/*- * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef __BXE_H__ #define __BXE_H__ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "device_if.h" #include "bus_if.h" #include "pci_if.h" #if _BYTE_ORDER == _LITTLE_ENDIAN #ifndef LITTLE_ENDIAN #define LITTLE_ENDIAN #endif #ifndef __LITTLE_ENDIAN #define __LITTLE_ENDIAN #endif #undef BIG_ENDIAN #undef __BIG_ENDIAN #else /* _BIG_ENDIAN */ #ifndef BIG_ENDIAN #define BIG_ENDIAN #endif #ifndef __BIG_ENDIAN #define __BIG_ENDIAN #endif #undef LITTLE_ENDIAN #undef __LITTLE_ENDIAN #endif #include "ecore_mfw_req.h" #include "ecore_fw_defs.h" #include "ecore_hsi.h" #include "ecore_reg.h" #include "bxe_dcb.h" #include "bxe_stats.h" #include "bxe_elink.h" #define VF_MAC_CREDIT_CNT 0 #define VF_VLAN_CREDIT_CNT (0) #if __FreeBSD_version < 800054 #if defined(__i386__) || defined(__amd64__) #define mb() __asm volatile("mfence;" : : : "memory") #define wmb() __asm volatile("sfence;" : : : "memory") #define rmb() __asm volatile("lfence;" : : : "memory") static __inline void prefetch(void *x) { __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x)); } #else #define mb() #define rmb() #define wmb() #define prefetch(x) #endif #endif #if __FreeBSD_version >= 1000000 #define PCIR_EXPRESS_DEVICE_STA PCIER_DEVICE_STA #define PCIM_EXP_STA_TRANSACTION_PND PCIEM_STA_TRANSACTION_PND #define PCIR_EXPRESS_LINK_STA PCIER_LINK_STA #define PCIM_LINK_STA_WIDTH PCIEM_LINK_STA_WIDTH #define PCIM_LINK_STA_SPEED PCIEM_LINK_STA_SPEED #define PCIR_EXPRESS_DEVICE_CTL PCIER_DEVICE_CTL #define PCIM_EXP_CTL_MAX_PAYLOAD PCIEM_CTL_MAX_PAYLOAD #define PCIM_EXP_CTL_MAX_READ_REQUEST PCIEM_CTL_MAX_READ_REQUEST #endif #ifndef ARRAY_SIZE #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0])) #endif #ifndef ARRSIZE #define ARRSIZE(arr) (sizeof(arr) / sizeof((arr)[0])) #endif #ifndef DIV_ROUND_UP #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d)) #endif #ifndef roundup #define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y)) #endif #ifndef ilog2 static inline int bxe_ilog2(int x) { int log = 0; while (x >>= 1) log++; return (log); } #define ilog2(x) bxe_ilog2(x) #endif #include "ecore_sp.h" #define BRCM_VENDORID 0x14e4 #define QLOGIC_VENDORID 0x1077 #define PCI_ANY_ID (uint16_t)(~0U) struct bxe_device_type { uint16_t bxe_vid; uint16_t bxe_did; uint16_t bxe_svid; uint16_t bxe_sdid; char *bxe_name; }; #define BCM_PAGE_SHIFT 12 #define BCM_PAGE_SIZE (1 << BCM_PAGE_SHIFT) #define BCM_PAGE_MASK (~(BCM_PAGE_SIZE - 1)) #define BCM_PAGE_ALIGN(addr) ((addr + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK) #if BCM_PAGE_SIZE != 4096 #error Page sizes other than 4KB are unsupported! #endif #if (BUS_SPACE_MAXADDR > 0xFFFFFFFF) #define U64_LO(addr) ((uint32_t)(((uint64_t)(addr)) & 0xFFFFFFFF)) #define U64_HI(addr) ((uint32_t)(((uint64_t)(addr)) >> 32)) #else #define U64_LO(addr) ((uint32_t)(addr)) #define U64_HI(addr) (0) #endif #define HILO_U64(hi, lo) ((((uint64_t)(hi)) << 32) + (lo)) #define SET_FLAG(value, mask, flag) \ do { \ (value) &= ~(mask); \ (value) |= ((flag) << (mask##_SHIFT)); \ } while (0) #define GET_FLAG(value, mask) \ (((value) & (mask)) >> (mask##_SHIFT)) #define GET_FIELD(value, fname) \ (((value) & (fname##_MASK)) >> (fname##_SHIFT)) #define BXE_MAX_SEGMENTS 12 /* 13-1 for parsing buffer */ #define BXE_TSO_MAX_SEGMENTS 32 #define BXE_TSO_MAX_SIZE (65535 + sizeof(struct ether_vlan_header)) #define BXE_TSO_MAX_SEG_SIZE 4096 /* dropless fc FW/HW related params */ #define BRB_SIZE(sc) (CHIP_IS_E3(sc) ? 1024 : 512) #define MAX_AGG_QS(sc) (CHIP_IS_E1(sc) ? \ ETH_MAX_AGGREGATION_QUEUES_E1 : \ ETH_MAX_AGGREGATION_QUEUES_E1H_E2) #define FW_DROP_LEVEL(sc) (3 + MAX_SPQ_PENDING + MAX_AGG_QS(sc)) #define FW_PREFETCH_CNT 16 #define DROPLESS_FC_HEADROOM 100 /******************/ /* RX SGE defines */ /******************/ #define RX_SGE_NUM_PAGES 2 /* must be a power of 2 */ #define RX_SGE_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge)) #define RX_SGE_NEXT_PAGE_DESC_CNT 2 #define RX_SGE_USABLE_PER_PAGE (RX_SGE_TOTAL_PER_PAGE - RX_SGE_NEXT_PAGE_DESC_CNT) #define RX_SGE_PER_PAGE_MASK (RX_SGE_TOTAL_PER_PAGE - 1) #define RX_SGE_TOTAL (RX_SGE_TOTAL_PER_PAGE * RX_SGE_NUM_PAGES) #define RX_SGE_USABLE (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES) #define RX_SGE_MAX (RX_SGE_TOTAL - 1) #define RX_SGE(x) ((x) & RX_SGE_MAX) #define RX_SGE_NEXT(x) \ ((((x) & RX_SGE_PER_PAGE_MASK) == (RX_SGE_USABLE_PER_PAGE - 1)) \ ? (x) + 1 + RX_SGE_NEXT_PAGE_DESC_CNT : (x) + 1) #define RX_SGE_MASK_ELEM_SZ 64 #define RX_SGE_MASK_ELEM_SHIFT 6 #define RX_SGE_MASK_ELEM_MASK ((uint64_t)RX_SGE_MASK_ELEM_SZ - 1) /* * Creates a bitmask of all ones in less significant bits. * idx - index of the most significant bit in the created mask. */ #define RX_SGE_ONES_MASK(idx) \ (((uint64_t)0x1 << (((idx) & RX_SGE_MASK_ELEM_MASK) + 1)) - 1) #define RX_SGE_MASK_ELEM_ONE_MASK ((uint64_t)(~0)) /* Number of uint64_t elements in SGE mask array. */ #define RX_SGE_MASK_LEN \ ((RX_SGE_NUM_PAGES * RX_SGE_TOTAL_PER_PAGE) / RX_SGE_MASK_ELEM_SZ) #define RX_SGE_MASK_LEN_MASK (RX_SGE_MASK_LEN - 1) #define RX_SGE_NEXT_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK) /* * dropless fc calculations for SGEs * Number of required SGEs is the sum of two: * 1. Number of possible opened aggregations (next packet for * these aggregations will probably consume SGE immidiatelly) * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only * after placement on BD for new TPA aggregation) * Takes into account RX_SGE_NEXT_PAGE_DESC_CNT "next" elements on each page */ #define NUM_SGE_REQ(sc) \ (MAX_AGG_QS(sc) + (BRB_SIZE(sc) - MAX_AGG_QS(sc)) / 2) #define NUM_SGE_PG_REQ(sc) \ ((NUM_SGE_REQ(sc) + RX_SGE_USABLE_PER_PAGE - 1) / RX_SGE_USABLE_PER_PAGE) #define SGE_TH_LO(sc) \ (NUM_SGE_REQ(sc) + NUM_SGE_PG_REQ(sc) * RX_SGE_NEXT_PAGE_DESC_CNT) #define SGE_TH_HI(sc) \ (SGE_TH_LO(sc) + DROPLESS_FC_HEADROOM) #define PAGES_PER_SGE_SHIFT 0 #define PAGES_PER_SGE (1 << PAGES_PER_SGE_SHIFT) #define SGE_PAGE_SIZE BCM_PAGE_SIZE #define SGE_PAGE_SHIFT BCM_PAGE_SHIFT #define SGE_PAGE_ALIGN(addr) BCM_PAGE_ALIGN(addr) #define SGE_PAGES (SGE_PAGE_SIZE * PAGES_PER_SGE) #define TPA_AGG_SIZE min((8 * SGE_PAGES), 0xffff) /*****************/ /* TX BD defines */ /*****************/ #define TX_BD_NUM_PAGES 16 /* must be a power of 2 */ #define TX_BD_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types)) #define TX_BD_USABLE_PER_PAGE (TX_BD_TOTAL_PER_PAGE - 1) #define TX_BD_TOTAL (TX_BD_TOTAL_PER_PAGE * TX_BD_NUM_PAGES) #define TX_BD_USABLE (TX_BD_USABLE_PER_PAGE * TX_BD_NUM_PAGES) #define TX_BD_MAX (TX_BD_TOTAL - 1) #define TX_BD_NEXT(x) \ ((((x) & TX_BD_USABLE_PER_PAGE) == (TX_BD_USABLE_PER_PAGE - 1)) ? \ ((x) + 2) : ((x) + 1)) #define TX_BD(x) ((x) & TX_BD_MAX) #define TX_BD_PAGE(x) (((x) & ~TX_BD_USABLE_PER_PAGE) >> 8) #define TX_BD_IDX(x) ((x) & TX_BD_USABLE_PER_PAGE) /* * Trigger pending transmits when the number of available BDs is greater * than 1/8 of the total number of usable BDs. */ #define BXE_TX_CLEANUP_THRESHOLD (TX_BD_USABLE / 8) #define BXE_TX_TIMEOUT 5 /*****************/ /* RX BD defines */ /*****************/ #define RX_BD_NUM_PAGES 8 /* power of 2 */ #define RX_BD_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd)) #define RX_BD_NEXT_PAGE_DESC_CNT 2 #define RX_BD_USABLE_PER_PAGE (RX_BD_TOTAL_PER_PAGE - RX_BD_NEXT_PAGE_DESC_CNT) #define RX_BD_PER_PAGE_MASK (RX_BD_TOTAL_PER_PAGE - 1) #define RX_BD_TOTAL (RX_BD_TOTAL_PER_PAGE * RX_BD_NUM_PAGES) #define RX_BD_USABLE (RX_BD_USABLE_PER_PAGE * RX_BD_NUM_PAGES) #define RX_BD_MAX (RX_BD_TOTAL - 1) #define RX_BD_NEXT(x) \ ((((x) & RX_BD_PER_PAGE_MASK) == (RX_BD_USABLE_PER_PAGE - 1)) ? \ ((x) + 3) : ((x) + 1)) #define RX_BD(x) ((x) & RX_BD_MAX) #define RX_BD_PAGE(x) (((x) & ~RX_BD_PER_PAGE_MASK) >> 9) #define RX_BD_IDX(x) ((x) & RX_BD_PER_PAGE_MASK) /* * dropless fc calculations for BDs * Number of BDs should be as number of buffers in BRB: * Low threshold takes into account RX_BD_NEXT_PAGE_DESC_CNT * "next" elements on each page */ #define NUM_BD_REQ(sc) \ BRB_SIZE(sc) #define NUM_BD_PG_REQ(sc) \ ((NUM_BD_REQ(sc) + RX_BD_USABLE_PER_PAGE - 1) / RX_BD_USABLE_PER_PAGE) #define BD_TH_LO(sc) \ (NUM_BD_REQ(sc) + \ NUM_BD_PG_REQ(sc) * RX_BD_NEXT_PAGE_DESC_CNT + \ FW_DROP_LEVEL(sc)) #define BD_TH_HI(sc) \ (BD_TH_LO(sc) + DROPLESS_FC_HEADROOM) #define MIN_RX_AVAIL(sc) \ ((sc)->dropless_fc ? BD_TH_HI(sc) + 128 : 128) #define MIN_RX_SIZE_TPA_HW(sc) \ (CHIP_IS_E1(sc) ? ETH_MIN_RX_CQES_WITH_TPA_E1 : \ ETH_MIN_RX_CQES_WITH_TPA_E1H_E2) #define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA #define MIN_RX_SIZE_TPA(sc) \ (max(MIN_RX_SIZE_TPA_HW(sc), MIN_RX_AVAIL(sc))) #define MIN_RX_SIZE_NONTPA(sc) \ (max(MIN_RX_SIZE_NONTPA_HW, MIN_RX_AVAIL(sc))) /***************/ /* RCQ defines */ /***************/ /* * As long as CQE is X times bigger than BD entry we have to allocate X times * more pages for CQ ring in order to keep it balanced with BD ring */ #define CQE_BD_REL (sizeof(union eth_rx_cqe) / \ sizeof(struct eth_rx_bd)) #define RCQ_NUM_PAGES (RX_BD_NUM_PAGES * CQE_BD_REL) /* power of 2 */ #define RCQ_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe)) #define RCQ_NEXT_PAGE_DESC_CNT 1 #define RCQ_USABLE_PER_PAGE (RCQ_TOTAL_PER_PAGE - RCQ_NEXT_PAGE_DESC_CNT) #define RCQ_TOTAL (RCQ_TOTAL_PER_PAGE * RCQ_NUM_PAGES) #define RCQ_USABLE (RCQ_USABLE_PER_PAGE * RCQ_NUM_PAGES) #define RCQ_MAX (RCQ_TOTAL - 1) #define RCQ_NEXT(x) \ ((((x) & RCQ_USABLE_PER_PAGE) == (RCQ_USABLE_PER_PAGE - 1)) ? \ ((x) + 1 + RCQ_NEXT_PAGE_DESC_CNT) : ((x) + 1)) #define RCQ(x) ((x) & RCQ_MAX) #define RCQ_PAGE(x) (((x) & ~RCQ_USABLE_PER_PAGE) >> 7) #define RCQ_IDX(x) ((x) & RCQ_USABLE_PER_PAGE) /* * dropless fc calculations for RCQs * Number of RCQs should be as number of buffers in BRB: * Low threshold takes into account RCQ_NEXT_PAGE_DESC_CNT * "next" elements on each page */ #define NUM_RCQ_REQ(sc) \ BRB_SIZE(sc) #define NUM_RCQ_PG_REQ(sc) \ ((NUM_RCQ_REQ(sc) + RCQ_USABLE_PER_PAGE - 1) / RCQ_USABLE_PER_PAGE) #define RCQ_TH_LO(sc) \ (NUM_RCQ_REQ(sc) + \ NUM_RCQ_PG_REQ(sc) * RCQ_NEXT_PAGE_DESC_CNT + \ FW_DROP_LEVEL(sc)) #define RCQ_TH_HI(sc) \ (RCQ_TH_LO(sc) + DROPLESS_FC_HEADROOM) /* This is needed for determening of last_max */ #define SUB_S16(a, b) (int16_t)((int16_t)(a) - (int16_t)(b)) #define __SGE_MASK_SET_BIT(el, bit) \ do { \ (el) = ((el) | ((uint64_t)0x1 << (bit))); \ } while (0) #define __SGE_MASK_CLEAR_BIT(el, bit) \ do { \ (el) = ((el) & (~((uint64_t)0x1 << (bit)))); \ } while (0) #define SGE_MASK_SET_BIT(fp, idx) \ __SGE_MASK_SET_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \ ((idx) & RX_SGE_MASK_ELEM_MASK)) #define SGE_MASK_CLEAR_BIT(fp, idx) \ __SGE_MASK_CLEAR_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \ ((idx) & RX_SGE_MASK_ELEM_MASK)) /* Load / Unload modes */ #define LOAD_NORMAL 0 #define LOAD_OPEN 1 #define LOAD_DIAG 2 #define LOAD_LOOPBACK_EXT 3 #define UNLOAD_NORMAL 0 #define UNLOAD_CLOSE 1 #define UNLOAD_RECOVERY 2 /* Some constants... */ //#define MAX_PATH_NUM 2 //#define E2_MAX_NUM_OF_VFS 64 //#define E1H_FUNC_MAX 8 //#define E2_FUNC_MAX 4 /* per path */ #define MAX_VNIC_NUM 4 #define MAX_FUNC_NUM 8 /* common to all chips */ //#define MAX_NDSB HC_SB_MAX_SB_E2 /* max non-default status block */ #define MAX_RSS_CHAINS 16 /* a constant for HW limit */ #define MAX_MSI_VECTOR 8 /* a constant for HW limit */ #define ILT_NUM_PAGE_ENTRIES 3072 /* * 57710/11 we use whole table since we have 8 functions. * 57712 we have only 4 functions, but use same size per func, so only half * of the table is used. */ #define ILT_PER_FUNC (ILT_NUM_PAGE_ENTRIES / 8) #define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC) /* * the phys address is shifted right 12 bits and has an added * 1=valid bit added to the 53rd bit * then since this is a wide register(TM) * we split it into two 32 bit writes */ #define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF)) #define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44))) /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */ #define ETH_HLEN 14 #define ETH_OVERHEAD (ETH_HLEN + 8 + 8) #define ETH_MIN_PACKET_SIZE 60 #define ETH_MAX_PACKET_SIZE ETHERMTU /* 1500 */ #define ETH_MAX_JUMBO_PACKET_SIZE 9600 /* TCP with Timestamp Option (32) + IPv6 (40) */ #define ETH_MAX_TPA_HEADER_SIZE 72 /* max supported alignment is 256 (8 shift) */ //#define BXE_RX_ALIGN_SHIFT ((CACHE_LINE_SHIFT < 8) ? CACHE_LINE_SHIFT : 8) #define BXE_RX_ALIGN_SHIFT 8 /* FW uses 2 cache lines alignment for start packet and size */ #define BXE_FW_RX_ALIGN_START (1 << BXE_RX_ALIGN_SHIFT) #define BXE_FW_RX_ALIGN_END (1 << BXE_RX_ALIGN_SHIFT) #define BXE_PXP_DRAM_ALIGN (BXE_RX_ALIGN_SHIFT - 5) /* XXX ??? */ struct bxe_bar { struct resource *resource; int rid; bus_space_tag_t tag; bus_space_handle_t handle; vm_offset_t kva; }; struct bxe_intr { struct resource *resource; int rid; void *tag; }; /* Used to manage DMA allocations. */ struct bxe_dma { struct bxe_softc *sc; bus_addr_t paddr; void *vaddr; bus_dma_tag_t tag; bus_dmamap_t map; bus_dma_segment_t seg; bus_size_t size; int nseg; char msg[32]; }; /* attn group wiring */ #define MAX_DYNAMIC_ATTN_GRPS 8 struct attn_route { uint32_t sig[5]; }; struct iro { uint32_t base; uint16_t m1; uint16_t m2; uint16_t m3; uint16_t size; }; union bxe_host_hc_status_block { /* pointer to fp status block e2 */ struct host_hc_status_block_e2 *e2_sb; /* pointer to fp status block e1x */ struct host_hc_status_block_e1x *e1x_sb; }; union bxe_db_prod { struct doorbell_set_prod data; uint32_t raw; }; struct bxe_sw_tx_bd { struct mbuf *m; bus_dmamap_t m_map; uint16_t first_bd; uint8_t flags; /* set on the first BD descriptor when there is a split BD */ #define BXE_TSO_SPLIT_BD (1 << 0) }; struct bxe_sw_rx_bd { struct mbuf *m; bus_dmamap_t m_map; }; struct bxe_sw_tpa_info { struct bxe_sw_rx_bd bd; bus_dma_segment_t seg; uint8_t state; #define BXE_TPA_STATE_START 1 #define BXE_TPA_STATE_STOP 2 uint8_t placement_offset; uint16_t parsing_flags; uint16_t vlan_tag; uint16_t len_on_bd; }; /* * This is the HSI fastpath data structure. There can be up to MAX_RSS_CHAIN * instances of the fastpath structure when using multiple queues. */ struct bxe_fastpath { /* pointer back to parent structure */ struct bxe_softc *sc; struct mtx tx_mtx; char tx_mtx_name[32]; struct mtx rx_mtx; char rx_mtx_name[32]; #define BXE_FP_TX_LOCK(fp) mtx_lock(&fp->tx_mtx) #define BXE_FP_TX_UNLOCK(fp) mtx_unlock(&fp->tx_mtx) #define BXE_FP_TX_LOCK_ASSERT(fp) mtx_assert(&fp->tx_mtx, MA_OWNED) #define BXE_FP_TX_TRYLOCK(fp) mtx_trylock(&fp->tx_mtx) #define BXE_FP_RX_LOCK(fp) mtx_lock(&fp->rx_mtx) #define BXE_FP_RX_UNLOCK(fp) mtx_unlock(&fp->rx_mtx) #define BXE_FP_RX_LOCK_ASSERT(fp) mtx_assert(&fp->rx_mtx, MA_OWNED) /* status block */ struct bxe_dma sb_dma; union bxe_host_hc_status_block status_block; /* transmit chain (tx bds) */ struct bxe_dma tx_dma; union eth_tx_bd_types *tx_chain; /* receive chain (rx bds) */ struct bxe_dma rx_dma; struct eth_rx_bd *rx_chain; /* receive completion queue chain (rcq bds) */ struct bxe_dma rcq_dma; union eth_rx_cqe *rcq_chain; /* receive scatter/gather entry chain (for TPA) */ struct bxe_dma rx_sge_dma; struct eth_rx_sge *rx_sge_chain; /* tx mbufs */ bus_dma_tag_t tx_mbuf_tag; struct bxe_sw_tx_bd tx_mbuf_chain[TX_BD_TOTAL]; /* rx mbufs */ bus_dma_tag_t rx_mbuf_tag; struct bxe_sw_rx_bd rx_mbuf_chain[RX_BD_TOTAL]; bus_dmamap_t rx_mbuf_spare_map; /* rx sge mbufs */ bus_dma_tag_t rx_sge_mbuf_tag; struct bxe_sw_rx_bd rx_sge_mbuf_chain[RX_SGE_TOTAL]; bus_dmamap_t rx_sge_mbuf_spare_map; /* rx tpa mbufs (use the larger size for TPA queue length) */ int tpa_enable; /* disabled per fastpath upon error */ struct bxe_sw_tpa_info rx_tpa_info[ETH_MAX_AGGREGATION_QUEUES_E1H_E2]; bus_dmamap_t rx_tpa_info_mbuf_spare_map; uint64_t rx_tpa_queue_used; uint16_t *sb_index_values; uint16_t *sb_running_index; uint32_t ustorm_rx_prods_offset; uint8_t igu_sb_id; /* status block number in HW */ uint8_t fw_sb_id; /* status block number in FW */ uint32_t rx_buf_size; int mbuf_alloc_size; int state; #define BXE_FP_STATE_CLOSED 0x01 #define BXE_FP_STATE_IRQ 0x02 #define BXE_FP_STATE_OPENING 0x04 #define BXE_FP_STATE_OPEN 0x08 #define BXE_FP_STATE_HALTING 0x10 #define BXE_FP_STATE_HALTED 0x20 /* reference back to this fastpath queue number */ uint8_t index; /* this is also the 'cid' */ #define FP_IDX(fp) (fp->index) /* interrupt taskqueue (fast) */ struct task tq_task; struct taskqueue *tq; char tq_name[32]; struct task tx_task; struct timeout_task tx_timeout_task; /* ethernet client ID (each fastpath set of RX/TX/CQE is a client) */ uint8_t cl_id; #define FP_CL_ID(fp) (fp->cl_id) uint8_t cl_qzone_id; uint16_t fp_hc_idx; /* driver copy of the receive buffer descriptor prod/cons indices */ uint16_t rx_bd_prod; uint16_t rx_bd_cons; /* driver copy of the receive completion queue prod/cons indices */ uint16_t rx_cq_prod; uint16_t rx_cq_cons; union bxe_db_prod tx_db; /* Transmit packet producer index (used in eth_tx_bd). */ uint16_t tx_pkt_prod; uint16_t tx_pkt_cons; /* Transmit buffer descriptor producer index. */ uint16_t tx_bd_prod; uint16_t tx_bd_cons; uint64_t sge_mask[RX_SGE_MASK_LEN]; uint16_t rx_sge_prod; struct tstorm_per_queue_stats old_tclient; struct ustorm_per_queue_stats old_uclient; struct xstorm_per_queue_stats old_xclient; struct bxe_eth_q_stats eth_q_stats; struct bxe_eth_q_stats_old eth_q_stats_old; /* Pointer to the receive consumer in the status block */ uint16_t *rx_cq_cons_sb; /* Pointer to the transmit consumer in the status block */ uint16_t *tx_cons_sb; /* transmit timeout until chip reset */ int watchdog_timer; /* Free/used buffer descriptor counters. */ //uint16_t used_tx_bd; /* Last maximal completed SGE */ uint16_t last_max_sge; //uint16_t rx_sge_free_idx; //uint8_t segs; #if __FreeBSD_version >= 800000 #define BXE_BR_SIZE 4096 struct buf_ring *tx_br; #endif }; /* struct bxe_fastpath */ /* sriov XXX */ #define BXE_MAX_NUM_OF_VFS 64 #define BXE_VF_CID_WND 0 #define BXE_CIDS_PER_VF (1 << BXE_VF_CID_WND) #define BXE_CLIENTS_PER_VF 1 #define BXE_FIRST_VF_CID 256 #define BXE_VF_CIDS (BXE_MAX_NUM_OF_VFS * BXE_CIDS_PER_VF) #define BXE_VF_ID_INVALID 0xFF #define IS_SRIOV(sc) 0 #define GET_NUM_VFS_PER_PATH(sc) 0 #define GET_NUM_VFS_PER_PF(sc) 0 /* maximum number of fast-path interrupt contexts */ #define FP_SB_MAX_E1x 16 #define FP_SB_MAX_E2 HC_SB_MAX_SB_E2 union cdu_context { struct eth_context eth; char pad[1024]; }; /* CDU host DB constants */ #define CDU_ILT_PAGE_SZ_HW 2 #define CDU_ILT_PAGE_SZ (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */ #define ILT_PAGE_CIDS (CDU_ILT_PAGE_SZ / sizeof(union cdu_context)) #define CNIC_ISCSI_CID_MAX 256 #define CNIC_FCOE_CID_MAX 2048 #define CNIC_CID_MAX (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX) #define CNIC_ILT_LINES DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS) #define QM_ILT_PAGE_SZ_HW 0 #define QM_ILT_PAGE_SZ (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */ #define QM_CID_ROUND 1024 /* TM (timers) host DB constants */ #define TM_ILT_PAGE_SZ_HW 0 #define TM_ILT_PAGE_SZ (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */ /*#define TM_CONN_NUM (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */ #define TM_CONN_NUM 1024 #define TM_ILT_SZ (8 * TM_CONN_NUM) #define TM_ILT_LINES DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ) /* SRC (Searcher) host DB constants */ #define SRC_ILT_PAGE_SZ_HW 0 #define SRC_ILT_PAGE_SZ (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */ #define SRC_HASH_BITS 10 #define SRC_CONN_NUM (1 << SRC_HASH_BITS) /* 1024 */ #define SRC_ILT_SZ (sizeof(struct src_ent) * SRC_CONN_NUM) #define SRC_T2_SZ SRC_ILT_SZ #define SRC_ILT_LINES DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ) struct hw_context { struct bxe_dma vcxt_dma; union cdu_context *vcxt; //bus_addr_t cxt_mapping; size_t size; }; #define SM_RX_ID 0 #define SM_TX_ID 1 /* defines for multiple tx priority indices */ #define FIRST_TX_ONLY_COS_INDEX 1 #define FIRST_TX_COS_INDEX 0 #define CID_TO_FP(cid, sc) ((cid) % BXE_NUM_NON_CNIC_QUEUES(sc)) #define HC_INDEX_ETH_RX_CQ_CONS 1 #define HC_INDEX_OOO_TX_CQ_CONS 4 #define HC_INDEX_ETH_TX_CQ_CONS_COS0 5 #define HC_INDEX_ETH_TX_CQ_CONS_COS1 6 #define HC_INDEX_ETH_TX_CQ_CONS_COS2 7 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0 /* congestion management fairness mode */ #define CMNG_FNS_NONE 0 #define CMNG_FNS_MINMAX 1 /* CMNG constants, as derived from system spec calculations */ /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */ #define DEF_MIN_RATE 100 /* resolution of the rate shaping timer - 400 usec */ #define RS_PERIODIC_TIMEOUT_USEC 400 /* number of bytes in single QM arbitration cycle - * coefficient for calculating the fairness timer */ #define QM_ARB_BYTES 160000 /* resolution of Min algorithm 1:100 */ #define MIN_RES 100 /* how many bytes above threshold for the minimal credit of Min algorithm*/ #define MIN_ABOVE_THRESH 32768 /* fairness algorithm integration time coefficient - * for calculating the actual Tfair */ #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES) /* memory of fairness algorithm - 2 cycles */ #define FAIR_MEM 2 #define HC_SEG_ACCESS_DEF 0 /* Driver decision 0-3 */ #define HC_SEG_ACCESS_ATTN 4 #define HC_SEG_ACCESS_NORM 0 /* Driver decision 0-1 */ /* * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is * control by the number of fast-path status blocks supported by the * device (HW/FW). Each fast-path status block (FP-SB) aka non-default * status block represents an independent interrupts context that can * serve a regular L2 networking queue. However special L2 queues such * as the FCoE queue do not require a FP-SB and other components like * the CNIC may consume FP-SB reducing the number of possible L2 queues * * If the maximum number of FP-SB available is X then: * a. If CNIC is supported it consumes 1 FP-SB thus the max number of * regular L2 queues is Y=X-1 * b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor) * c. If the FCoE L2 queue is supported the actual number of L2 queues * is Y+1 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for * slow-path interrupts) or Y+2 if CNIC is supported (one additional * FP interrupt context for the CNIC). * e. The number of HW context (CID count) is always X or X+1 if FCoE * L2 queue is supported. the cid for the FCoE L2 queue is always X. * * So this is quite simple for now as no ULPs are supported yet. :-) */ #define BXE_NUM_QUEUES(sc) ((sc)->num_queues) #define BXE_NUM_ETH_QUEUES(sc) BXE_NUM_QUEUES(sc) #define BXE_NUM_NON_CNIC_QUEUES(sc) BXE_NUM_QUEUES(sc) #define BXE_NUM_RX_QUEUES(sc) BXE_NUM_QUEUES(sc) #define FOR_EACH_QUEUE(sc, var) \ for ((var) = 0; (var) < BXE_NUM_QUEUES(sc); (var)++) #define FOR_EACH_NONDEFAULT_QUEUE(sc, var) \ for ((var) = 1; (var) < BXE_NUM_QUEUES(sc); (var)++) #define FOR_EACH_ETH_QUEUE(sc, var) \ for ((var) = 0; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++) #define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var) \ for ((var) = 1; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++) #define FOR_EACH_COS_IN_TX_QUEUE(sc, var) \ for ((var) = 0; (var) < (sc)->max_cos; (var)++) #define FOR_EACH_CNIC_QUEUE(sc, var) \ for ((var) = BXE_NUM_ETH_QUEUES(sc); \ (var) < BXE_NUM_QUEUES(sc); \ (var)++) enum { OOO_IDX_OFFSET, FCOE_IDX_OFFSET, FWD_IDX_OFFSET, }; #define FCOE_IDX(sc) (BXE_NUM_NON_CNIC_QUEUES(sc) + FCOE_IDX_OFFSET) #define bxe_fcoe_fp(sc) (&sc->fp[FCOE_IDX(sc)]) #define bxe_fcoe(sc, var) (bxe_fcoe_fp(sc)->var) #define bxe_fcoe_inner_sp_obj(sc) (&sc->sp_objs[FCOE_IDX(sc)]) #define bxe_fcoe_sp_obj(sc, var) (bxe_fcoe_inner_sp_obj(sc)->var) #define bxe_fcoe_tx(sc, var) (bxe_fcoe_fp(sc)->txdata_ptr[FIRST_TX_COS_INDEX]->var) #define OOO_IDX(sc) (BXE_NUM_NON_CNIC_QUEUES(sc) + OOO_IDX_OFFSET) #define bxe_ooo_fp(sc) (&sc->fp[OOO_IDX(sc)]) #define bxe_ooo(sc, var) (bxe_ooo_fp(sc)->var) #define bxe_ooo_inner_sp_obj(sc) (&sc->sp_objs[OOO_IDX(sc)]) #define bxe_ooo_sp_obj(sc, var) (bxe_ooo_inner_sp_obj(sc)->var) #define FWD_IDX(sc) (BXE_NUM_NON_CNIC_QUEUES(sc) + FWD_IDX_OFFSET) #define bxe_fwd_fp(sc) (&sc->fp[FWD_IDX(sc)]) #define bxe_fwd(sc, var) (bxe_fwd_fp(sc)->var) #define bxe_fwd_inner_sp_obj(sc) (&sc->sp_objs[FWD_IDX(sc)]) #define bxe_fwd_sp_obj(sc, var) (bxe_fwd_inner_sp_obj(sc)->var) #define bxe_fwd_txdata(fp) (fp->txdata_ptr[FIRST_TX_COS_INDEX]) #define IS_ETH_FP(fp) ((fp)->index < BXE_NUM_ETH_QUEUES((fp)->sc)) #define IS_FCOE_FP(fp) ((fp)->index == FCOE_IDX((fp)->sc)) #define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(sc)) #define IS_FWD_FP(fp) ((fp)->index == FWD_IDX((fp)->sc)) #define IS_FWD_IDX(idx) ((idx) == FWD_IDX(sc)) #define IS_OOO_FP(fp) ((fp)->index == OOO_IDX((fp)->sc)) #define IS_OOO_IDX(idx) ((idx) == OOO_IDX(sc)) enum { BXE_PORT_QUERY_IDX, BXE_PF_QUERY_IDX, BXE_FCOE_QUERY_IDX, BXE_FIRST_QUEUE_QUERY_IDX, }; struct bxe_fw_stats_req { struct stats_query_header hdr; struct stats_query_entry query[FP_SB_MAX_E1x + BXE_FIRST_QUEUE_QUERY_IDX]; }; struct bxe_fw_stats_data { struct stats_counter storm_counters; struct per_port_stats port; struct per_pf_stats pf; //struct fcoe_statistics_params fcoe; struct per_queue_stats queue_stats[1]; }; /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */ #define BXE_IGU_STAS_MSG_VF_CNT 64 #define BXE_IGU_STAS_MSG_PF_CNT 4 #define MAX_DMAE_C 8 /* * For the main interface up/down code paths, a not-so-fine-grained CORE * mutex lock is used. Inside this code are various calls to kernel routines * that can cause a sleep to occur. Namely memory allocations and taskqueue * handling. If using an MTX lock we are *not* allowed to sleep but we can * with an SX lock. This define forces the CORE lock to use and SX lock. * Undefine this and an MTX lock will be used instead. Note that the IOCTL * path can cause problems since it's called by a non-sleepable thread. To * alleviate a potential sleep, any IOCTL processing that results in the * chip/interface being started/stopped/reinitialized, the actual work is * offloaded to a taskqueue. */ #define BXE_CORE_LOCK_SX /* * This is the slowpath data structure. It is mapped into non-paged memory * so that the hardware can access it's contents directly and must be page * aligned. */ struct bxe_slowpath { /* used by the DMAE command executer */ struct dmae_cmd dmae[MAX_DMAE_C]; /* statistics completion */ uint32_t stats_comp; /* firmware defined statistics blocks */ union mac_stats mac_stats; struct nig_stats nig_stats; struct host_port_stats port_stats; struct host_func_stats func_stats; //struct host_func_stats func_stats_base; /* DMAE completion value and data source/sink */ uint32_t wb_comp; uint32_t wb_data[4]; union { struct mac_configuration_cmd e1x; struct eth_classify_rules_ramrod_data e2; } mac_rdata; union { struct tstorm_eth_mac_filter_config e1x; struct eth_filter_rules_ramrod_data e2; } rx_mode_rdata; struct eth_rss_update_ramrod_data rss_rdata; union { struct mac_configuration_cmd e1; struct eth_multicast_rules_ramrod_data e2; } mcast_rdata; union { struct function_start_data func_start; struct flow_control_configuration pfc_config; /* for DCBX ramrod */ } func_rdata; /* Queue State related ramrods */ union { struct client_init_ramrod_data init_data; struct client_update_ramrod_data update_data; } q_rdata; /* * AFEX ramrod can not be a part of func_rdata union because these * events might arrive in parallel to other events from func_rdata. * If they were defined in the same union the data can get corrupted. */ struct afex_vif_list_ramrod_data func_afex_rdata; union drv_info_to_mcp drv_info_to_mcp; }; /* struct bxe_slowpath */ /* * Port specifc data structure. */ struct bxe_port { /* * Port Management Function (for 57711E only). * When this field is set the driver instance is * responsible for managing port specifc * configurations such as handling link attentions. */ uint32_t pmf; /* Ethernet maximum transmission unit. */ uint16_t ether_mtu; uint32_t link_config[ELINK_LINK_CONFIG_SIZE]; uint32_t ext_phy_config; /* Port feature config.*/ uint32_t config; /* Defines the features supported by the PHY. */ uint32_t supported[ELINK_LINK_CONFIG_SIZE]; /* Defines the features advertised by the PHY. */ uint32_t advertising[ELINK_LINK_CONFIG_SIZE]; #define ADVERTISED_10baseT_Half (1 << 1) #define ADVERTISED_10baseT_Full (1 << 2) #define ADVERTISED_100baseT_Half (1 << 3) #define ADVERTISED_100baseT_Full (1 << 4) #define ADVERTISED_1000baseT_Half (1 << 5) #define ADVERTISED_1000baseT_Full (1 << 6) #define ADVERTISED_TP (1 << 7) #define ADVERTISED_FIBRE (1 << 8) #define ADVERTISED_Autoneg (1 << 9) #define ADVERTISED_Asym_Pause (1 << 10) #define ADVERTISED_Pause (1 << 11) #define ADVERTISED_2500baseX_Full (1 << 15) #define ADVERTISED_10000baseT_Full (1 << 16) uint32_t phy_addr; /* Used to synchronize phy accesses. */ struct mtx phy_mtx; char phy_mtx_name[32]; #define BXE_PHY_LOCK(sc) mtx_lock(&sc->port.phy_mtx) #define BXE_PHY_UNLOCK(sc) mtx_unlock(&sc->port.phy_mtx) #define BXE_PHY_LOCK_ASSERT(sc) mtx_assert(&sc->port.phy_mtx, MA_OWNED) /* * MCP scratchpad address for port specific statistics. * The device is responsible for writing statistcss * back to the MCP for use with management firmware such * as UMP/NC-SI. */ uint32_t port_stx; struct nig_stats old_nig_stats; }; /* struct bxe_port */ struct bxe_mf_info { uint32_t mf_config[E1HVN_MAX]; uint32_t vnics_per_port; /* 1, 2 or 4 */ uint32_t multi_vnics_mode; /* can be set even if vnics_per_port = 1 */ uint32_t path_has_ovlan; /* MF mode in the path (can be different than the MF mode of the function */ #define IS_MULTI_VNIC(sc) ((sc)->devinfo.mf_info.multi_vnics_mode) #define VNICS_PER_PORT(sc) ((sc)->devinfo.mf_info.vnics_per_port) #define VNICS_PER_PATH(sc) \ ((sc)->devinfo.mf_info.vnics_per_port * \ ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 1 )) uint8_t min_bw[MAX_VNIC_NUM]; uint8_t max_bw[MAX_VNIC_NUM]; uint16_t ext_id; /* vnic outer vlan or VIF ID */ #define VALID_OVLAN(ovlan) ((ovlan) <= 4096) #define INVALID_VIF_ID 0xFFFF #define OVLAN(sc) ((sc)->devinfo.mf_info.ext_id) #define VIF_ID(sc) ((sc)->devinfo.mf_info.ext_id) uint16_t default_vlan; #define NIV_DEFAULT_VLAN(sc) ((sc)->devinfo.mf_info.default_vlan) uint8_t niv_allowed_priorities; #define NIV_ALLOWED_PRIORITIES(sc) ((sc)->devinfo.mf_info.niv_allowed_priorities) uint8_t niv_default_cos; #define NIV_DEFAULT_COS(sc) ((sc)->devinfo.mf_info.niv_default_cos) uint8_t niv_mba_enabled; enum mf_cfg_afex_vlan_mode afex_vlan_mode; #define AFEX_VLAN_MODE(sc) ((sc)->devinfo.mf_info.afex_vlan_mode) int afex_def_vlan_tag; uint32_t pending_max; uint16_t flags; #define MF_INFO_VALID_MAC 0x0001 uint8_t mf_mode; /* Switch-Dependent or Switch-Independent */ #define IS_MF(sc) \ (IS_MULTI_VNIC(sc) && \ ((sc)->devinfo.mf_info.mf_mode != 0)) #define IS_MF_SD(sc) \ (IS_MULTI_VNIC(sc) && \ ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)) #define IS_MF_SI(sc) \ (IS_MULTI_VNIC(sc) && \ ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)) #define IS_MF_AFEX(sc) \ (IS_MULTI_VNIC(sc) && \ ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX)) #define IS_MF_SD_MODE(sc) IS_MF_SD(sc) #define IS_MF_SI_MODE(sc) IS_MF_SI(sc) #define IS_MF_AFEX_MODE(sc) IS_MF_AFEX(sc) uint32_t mf_protos_supported; #define MF_PROTO_SUPPORT_ETHERNET 0x1 #define MF_PROTO_SUPPORT_ISCSI 0x2 #define MF_PROTO_SUPPORT_FCOE 0x4 }; /* struct bxe_mf_info */ /* Device information data structure. */ struct bxe_devinfo { /* PCIe info */ uint16_t vendor_id; uint16_t device_id; uint16_t subvendor_id; uint16_t subdevice_id; /* * chip_id = 0b'CCCCCCCCCCCCCCCCRRRRMMMMMMMMBBBB' * C = Chip Number (bits 16-31) * R = Chip Revision (bits 12-15) * M = Chip Metal (bits 4-11) * B = Chip Bond ID (bits 0-3) */ uint32_t chip_id; #define CHIP_ID(sc) ((sc)->devinfo.chip_id & 0xffff0000) #define CHIP_NUM(sc) ((sc)->devinfo.chip_id >> 16) /* device ids */ #define CHIP_NUM_57710 0x164e #define CHIP_NUM_57711 0x164f #define CHIP_NUM_57711E 0x1650 #define CHIP_NUM_57712 0x1662 #define CHIP_NUM_57712_MF 0x1663 #define CHIP_NUM_57712_VF 0x166f #define CHIP_NUM_57800 0x168a #define CHIP_NUM_57800_MF 0x16a5 #define CHIP_NUM_57800_VF 0x16a9 #define CHIP_NUM_57810 0x168e #define CHIP_NUM_57810_MF 0x16ae #define CHIP_NUM_57810_VF 0x16af #define CHIP_NUM_57811 0x163d #define CHIP_NUM_57811_MF 0x163e #define CHIP_NUM_57811_VF 0x163f #define CHIP_NUM_57840_OBS 0x168d #define CHIP_NUM_57840_OBS_MF 0x16ab #define CHIP_NUM_57840_4_10 0x16a1 #define CHIP_NUM_57840_2_20 0x16a2 #define CHIP_NUM_57840_MF 0x16a4 #define CHIP_NUM_57840_VF 0x16ad #define CHIP_REV_SHIFT 12 #define CHIP_REV_MASK (0xF << CHIP_REV_SHIFT) #define CHIP_REV(sc) ((sc)->devinfo.chip_id & CHIP_REV_MASK) #define CHIP_REV_Ax (0x0 << CHIP_REV_SHIFT) #define CHIP_REV_Bx (0x1 << CHIP_REV_SHIFT) #define CHIP_REV_Cx (0x2 << CHIP_REV_SHIFT) #define CHIP_REV_IS_SLOW(sc) \ (CHIP_REV(sc) > 0x00005000) #define CHIP_REV_IS_FPGA(sc) \ (CHIP_REV_IS_SLOW(sc) && (CHIP_REV(sc) & 0x00001000)) #define CHIP_REV_IS_EMUL(sc) \ (CHIP_REV_IS_SLOW(sc) && !(CHIP_REV(sc) & 0x00001000)) #define CHIP_REV_IS_ASIC(sc) \ (!CHIP_REV_IS_SLOW(sc)) #define CHIP_METAL(sc) ((sc->devinfo.chip_id) & 0x00000ff0) #define CHIP_BOND_ID(sc) ((sc->devinfo.chip_id) & 0x0000000f) #define CHIP_IS_E1(sc) (CHIP_NUM(sc) == CHIP_NUM_57710) #define CHIP_IS_57710(sc) (CHIP_NUM(sc) == CHIP_NUM_57710) #define CHIP_IS_57711(sc) (CHIP_NUM(sc) == CHIP_NUM_57711) #define CHIP_IS_57711E(sc) (CHIP_NUM(sc) == CHIP_NUM_57711E) #define CHIP_IS_E1H(sc) ((CHIP_IS_57711(sc)) || \ (CHIP_IS_57711E(sc))) #define CHIP_IS_E1x(sc) (CHIP_IS_E1((sc)) || \ CHIP_IS_E1H((sc))) #define CHIP_IS_57712(sc) (CHIP_NUM(sc) == CHIP_NUM_57712) #define CHIP_IS_57712_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_MF) #define CHIP_IS_57712_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_VF) #define CHIP_IS_E2(sc) (CHIP_IS_57712(sc) || \ CHIP_IS_57712_MF(sc)) #define CHIP_IS_57800(sc) (CHIP_NUM(sc) == CHIP_NUM_57800) #define CHIP_IS_57800_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_MF) #define CHIP_IS_57800_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_VF) #define CHIP_IS_57810(sc) (CHIP_NUM(sc) == CHIP_NUM_57810) #define CHIP_IS_57810_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_MF) #define CHIP_IS_57810_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_VF) #define CHIP_IS_57811(sc) (CHIP_NUM(sc) == CHIP_NUM_57811) #define CHIP_IS_57811_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_MF) #define CHIP_IS_57811_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_VF) #define CHIP_IS_57840(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS) || \ (CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || \ (CHIP_NUM(sc) == CHIP_NUM_57840_2_20)) #define CHIP_IS_57840_MF(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS_MF) || \ (CHIP_NUM(sc) == CHIP_NUM_57840_MF)) #define CHIP_IS_57840_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57840_VF) #define CHIP_IS_E3(sc) (CHIP_IS_57800(sc) || \ CHIP_IS_57800_MF(sc) || \ CHIP_IS_57800_VF(sc) || \ CHIP_IS_57810(sc) || \ CHIP_IS_57810_MF(sc) || \ CHIP_IS_57810_VF(sc) || \ CHIP_IS_57811(sc) || \ CHIP_IS_57811_MF(sc) || \ CHIP_IS_57811_VF(sc) || \ CHIP_IS_57840(sc) || \ CHIP_IS_57840_MF(sc) || \ CHIP_IS_57840_VF(sc)) #define CHIP_IS_E3A0(sc) (CHIP_IS_E3(sc) && \ (CHIP_REV(sc) == CHIP_REV_Ax)) #define CHIP_IS_E3B0(sc) (CHIP_IS_E3(sc) && \ (CHIP_REV(sc) == CHIP_REV_Bx)) #define USES_WARPCORE(sc) (CHIP_IS_E3(sc)) #define CHIP_IS_E2E3(sc) (CHIP_IS_E2(sc) || \ CHIP_IS_E3(sc)) #define CHIP_IS_MF_CAP(sc) (CHIP_IS_57711E(sc) || \ CHIP_IS_57712_MF(sc) || \ CHIP_IS_E3(sc)) #define IS_VF(sc) (CHIP_IS_57712_VF(sc) || \ CHIP_IS_57800_VF(sc) || \ CHIP_IS_57810_VF(sc) || \ CHIP_IS_57840_VF(sc)) #define IS_PF(sc) (!IS_VF(sc)) /* * This define is used in two main places: * 1. In the early stages of nic_load, to know if to configure Parser/Searcher * to nic-only mode or to offload mode. Offload mode is configured if either * the chip is E1x (where NIC_MODE register is not applicable), or if cnic * already registered for this port (which means that the user wants storage * services). * 2. During cnic-related load, to know if offload mode is already configured * in the HW or needs to be configrued. Since the transition from nic-mode to * offload-mode in HW causes traffic coruption, nic-mode is configured only * in ports on which storage services where never requested. */ #define CONFIGURE_NIC_MODE(sc) (!CHIP_IS_E1x(sc) && !CNIC_ENABLED(sc)) uint8_t chip_port_mode; #define CHIP_4_PORT_MODE 0x0 #define CHIP_2_PORT_MODE 0x1 #define CHIP_PORT_MODE_NONE 0x2 #define CHIP_PORT_MODE(sc) ((sc)->devinfo.chip_port_mode) #define CHIP_IS_MODE_4_PORT(sc) (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) uint8_t int_block; #define INT_BLOCK_HC 0 #define INT_BLOCK_IGU 1 #define INT_BLOCK_MODE_NORMAL 0 #define INT_BLOCK_MODE_BW_COMP 2 #define CHIP_INT_MODE_IS_NBC(sc) \ (!CHIP_IS_E1x(sc) && \ !((sc)->devinfo.int_block & INT_BLOCK_MODE_BW_COMP)) #define CHIP_INT_MODE_IS_BC(sc) (!CHIP_INT_MODE_IS_NBC(sc)) uint32_t shmem_base; uint32_t shmem2_base; uint32_t bc_ver; char bc_ver_str[32]; uint32_t mf_cfg_base; /* bootcode shmem address in BAR memory */ struct bxe_mf_info mf_info; int flash_size; #define NVRAM_1MB_SIZE 0x20000 #define NVRAM_TIMEOUT_COUNT 30000 #define NVRAM_PAGE_SIZE 256 /* PCIe capability information */ uint32_t pcie_cap_flags; #define BXE_PM_CAPABLE_FLAG 0x00000001 #define BXE_PCIE_CAPABLE_FLAG 0x00000002 #define BXE_MSI_CAPABLE_FLAG 0x00000004 #define BXE_MSIX_CAPABLE_FLAG 0x00000008 uint16_t pcie_pm_cap_reg; uint16_t pcie_pcie_cap_reg; //uint16_t pcie_devctl; uint16_t pcie_link_width; uint16_t pcie_link_speed; uint16_t pcie_msi_cap_reg; uint16_t pcie_msix_cap_reg; /* device configuration read from bootcode shared memory */ uint32_t hw_config; uint32_t hw_config2; }; /* struct bxe_devinfo */ struct bxe_sp_objs { struct ecore_vlan_mac_obj mac_obj; /* MACs object */ struct ecore_queue_sp_obj q_obj; /* Queue State object */ }; /* struct bxe_sp_objs */ /* * Data that will be used to create a link report message. We will keep the * data used for the last link report in order to prevent reporting the same * link parameters twice. */ struct bxe_link_report_data { uint16_t line_speed; /* Effective line speed */ unsigned long link_report_flags; /* BXE_LINK_REPORT_XXX flags */ }; enum { BXE_LINK_REPORT_FULL_DUPLEX, BXE_LINK_REPORT_LINK_DOWN, BXE_LINK_REPORT_RX_FC_ON, BXE_LINK_REPORT_TX_FC_ON }; /* Top level device private data structure. */ struct bxe_softc { /* * First entry must be a pointer to the BSD ifnet struct which * has a first element of 'void *if_softc' (which is us). XXX */ if_t ifp; struct ifmedia ifmedia; /* network interface media structure */ int media; volatile int state; /* device state */ #define BXE_STATE_CLOSED 0x0000 #define BXE_STATE_OPENING_WAITING_LOAD 0x1000 #define BXE_STATE_OPENING_WAITING_PORT 0x2000 #define BXE_STATE_OPEN 0x3000 #define BXE_STATE_CLOSING_WAITING_HALT 0x4000 #define BXE_STATE_CLOSING_WAITING_DELETE 0x5000 #define BXE_STATE_CLOSING_WAITING_UNLOAD 0x6000 #define BXE_STATE_DISABLED 0xD000 #define BXE_STATE_DIAG 0xE000 #define BXE_STATE_ERROR 0xF000 int flags; #define BXE_ONE_PORT_FLAG 0x00000001 #define BXE_NO_ISCSI 0x00000002 #define BXE_NO_FCOE 0x00000004 #define BXE_ONE_PORT(sc) (sc->flags & BXE_ONE_PORT_FLAG) //#define BXE_NO_WOL_FLAG 0x00000008 //#define BXE_USING_DAC_FLAG 0x00000010 //#define BXE_USING_MSIX_FLAG 0x00000020 //#define BXE_USING_MSI_FLAG 0x00000040 //#define BXE_DISABLE_MSI_FLAG 0x00000080 #define BXE_NO_MCP_FLAG 0x00000200 #define BXE_NOMCP(sc) (sc->flags & BXE_NO_MCP_FLAG) //#define BXE_SAFC_TX_FLAG 0x00000400 #define BXE_MF_FUNC_DIS 0x00000800 #define BXE_TX_SWITCHING 0x00001000 #define BXE_NO_PULSE 0x00002000 unsigned long debug; /* per-instance debug logging config */ #define MAX_BARS 5 struct bxe_bar bar[MAX_BARS]; /* map BARs 0, 2, 4 */ uint16_t doorbell_size; /* periodic timer callout */ #define PERIODIC_STOP 0 #define PERIODIC_GO 1 volatile unsigned long periodic_flags; struct callout periodic_callout; /* chip start/stop/reset taskqueue */ #define CHIP_TQ_NONE 0 #define CHIP_TQ_START 1 #define CHIP_TQ_STOP 2 #define CHIP_TQ_REINIT 3 volatile unsigned long chip_tq_flags; struct task chip_tq_task; struct taskqueue *chip_tq; char chip_tq_name[32]; /* slowpath interrupt taskqueue */ struct task sp_tq_task; struct taskqueue *sp_tq; char sp_tq_name[32]; struct bxe_fastpath fp[MAX_RSS_CHAINS]; struct bxe_sp_objs sp_objs[MAX_RSS_CHAINS]; device_t dev; /* parent device handle */ uint8_t unit; /* driver instance number */ int pcie_bus; /* PCIe bus number */ int pcie_device; /* PCIe device/slot number */ int pcie_func; /* PCIe function number */ uint8_t pfunc_rel; /* function relative */ uint8_t pfunc_abs; /* function absolute */ uint8_t path_id; /* function absolute */ #define SC_PATH(sc) (sc->path_id) #define SC_PORT(sc) (sc->pfunc_rel & 1) #define SC_FUNC(sc) (sc->pfunc_rel) #define SC_ABS_FUNC(sc) (sc->pfunc_abs) #define SC_VN(sc) (sc->pfunc_rel >> 1) #define SC_L_ID(sc) (SC_VN(sc) << 2) #define PORT_ID(sc) SC_PORT(sc) #define PATH_ID(sc) SC_PATH(sc) #define VNIC_ID(sc) SC_VN(sc) #define FUNC_ID(sc) SC_FUNC(sc) #define ABS_FUNC_ID(sc) SC_ABS_FUNC(sc) #define SC_FW_MB_IDX_VN(sc, vn) \ (SC_PORT(sc) + (vn) * \ ((CHIP_IS_E1x(sc) || (CHIP_IS_MODE_4_PORT(sc))) ? 2 : 1)) #define SC_FW_MB_IDX(sc) SC_FW_MB_IDX_VN(sc, SC_VN(sc)) int if_capen; /* enabled interface capabilities */ struct bxe_devinfo devinfo; char fw_ver_str[32]; char mf_mode_str[32]; char pci_link_str[32]; const struct iro *iro_array; #ifdef BXE_CORE_LOCK_SX struct sx core_sx; char core_sx_name[32]; #else struct mtx core_mtx; char core_mtx_name[32]; #endif struct mtx sp_mtx; char sp_mtx_name[32]; struct mtx dmae_mtx; char dmae_mtx_name[32]; struct mtx fwmb_mtx; char fwmb_mtx_name[32]; struct mtx print_mtx; char print_mtx_name[32]; struct mtx stats_mtx; char stats_mtx_name[32]; struct mtx mcast_mtx; char mcast_mtx_name[32]; #ifdef BXE_CORE_LOCK_SX #define BXE_CORE_TRYLOCK(sc) sx_try_xlock(&sc->core_sx) #define BXE_CORE_LOCK(sc) sx_xlock(&sc->core_sx) #define BXE_CORE_UNLOCK(sc) sx_xunlock(&sc->core_sx) #define BXE_CORE_LOCK_ASSERT(sc) sx_assert(&sc->core_sx, SA_XLOCKED) #else #define BXE_CORE_TRYLOCK(sc) mtx_trylock(&sc->core_mtx) #define BXE_CORE_LOCK(sc) mtx_lock(&sc->core_mtx) #define BXE_CORE_UNLOCK(sc) mtx_unlock(&sc->core_mtx) #define BXE_CORE_LOCK_ASSERT(sc) mtx_assert(&sc->core_mtx, MA_OWNED) #endif #define BXE_SP_LOCK(sc) mtx_lock(&sc->sp_mtx) #define BXE_SP_UNLOCK(sc) mtx_unlock(&sc->sp_mtx) #define BXE_SP_LOCK_ASSERT(sc) mtx_assert(&sc->sp_mtx, MA_OWNED) #define BXE_DMAE_LOCK(sc) mtx_lock(&sc->dmae_mtx) #define BXE_DMAE_UNLOCK(sc) mtx_unlock(&sc->dmae_mtx) #define BXE_DMAE_LOCK_ASSERT(sc) mtx_assert(&sc->dmae_mtx, MA_OWNED) #define BXE_FWMB_LOCK(sc) mtx_lock(&sc->fwmb_mtx) #define BXE_FWMB_UNLOCK(sc) mtx_unlock(&sc->fwmb_mtx) #define BXE_FWMB_LOCK_ASSERT(sc) mtx_assert(&sc->fwmb_mtx, MA_OWNED) #define BXE_PRINT_LOCK(sc) mtx_lock(&sc->print_mtx) #define BXE_PRINT_UNLOCK(sc) mtx_unlock(&sc->print_mtx) #define BXE_PRINT_LOCK_ASSERT(sc) mtx_assert(&sc->print_mtx, MA_OWNED) #define BXE_STATS_LOCK(sc) mtx_lock(&sc->stats_mtx) #define BXE_STATS_UNLOCK(sc) mtx_unlock(&sc->stats_mtx) #define BXE_STATS_LOCK_ASSERT(sc) mtx_assert(&sc->stats_mtx, MA_OWNED) #if __FreeBSD_version < 800000 #define BXE_MCAST_LOCK(sc) \ do { \ mtx_lock(&sc->mcast_mtx); \ IF_ADDR_LOCK(sc->ifp); \ } while (0) #define BXE_MCAST_UNLOCK(sc) \ do { \ IF_ADDR_UNLOCK(sc->ifp); \ mtx_unlock(&sc->mcast_mtx); \ } while (0) #else #define BXE_MCAST_LOCK(sc) \ do { \ mtx_lock(&sc->mcast_mtx); \ if_maddr_rlock(sc->ifp); \ } while (0) #define BXE_MCAST_UNLOCK(sc) \ do { \ if_maddr_runlock(sc->ifp); \ mtx_unlock(&sc->mcast_mtx); \ } while (0) #endif #define BXE_MCAST_LOCK_ASSERT(sc) mtx_assert(&sc->mcast_mtx, MA_OWNED) int dmae_ready; #define DMAE_READY(sc) (sc->dmae_ready) struct ecore_credit_pool_obj vlans_pool; struct ecore_credit_pool_obj macs_pool; struct ecore_rx_mode_obj rx_mode_obj; struct ecore_mcast_obj mcast_obj; struct ecore_rss_config_obj rss_conf_obj; struct ecore_func_sp_obj func_obj; uint16_t fw_seq; uint16_t fw_drv_pulse_wr_seq; uint32_t func_stx; struct elink_params link_params; struct elink_vars link_vars; uint32_t link_cnt; struct bxe_link_report_data last_reported_link; char mac_addr_str[32]; int last_reported_link_state; int tx_ring_size; int rx_ring_size; int wol; int is_leader; int recovery_state; #define BXE_RECOVERY_DONE 1 #define BXE_RECOVERY_INIT 2 #define BXE_RECOVERY_WAIT 3 #define BXE_RECOVERY_FAILED 4 #define BXE_RECOVERY_NIC_LOADING 5 uint32_t rx_mode; #define BXE_RX_MODE_NONE 0 #define BXE_RX_MODE_NORMAL 1 #define BXE_RX_MODE_ALLMULTI 2 #define BXE_RX_MODE_PROMISC 3 #define BXE_MAX_MULTICAST 64 struct bxe_port port; struct cmng_init cmng; /* user configs */ int num_queues; int max_rx_bufs; int hc_rx_ticks; int hc_tx_ticks; int rx_budget; int max_aggregation_size; int mrrs; int autogreeen; #define AUTO_GREEN_HW_DEFAULT 0 #define AUTO_GREEN_FORCE_ON 1 #define AUTO_GREEN_FORCE_OFF 2 int interrupt_mode; #define INTR_MODE_INTX 0 #define INTR_MODE_MSI 1 #define INTR_MODE_MSIX 2 int udp_rss; /* interrupt allocations */ struct bxe_intr intr[MAX_RSS_CHAINS+1]; int intr_count; uint8_t igu_dsb_id; uint8_t igu_base_sb; uint8_t igu_sb_cnt; //uint8_t min_msix_vec_cnt; uint32_t igu_base_addr; //bus_addr_t def_status_blk_mapping; uint8_t base_fw_ndsb; #define DEF_SB_IGU_ID 16 #define DEF_SB_ID HC_SP_SB_ID /* parent bus DMA tag */ bus_dma_tag_t parent_dma_tag; /* default status block */ struct bxe_dma def_sb_dma; struct host_sp_status_block *def_sb; uint16_t def_idx; uint16_t def_att_idx; uint32_t attn_state; struct attn_route attn_group[MAX_DYNAMIC_ATTN_GRPS]; /* general SP events - stats query, cfc delete, etc */ #define HC_SP_INDEX_ETH_DEF_CONS 3 /* EQ completions */ #define HC_SP_INDEX_EQ_CONS 7 /* FCoE L2 connection completions */ #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS 6 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS 4 /* iSCSI L2 */ #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS 5 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1 /* event queue */ struct bxe_dma eq_dma; union event_ring_elem *eq; uint16_t eq_prod; uint16_t eq_cons; uint16_t *eq_cons_sb; #define NUM_EQ_PAGES 1 /* must be a power of 2 */ #define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem)) #define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1) #define NUM_EQ_DESC (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES) #define EQ_DESC_MASK (NUM_EQ_DESC - 1) #define MAX_EQ_AVAIL (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2) /* depends on EQ_DESC_CNT_PAGE being a power of 2 */ #define NEXT_EQ_IDX(x) \ ((((x) & EQ_DESC_MAX_PAGE) == (EQ_DESC_MAX_PAGE - 1)) ? \ ((x) + 2) : ((x) + 1)) /* depends on the above and on NUM_EQ_PAGES being a power of 2 */ #define EQ_DESC(x) ((x) & EQ_DESC_MASK) /* slow path */ struct bxe_dma sp_dma; struct bxe_slowpath *sp; unsigned long sp_state; /* slow path queue */ struct bxe_dma spq_dma; struct eth_spe *spq; #define SP_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_spe)) #define MAX_SP_DESC_CNT (SP_DESC_CNT - 1) #define MAX_SPQ_PENDING 8 uint16_t spq_prod_idx; struct eth_spe *spq_prod_bd; struct eth_spe *spq_last_bd; uint16_t *dsb_sp_prod; //uint16_t *spq_hw_con; //uint16_t spq_left; volatile unsigned long eq_spq_left; /* COMMON_xxx ramrod credit */ volatile unsigned long cq_spq_left; /* ETH_xxx ramrod credit */ /* fw decompression buffer */ struct bxe_dma gz_buf_dma; void *gz_buf; z_streamp gz_strm; uint32_t gz_outlen; #define GUNZIP_BUF(sc) (sc->gz_buf) #define GUNZIP_OUTLEN(sc) (sc->gz_outlen) #define GUNZIP_PHYS(sc) (sc->gz_buf_dma.paddr) #define FW_BUF_SIZE 0x40000 const struct raw_op *init_ops; const uint16_t *init_ops_offsets; /* init block offsets inside init_ops */ const uint32_t *init_data; /* data blob, 32 bit granularity */ uint32_t init_mode_flags; #define INIT_MODE_FLAGS(sc) (sc->init_mode_flags) /* PRAM blobs - raw data */ const uint8_t *tsem_int_table_data; const uint8_t *tsem_pram_data; const uint8_t *usem_int_table_data; const uint8_t *usem_pram_data; const uint8_t *xsem_int_table_data; const uint8_t *xsem_pram_data; const uint8_t *csem_int_table_data; const uint8_t *csem_pram_data; #define INIT_OPS(sc) (sc->init_ops) #define INIT_OPS_OFFSETS(sc) (sc->init_ops_offsets) #define INIT_DATA(sc) (sc->init_data) #define INIT_TSEM_INT_TABLE_DATA(sc) (sc->tsem_int_table_data) #define INIT_TSEM_PRAM_DATA(sc) (sc->tsem_pram_data) #define INIT_USEM_INT_TABLE_DATA(sc) (sc->usem_int_table_data) #define INIT_USEM_PRAM_DATA(sc) (sc->usem_pram_data) #define INIT_XSEM_INT_TABLE_DATA(sc) (sc->xsem_int_table_data) #define INIT_XSEM_PRAM_DATA(sc) (sc->xsem_pram_data) #define INIT_CSEM_INT_TABLE_DATA(sc) (sc->csem_int_table_data) #define INIT_CSEM_PRAM_DATA(sc) (sc->csem_pram_data) /* ILT * For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB * context size we need 8 ILT entries. */ #define ILT_MAX_L2_LINES 8 struct hw_context context[ILT_MAX_L2_LINES]; struct ecore_ilt *ilt; #define ILT_MAX_LINES 256 /* max supported number of RSS queues: IGU SBs minus one for CNIC */ #define BXE_MAX_RSS_COUNT(sc) ((sc)->igu_sb_cnt - CNIC_SUPPORT(sc)) /* max CID count: Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */ #if 1 #define BXE_L2_MAX_CID(sc) \ (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc)) #else #define BXE_L2_MAX_CID(sc) /* OOO + FWD */ \ (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc)) #endif #if 1 #define BXE_L2_CID_COUNT(sc) \ (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc)) #else #define BXE_L2_CID_COUNT(sc) /* OOO + FWD */ \ (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc)) #endif #define L2_ILT_LINES(sc) \ (DIV_ROUND_UP(BXE_L2_CID_COUNT(sc), ILT_PAGE_CIDS)) int qm_cid_count; uint8_t dropless_fc; /* total number of FW statistics requests */ uint8_t fw_stats_num; /* * This is a memory buffer that will contain both statistics ramrod * request and data. */ struct bxe_dma fw_stats_dma; /* * FW statistics request shortcut (points at the beginning of fw_stats * buffer). */ int fw_stats_req_size; struct bxe_fw_stats_req *fw_stats_req; bus_addr_t fw_stats_req_mapping; /* * FW statistics data shortcut (points at the beginning of fw_stats * buffer + fw_stats_req_size). */ int fw_stats_data_size; struct bxe_fw_stats_data *fw_stats_data; bus_addr_t fw_stats_data_mapping; /* tracking a pending STAT_QUERY ramrod */ uint16_t stats_pending; /* number of completed statistics ramrods */ uint16_t stats_comp; uint16_t stats_counter; uint8_t stats_init; int stats_state; struct bxe_eth_stats eth_stats; struct host_func_stats func_stats; struct bxe_eth_stats_old eth_stats_old; struct bxe_net_stats_old net_stats_old; struct bxe_fw_port_stats_old fw_stats_old; struct dmae_cmd stats_dmae; /* used by dmae command loader */ int executer_idx; int mtu; /* LLDP params */ struct bxe_config_lldp_params lldp_config_params; /* DCB support on/off */ int dcb_state; #define BXE_DCB_STATE_OFF 0 #define BXE_DCB_STATE_ON 1 /* DCBX engine mode */ int dcbx_enabled; #define BXE_DCBX_ENABLED_OFF 0 #define BXE_DCBX_ENABLED_ON_NEG_OFF 1 #define BXE_DCBX_ENABLED_ON_NEG_ON 2 #define BXE_DCBX_ENABLED_INVALID -1 uint8_t dcbx_mode_uset; struct bxe_config_dcbx_params dcbx_config_params; struct bxe_dcbx_port_params dcbx_port_params; int dcb_version; uint8_t cnic_support; uint8_t cnic_enabled; uint8_t cnic_loaded; #define CNIC_SUPPORT(sc) 0 /* ((sc)->cnic_support) */ #define CNIC_ENABLED(sc) 0 /* ((sc)->cnic_enabled) */ #define CNIC_LOADED(sc) 0 /* ((sc)->cnic_loaded) */ /* multiple tx classes of service */ uint8_t max_cos; #define BXE_MAX_PRIORITY 8 /* priority to cos mapping */ uint8_t prio_to_cos[BXE_MAX_PRIORITY]; int panic; struct cdev *ioctl_dev; void *grc_dump; unsigned int trigger_grcdump; unsigned int grcdump_done; unsigned int grcdump_started; int bxe_pause_param; void *eeprom; }; /* struct bxe_softc */ /* IOCTL sub-commands for edebug and firmware upgrade */ #define BXE_IOC_RD_NVRAM 1 #define BXE_IOC_WR_NVRAM 2 #define BXE_IOC_STATS_SHOW_NUM 3 #define BXE_IOC_STATS_SHOW_STR 4 #define BXE_IOC_STATS_SHOW_CNT 5 struct bxe_nvram_data { uint32_t op; /* ioctl sub-command */ uint32_t offset; uint32_t len; uint32_t value[1]; /* variable */ }; union bxe_stats_show_data { uint32_t op; /* ioctl sub-command */ struct { uint32_t num; /* return number of stats */ uint32_t len; /* length of each string item */ } desc; /* variable length... */ char str[1]; /* holds names of desc.num stats, each desc.len in length */ /* variable length... */ uint64_t stats[1]; /* holds all stats */ }; /* function init flags */ #define FUNC_FLG_RSS 0x0001 #define FUNC_FLG_STATS 0x0002 /* FUNC_FLG_UNMATCHED 0x0004 */ #define FUNC_FLG_TPA 0x0008 #define FUNC_FLG_SPQ 0x0010 #define FUNC_FLG_LEADING 0x0020 /* PF only */ struct bxe_func_init_params { bus_addr_t fw_stat_map; /* (dma) valid if FUNC_FLG_STATS */ bus_addr_t spq_map; /* (dma) valid if FUNC_FLG_SPQ */ uint16_t func_flgs; uint16_t func_id; /* abs function id */ uint16_t pf_id; uint16_t spq_prod; /* valid if FUNC_FLG_SPQ */ }; /* memory resources reside at BARs 0, 2, 4 */ /* Run `pciconf -lb` to see mappings */ #define BAR0 0 #define BAR1 2 #define BAR2 4 #ifdef BXE_REG_NO_INLINE uint8_t bxe_reg_read8(struct bxe_softc *sc, bus_size_t offset); uint16_t bxe_reg_read16(struct bxe_softc *sc, bus_size_t offset); uint32_t bxe_reg_read32(struct bxe_softc *sc, bus_size_t offset); void bxe_reg_write8(struct bxe_softc *sc, bus_size_t offset, uint8_t val); void bxe_reg_write16(struct bxe_softc *sc, bus_size_t offset, uint16_t val); void bxe_reg_write32(struct bxe_softc *sc, bus_size_t offset, uint32_t val); #define REG_RD8(sc, offset) bxe_reg_read8(sc, offset) #define REG_RD16(sc, offset) bxe_reg_read16(sc, offset) #define REG_RD32(sc, offset) bxe_reg_read32(sc, offset) #define REG_WR8(sc, offset, val) bxe_reg_write8(sc, offset, val) #define REG_WR16(sc, offset, val) bxe_reg_write16(sc, offset, val) #define REG_WR32(sc, offset, val) bxe_reg_write32(sc, offset, val) #else /* not BXE_REG_NO_INLINE */ #define REG_WR8(sc, offset, val) \ bus_space_write_1(sc->bar[BAR0].tag, \ sc->bar[BAR0].handle, \ offset, val) #define REG_WR16(sc, offset, val) \ bus_space_write_2(sc->bar[BAR0].tag, \ sc->bar[BAR0].handle, \ offset, val) #define REG_WR32(sc, offset, val) \ bus_space_write_4(sc->bar[BAR0].tag, \ sc->bar[BAR0].handle, \ offset, val) #define REG_RD8(sc, offset) \ bus_space_read_1(sc->bar[BAR0].tag, \ sc->bar[BAR0].handle, \ offset) #define REG_RD16(sc, offset) \ bus_space_read_2(sc->bar[BAR0].tag, \ sc->bar[BAR0].handle, \ offset) #define REG_RD32(sc, offset) \ bus_space_read_4(sc->bar[BAR0].tag, \ sc->bar[BAR0].handle, \ offset) #endif /* BXE_REG_NO_INLINE */ #define REG_RD(sc, offset) REG_RD32(sc, offset) #define REG_WR(sc, offset, val) REG_WR32(sc, offset, val) #define REG_RD_IND(sc, offset) bxe_reg_rd_ind(sc, offset) #define REG_WR_IND(sc, offset, val) bxe_reg_wr_ind(sc, offset, val) #define BXE_SP(sc, var) (&(sc)->sp->var) #define BXE_SP_MAPPING(sc, var) \ (sc->sp_dma.paddr + offsetof(struct bxe_slowpath, var)) #define BXE_FP(sc, nr, var) ((sc)->fp[(nr)].var) #define BXE_SP_OBJ(sc, fp) ((sc)->sp_objs[(fp)->index]) #define REG_RD_DMAE(sc, offset, valp, len32) \ do { \ bxe_read_dmae(sc, offset, len32); \ memcpy(valp, BXE_SP(sc, wb_data[0]), (len32) * 4); \ } while (0) #define REG_WR_DMAE(sc, offset, valp, len32) \ do { \ memcpy(BXE_SP(sc, wb_data[0]), valp, (len32) * 4); \ bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), offset, len32); \ } while (0) #define REG_WR_DMAE_LEN(sc, offset, valp, len32) \ REG_WR_DMAE(sc, offset, valp, len32) #define REG_RD_DMAE_LEN(sc, offset, valp, len32) \ REG_RD_DMAE(sc, offset, valp, len32) #define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap) \ do { \ /* if (le32_swap) { */ \ /* BLOGW(sc, "VIRT_WR_DMAE_LEN with le32_swap=1\n"); */ \ /* } */ \ memcpy(GUNZIP_BUF(sc), data, len32 * 4); \ ecore_write_big_buf_wb(sc, addr, len32); \ } while (0) #define BXE_DB_MIN_SHIFT 3 /* 8 bytes */ #define BXE_DB_SHIFT 7 /* 128 bytes */ #if (BXE_DB_SHIFT < BXE_DB_MIN_SHIFT) #error "Minimum DB doorbell stride is 8" #endif #define DPM_TRIGGER_TYPE 0x40 #define DOORBELL(sc, cid, val) \ do { \ bus_space_write_4(sc->bar[BAR1].tag, sc->bar[BAR1].handle, \ ((sc->doorbell_size * (cid)) + DPM_TRIGGER_TYPE), \ (uint32_t)val); \ } while(0) #define SHMEM_ADDR(sc, field) \ (sc->devinfo.shmem_base + offsetof(struct shmem_region, field)) #define SHMEM_RD(sc, field) REG_RD(sc, SHMEM_ADDR(sc, field)) #define SHMEM_RD16(sc, field) REG_RD16(sc, SHMEM_ADDR(sc, field)) #define SHMEM_WR(sc, field, val) REG_WR(sc, SHMEM_ADDR(sc, field), val) #define SHMEM2_ADDR(sc, field) \ (sc->devinfo.shmem2_base + offsetof(struct shmem2_region, field)) #define SHMEM2_HAS(sc, field) \ (sc->devinfo.shmem2_base && (REG_RD(sc, SHMEM2_ADDR(sc, size)) > \ offsetof(struct shmem2_region, field))) #define SHMEM2_RD(sc, field) REG_RD(sc, SHMEM2_ADDR(sc, field)) #define SHMEM2_WR(sc, field, val) REG_WR(sc, SHMEM2_ADDR(sc, field), val) #define MFCFG_ADDR(sc, field) \ (sc->devinfo.mf_cfg_base + offsetof(struct mf_cfg, field)) #define MFCFG_RD(sc, field) REG_RD(sc, MFCFG_ADDR(sc, field)) #define MFCFG_RD16(sc, field) REG_RD16(sc, MFCFG_ADDR(sc, field)) #define MFCFG_WR(sc, field, val) REG_WR(sc, MFCFG_ADDR(sc, field), val) /* DMAE command defines */ #define DMAE_TIMEOUT -1 #define DMAE_PCI_ERROR -2 /* E2 and onward */ #define DMAE_NOT_RDY -3 #define DMAE_PCI_ERR_FLAG 0x80000000 #define DMAE_SRC_PCI 0 #define DMAE_SRC_GRC 1 #define DMAE_DST_NONE 0 #define DMAE_DST_PCI 1 #define DMAE_DST_GRC 2 #define DMAE_COMP_PCI 0 #define DMAE_COMP_GRC 1 #define DMAE_COMP_REGULAR 0 #define DMAE_COM_SET_ERR 1 #define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << DMAE_CMD_SRC_SHIFT) #define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << DMAE_CMD_SRC_SHIFT) #define DMAE_CMD_DST_PCI (DMAE_DST_PCI << DMAE_CMD_DST_SHIFT) #define DMAE_CMD_DST_GRC (DMAE_DST_GRC << DMAE_CMD_DST_SHIFT) #define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << DMAE_CMD_C_DST_SHIFT) #define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << DMAE_CMD_C_DST_SHIFT) #define DMAE_CMD_ENDIANITY_NO_SWAP (0 << DMAE_CMD_ENDIANITY_SHIFT) #define DMAE_CMD_ENDIANITY_B_SWAP (1 << DMAE_CMD_ENDIANITY_SHIFT) #define DMAE_CMD_ENDIANITY_DW_SWAP (2 << DMAE_CMD_ENDIANITY_SHIFT) #define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_CMD_ENDIANITY_SHIFT) #define DMAE_CMD_PORT_0 0 #define DMAE_CMD_PORT_1 DMAE_CMD_PORT #define DMAE_SRC_PF 0 #define DMAE_SRC_VF 1 #define DMAE_DST_PF 0 #define DMAE_DST_VF 1 #define DMAE_C_SRC 0 #define DMAE_C_DST 1 #define DMAE_LEN32_RD_MAX 0x80 #define DMAE_LEN32_WR_MAX(sc) (CHIP_IS_E1(sc) ? 0x400 : 0x2000) #define DMAE_COMP_VAL 0x60d0d0ae /* E2 and beyond, upper bit indicates error */ #define MAX_DMAE_C_PER_PORT 8 #define INIT_DMAE_C(sc) ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + SC_VN(sc)) #define PMF_DMAE_C(sc) ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + E1HVN_MAX) static const uint32_t dmae_reg_go_c[] = { DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3, DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7, DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11, DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15 }; #define ATTN_NIG_FOR_FUNC (1L << 8) #define ATTN_SW_TIMER_4_FUNC (1L << 9) #define GPIO_2_FUNC (1L << 10) #define GPIO_3_FUNC (1L << 11) #define GPIO_4_FUNC (1L << 12) #define ATTN_GENERAL_ATTN_1 (1L << 13) #define ATTN_GENERAL_ATTN_2 (1L << 14) #define ATTN_GENERAL_ATTN_3 (1L << 15) #define ATTN_GENERAL_ATTN_4 (1L << 13) #define ATTN_GENERAL_ATTN_5 (1L << 14) #define ATTN_GENERAL_ATTN_6 (1L << 15) #define ATTN_HARD_WIRED_MASK 0xff00 #define ATTENTION_ID 4 #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \ AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR #define MAX_IGU_ATTN_ACK_TO 100 #define STORM_ASSERT_ARRAY_SIZE 50 #define BXE_PMF_LINK_ASSERT(sc) \ GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + SC_FUNC(sc)) #define BXE_MC_ASSERT_BITS \ (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \ GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \ GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \ GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT)) #define BXE_MCP_ASSERT \ GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT) #define BXE_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC) #define BXE_GRC_RSV (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \ GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \ GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \ GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \ GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \ GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC)) #define MULTI_MASK 0x7f #define PFS_PER_PORT(sc) \ ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4) #define SC_MAX_VN_NUM(sc) PFS_PER_PORT(sc) #define FIRST_ABS_FUNC_IN_PORT(sc) \ ((CHIP_PORT_MODE(sc) == CHIP_PORT_MODE_NONE) ? \ PORT_ID(sc) : (PATH_ID(sc) + (2 * PORT_ID(sc)))) #define FOREACH_ABS_FUNC_IN_PORT(sc, i) \ for ((i) = FIRST_ABS_FUNC_IN_PORT(sc); \ (i) < MAX_FUNC_NUM; \ (i) += (MAX_FUNC_NUM / PFS_PER_PORT(sc))) #define BXE_SWCID_SHIFT 17 #define BXE_SWCID_MASK ((0x1 << BXE_SWCID_SHIFT) - 1) #define SW_CID(x) (le32toh(x) & BXE_SWCID_MASK) #define CQE_CMD(x) (le32toh(x) >> COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT) #define CQE_TYPE(cqe_fp_flags) ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE) #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG) #define CQE_TYPE_STOP(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG) #define CQE_TYPE_SLOW(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD) #define CQE_TYPE_FAST(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH) /* must be used on a CID before placing it on a HW ring */ #define HW_CID(sc, x) \ ((SC_PORT(sc) << 23) | (SC_VN(sc) << BXE_SWCID_SHIFT) | (x)) #define SPEED_10 10 #define SPEED_100 100 #define SPEED_1000 1000 #define SPEED_2500 2500 #define SPEED_10000 10000 #define PCI_PM_D0 1 #define PCI_PM_D3hot 2 #ifndef DUPLEX_UNKNOWN #define DUPLEX_UNKNOWN (0xff) #endif #ifndef SPEED_UNKNOWN #define SPEED_UNKNOWN (-1) #endif /* Enable or disable autonegotiation. */ #define AUTONEG_DISABLE 0x00 #define AUTONEG_ENABLE 0x01 /* Which connector port. */ #define PORT_TP 0x00 #define PORT_AUI 0x01 #define PORT_MII 0x02 #define PORT_FIBRE 0x03 #define PORT_BNC 0x04 #define PORT_DA 0x05 #define PORT_NONE 0xef #define PORT_OTHER 0xff int bxe_test_bit(int nr, volatile unsigned long * addr); void bxe_set_bit(unsigned int nr, volatile unsigned long * addr); void bxe_clear_bit(int nr, volatile unsigned long * addr); int bxe_test_and_set_bit(int nr, volatile unsigned long * addr); int bxe_test_and_clear_bit(int nr, volatile unsigned long * addr); int bxe_cmpxchg(volatile int *addr, int old, int new); void bxe_reg_wr_ind(struct bxe_softc *sc, uint32_t addr, uint32_t val); uint32_t bxe_reg_rd_ind(struct bxe_softc *sc, uint32_t addr); int bxe_dma_alloc(struct bxe_softc *sc, bus_size_t size, struct bxe_dma *dma, const char *msg); void bxe_dma_free(struct bxe_softc *sc, struct bxe_dma *dma); uint32_t bxe_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type); uint32_t bxe_dmae_opcode_clr_src_reset(uint32_t opcode); uint32_t bxe_dmae_opcode(struct bxe_softc *sc, uint8_t src_type, uint8_t dst_type, uint8_t with_comp, uint8_t comp_type); void bxe_post_dmae(struct bxe_softc *sc, struct dmae_cmd *dmae, int idx); void bxe_read_dmae(struct bxe_softc *sc, uint32_t src_addr, uint32_t len32); void bxe_write_dmae(struct bxe_softc *sc, bus_addr_t dma_addr, uint32_t dst_addr, uint32_t len32); void bxe_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr, uint32_t addr, uint32_t len); void bxe_set_ctx_validation(struct bxe_softc *sc, struct eth_context *cxt, uint32_t cid); void bxe_update_coalesce_sb_index(struct bxe_softc *sc, uint8_t fw_sb_id, uint8_t sb_index, uint8_t disable, uint16_t usec); int bxe_sp_post(struct bxe_softc *sc, int command, int cid, uint32_t data_hi, uint32_t data_lo, int cmd_type); void bxe_igu_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id, uint8_t segment, uint16_t index, uint8_t op, uint8_t update); void ecore_init_e1_firmware(struct bxe_softc *sc); void ecore_init_e1h_firmware(struct bxe_softc *sc); void ecore_init_e2_firmware(struct bxe_softc *sc); void ecore_storm_memset_struct(struct bxe_softc *sc, uint32_t addr, size_t size, uint32_t *data); /*********************/ /* LOGGING AND DEBUG */ /*********************/ /* debug logging codepaths */ #define DBG_LOAD 0x00000001 /* load and unload */ #define DBG_INTR 0x00000002 /* interrupt handling */ #define DBG_SP 0x00000004 /* slowpath handling */ #define DBG_STATS 0x00000008 /* stats updates */ #define DBG_TX 0x00000010 /* packet transmit */ #define DBG_RX 0x00000020 /* packet receive */ #define DBG_PHY 0x00000040 /* phy/link handling */ #define DBG_IOCTL 0x00000080 /* ioctl handling */ #define DBG_MBUF 0x00000100 /* dumping mbuf info */ #define DBG_REGS 0x00000200 /* register access */ #define DBG_LRO 0x00000400 /* lro processing */ #define DBG_ASSERT 0x80000000 /* debug assert */ #define DBG_ALL 0xFFFFFFFF /* flying monkeys */ #define DBASSERT(sc, exp, msg) \ do { \ if (__predict_false(sc->debug & DBG_ASSERT)) { \ if (__predict_false(!(exp))) { \ panic msg; \ } \ } \ } while (0) /* log a debug message */ #define BLOGD(sc, codepath, format, args...) \ do { \ if (__predict_false(sc->debug & (codepath))) { \ device_printf((sc)->dev, \ "%s(%s:%d) " format, \ __FUNCTION__, \ __FILE__, \ __LINE__, \ ## args); \ } \ } while(0) /* log a info message */ #define BLOGI(sc, format, args...) \ do { \ if (__predict_false(sc->debug)) { \ device_printf((sc)->dev, \ "%s(%s:%d) " format, \ __FUNCTION__, \ __FILE__, \ __LINE__, \ ## args); \ } else { \ device_printf((sc)->dev, \ format, \ ## args); \ } \ } while(0) /* log a warning message */ #define BLOGW(sc, format, args...) \ do { \ if (__predict_false(sc->debug)) { \ device_printf((sc)->dev, \ "%s(%s:%d) WARNING: " format, \ __FUNCTION__, \ __FILE__, \ __LINE__, \ ## args); \ } else { \ device_printf((sc)->dev, \ "WARNING: " format, \ ## args); \ } \ } while(0) /* log a error message */ #define BLOGE(sc, format, args...) \ do { \ if (__predict_false(sc->debug)) { \ device_printf((sc)->dev, \ "%s(%s:%d) ERROR: " format, \ __FUNCTION__, \ __FILE__, \ __LINE__, \ ## args); \ } else { \ device_printf((sc)->dev, \ "ERROR: " format, \ ## args); \ } \ } while(0) #ifdef ECORE_STOP_ON_ERROR #define bxe_panic(sc, msg) \ do { \ panic msg; \ } while (0) #else #define bxe_panic(sc, msg) \ device_printf((sc)->dev, "%s (%s,%d)\n", __FUNCTION__, __FILE__, __LINE__); #endif #define CATC_TRIGGER(sc, data) REG_WR((sc), 0x2000, (data)); #define CATC_TRIGGER_START(sc) CATC_TRIGGER((sc), 0xcafecafe) void bxe_dump_mem(struct bxe_softc *sc, char *tag, uint8_t *mem, uint32_t len); void bxe_dump_mbuf_data(struct bxe_softc *sc, char *pTag, struct mbuf *m, uint8_t contents); #if __FreeBSD_version >= 800000 #if (__FreeBSD_version >= 1001513 && __FreeBSD_version < 1100000) ||\ __FreeBSD_version >= 1100048 #define BXE_SET_FLOWID(m) M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE) #define BXE_VALID_FLOWID(m) (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) #else #define BXE_VALID_FLOWID(m) ((m->m_flags & M_FLOWID) != 0) #define BXE_SET_FLOWID(m) m->m_flags |= M_FLOWID #endif #endif /* #if __FreeBSD_version >= 800000 */ /***********/ /* INLINES */ /***********/ static inline uint32_t reg_poll(struct bxe_softc *sc, uint32_t reg, uint32_t expected, int ms, int wait) { uint32_t val; do { val = REG_RD(sc, reg); if (val == expected) { break; } ms -= wait; DELAY(wait * 1000); } while (ms > 0); return (val); } static inline void bxe_update_fp_sb_idx(struct bxe_fastpath *fp) { mb(); /* status block is written to by the chip */ fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID]; } static inline void bxe_igu_ack_sb_gen(struct bxe_softc *sc, uint8_t igu_sb_id, uint8_t segment, uint16_t index, uint8_t op, uint8_t update, uint32_t igu_addr) { struct igu_regular cmd_data = {0}; cmd_data.sb_id_and_flags = ((index << IGU_REGULAR_SB_INDEX_SHIFT) | (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) | (update << IGU_REGULAR_BUPDATE_SHIFT) | (op << IGU_REGULAR_ENABLE_INT_SHIFT)); BLOGD(sc, DBG_INTR, "write 0x%08x to IGU addr 0x%x\n", cmd_data.sb_id_and_flags, igu_addr); REG_WR(sc, igu_addr, cmd_data.sb_id_and_flags); /* Make sure that ACK is written */ bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0, BUS_SPACE_BARRIER_WRITE); mb(); } static inline void bxe_hc_ack_sb(struct bxe_softc *sc, uint8_t sb_id, uint8_t storm, uint16_t index, uint8_t op, uint8_t update) { uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 + COMMAND_REG_INT_ACK); struct igu_ack_register igu_ack; igu_ack.status_block_index = index; igu_ack.sb_id_and_flags = ((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) | (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) | (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) | (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT)); REG_WR(sc, hc_addr, (*(uint32_t *)&igu_ack)); /* Make sure that ACK is written */ bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0, BUS_SPACE_BARRIER_WRITE); mb(); } static inline void bxe_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id, uint8_t storm, uint16_t index, uint8_t op, uint8_t update) { if (sc->devinfo.int_block == INT_BLOCK_HC) bxe_hc_ack_sb(sc, igu_sb_id, storm, index, op, update); else { uint8_t segment; if (CHIP_INT_MODE_IS_BC(sc)) { segment = storm; } else if (igu_sb_id != sc->igu_dsb_id) { segment = IGU_SEG_ACCESS_DEF; } else if (storm == ATTENTION_ID) { segment = IGU_SEG_ACCESS_ATTN; } else { segment = IGU_SEG_ACCESS_DEF; } bxe_igu_ack_sb(sc, igu_sb_id, segment, index, op, update); } } static inline uint16_t bxe_hc_ack_int(struct bxe_softc *sc) { uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 + COMMAND_REG_SIMD_MASK); uint32_t result = REG_RD(sc, hc_addr); mb(); return (result); } static inline uint16_t bxe_igu_ack_int(struct bxe_softc *sc) { uint32_t igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8); uint32_t result = REG_RD(sc, igu_addr); BLOGD(sc, DBG_INTR, "read 0x%08x from IGU addr 0x%x\n", result, igu_addr); mb(); return (result); } static inline uint16_t bxe_ack_int(struct bxe_softc *sc) { mb(); if (sc->devinfo.int_block == INT_BLOCK_HC) { return (bxe_hc_ack_int(sc)); } else { return (bxe_igu_ack_int(sc)); } } static inline int func_by_vn(struct bxe_softc *sc, int vn) { return (2 * vn + SC_PORT(sc)); } /* * Statistics ID are global per chip/path, while Client IDs for E1x * are per port. */ static inline uint8_t bxe_stats_id(struct bxe_fastpath *fp) { struct bxe_softc *sc = fp->sc; if (!CHIP_IS_E1x(sc)) { return (fp->cl_id); } return (fp->cl_id + SC_PORT(sc) * FP_SB_MAX_E1x); } #endif /* __BXE_H__ */