocate bus resource\n"); goto bad; } cmi->st = rman_get_bustag(cmi->reg); cmi->sh = rman_get_bushandle(cmi->reg); cmi->irqid = 0; cmi->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &cmi->irqid, 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE); if (!cmi->irq || snd_setup_intr(dev, cmi->irq, 0, cmi_intr, cmi, &cmi->ih)) { device_printf(dev, "cmi_attach: Unable to map interrupt\n"); goto bad; } if (bus_dma_tag_create(/*parent*/NULL, /*alignment*/2, /*boundary*/0, /*lowaddr*/BUS_SPACE_MAXADDR_32BIT, /*highaddr*/BUS_SPACE_MAXADDR, /*filter*/NULL, /*filterarg*/NULL, /*maxsize*/CMI_BUFFER_SIZE, /*nsegments*/1, /*maxsegz*/0x3ffff, /*flags*/0, &cmi->parent_dmat) != 0) { device_printf(dev, "cmi_attach: Unable to create dma tag\n"); goto bad; } cmi_power(cmi, 0); /* Disable interrupts and channels */ cmi_clr4(cmi, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE | CMPCI_REG_CH1_INTR_ENABLE | CMPCI_REG_TDMA_INTR_ENABLE); cmi_clr4(cmi, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE | CMPCI_REG_CH1_ENABLE); if (mixer_init(dev, &cmi_mixer_class, cmi)) goto bad; if (pcm_register(dev, cmi, 1, 1)) goto bad; pcm_addchan(dev, PCMDIR_PLAY, &cmichan_class, cmi); pcm_addchan(dev, PCMDIR_REC, &cmichan_class, cmi); snprintf(status, SND_STATUSLEN, "at io 0x%lx irq %ld", rman_get_start(cmi->reg), rman_get_start(cmi->irq)); pcm_setstatus(dev, status); DEB(printf("cmi_attach: succeeded\n")); return 0; bad: if (cmi->parent_dmat) bus_dma_tag_destroy(cmi->parent_dmat); if (cmi->ih) bus_teardown_intr(dev, cmi->irq, cmi->ih); if (cmi->irq) bus_release_resource(dev, SYS_RES_IRQ, cmi->irqid, cmi->irq); if (cmi->reg) bus_release_resource(dev, SYS_RES_IOPORT, cmi->regid, cmi->reg); if (cmi) free(cmi, M_DEVBUF); return ENXIO; } static int cmi_detach(device_t dev) { struct cmi_info *cmi; int r; r = pcm_unregister(dev); if (r) return r; cmi = pcm_getdevinfo(dev); cmi_power(cmi, 3); bus_dma_tag_destroy(cmi->parent_dmat); bus_teardown_intr(dev, cmi->irq, cmi->ih); bus_release_resource(dev, SYS_RES_IRQ, cmi->irqid, cmi->irq); bus_release_resource(dev, SYS_RES_IOPORT, cmi->regid, cmi->reg); free(cmi, M_DEVBUF); return 0; } static device_method_t cmi_methods[] = { DEVMETHOD(device_probe, cmi_probe), DEVMETHOD(device_attach, cmi_attach), DEVMETHOD(device_detach, cmi_detach), DEVMETHOD(device_resume, bus_generic_resume), DEVMETHOD(device_suspend, bus_generic_suspend), { 0, 0 } }; static driver_t cmi_driver = { "pcm", cmi_methods, sizeof(struct snddev_info) }; static devclass_t pcm_devclass; DRIVER_MODULE(snd_cmipci, pci, cmi_driver, pcm_devclass, 0, 0); MODULE_DEPEND(snd_cmipci, snd_pcm, PCM_MINVER, PCM_PREFVER, PCM_MAXVER); MODULE_VERSION(snd_cmipci, 1);