/*- * Copyright (c) 1994 Herb Peyerl * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Herb Peyerl. * 4. The name of Herb Peyerl may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Modified from the FreeBSD 1.1.5.1 version by: * Andres Vega Garcia * INRIA - Sophia Antipolis, France * avega@sophia.inria.fr */ /* * Promiscuous mode added and interrupt logic slightly changed * to reduce the number of adapter failures. Transceiver select * logic changed to use value from EEPROM. Autoconfiguration * features added. * Done by: * Serge Babkin * Chelindbank (Chelyabinsk, Russia) * babkin@hq.icb.chel.su */ /* * Pccard support for 3C589 by: * HAMADA Naoki * nao@tom-yam.or.jp */ /* * MAINTAINER: Matthew N. Dodd * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Exported variables */ devclass_t ep_devclass; static int ep_media2if_media[] = {IFM_10_T, IFM_10_5, IFM_NONE, IFM_10_2, IFM_NONE}; /* if functions */ static void epinit(void *); static int epioctl(struct ifnet *, u_long, caddr_t); static void epstart(struct ifnet *); static void ep_intr_locked(struct ep_softc *); static void epstart_locked(struct ifnet *); static void epinit_locked(struct ep_softc *); static void eptick(void *); static void epwatchdog(struct ep_softc *); /* if_media functions */ static int ep_ifmedia_upd(struct ifnet *); static void ep_ifmedia_sts(struct ifnet *, struct ifmediareq *); static void epstop(struct ep_softc *); static void epread(struct ep_softc *); static int eeprom_rdy(struct ep_softc *); #define EP_FTST(sc, f) (sc->stat & (f)) #define EP_FSET(sc, f) (sc->stat |= (f)) #define EP_FRST(sc, f) (sc->stat &= ~(f)) static int eeprom_rdy(struct ep_softc *sc) { int i; for (i = 0; is_eeprom_busy(sc) && i < MAX_EEPROMBUSY; i++) DELAY(100); if (i >= MAX_EEPROMBUSY) { device_printf(sc->dev, "eeprom failed to come ready.\n"); return (ENXIO); } return (0); } /* * get_e: gets a 16 bits word from the EEPROM. we must have set the window * before */ int ep_get_e(struct ep_softc *sc, uint16_t offset, uint16_t *result) { if (eeprom_rdy(sc)) return (ENXIO); CSR_WRITE_2(sc, EP_W0_EEPROM_COMMAND, (EEPROM_CMD_RD << sc->epb.cmd_off) | offset); if (eeprom_rdy(sc)) return (ENXIO); (*result) = CSR_READ_2(sc, EP_W0_EEPROM_DATA); return (0); } static int ep_get_macaddr(struct ep_softc *sc, u_char *addr) { int i; uint16_t result; int error; uint16_t *macaddr; macaddr = (uint16_t *) addr; GO_WINDOW(sc, 0); for (i = EEPROM_NODE_ADDR_0; i <= EEPROM_NODE_ADDR_2; i++) { error = ep_get_e(sc, i, &result); if (error) return (error); macaddr[i] = htons(result); } return (0); } int ep_alloc(device_t dev) { struct ep_softc *sc = device_get_softc(dev); int rid; int error = 0; uint16_t result; rid = 0; sc->iobase = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, RF_ACTIVE); if (!sc->iobase) { device_printf(dev, "No I/O space?!\n"); error = ENXIO; goto bad; } rid = 0; sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE); if (!sc->irq) { device_printf(dev, "No irq?!\n"); error = ENXIO; goto bad; } sc->dev = dev; sc->stat = 0; /* 16 bit access */ sc->bst = rman_get_bustag(sc->iobase); sc->bsh = rman_get_bushandle(sc->iobase); sc->ep_connectors = 0; sc->ep_connector = 0; GO_WINDOW(sc, 0); error = ep_get_e(sc, EEPROM_PROD_ID, &result); if (error) goto bad; sc->epb.prod_id = result; error = ep_get_e(sc, EEPROM_RESOURCE_CFG, &result); if (error) goto bad; sc->epb.res_cfg = result; bad: if (error != 0) ep_free(dev); return (error); } void ep_get_media(struct ep_softc *sc) { uint16_t config; GO_WINDOW(sc, 0); config = CSR_READ_2(sc, EP_W0_CONFIG_CTRL); if (config & IS_AUI) sc->ep_connectors |= AUI; if (config & IS_BNC) sc->ep_connectors |= BNC; if (config & IS_UTP) sc->ep_connectors |= UTP; if (!(sc->ep_connectors & 7)) if (bootverbose) device_printf(sc->dev, "no connectors!\n"); /* * This works for most of the cards so we'll do it here. * The cards that require something different can override * this later on. */ sc->ep_connector = CSR_READ_2(sc, EP_W0_ADDRESS_CFG) >> ACF_CONNECTOR_BITS; } void ep_free(device_t dev) { struct ep_softc *sc = device_get_softc(dev); if (sc->ep_intrhand) bus_teardown_intr(dev, sc->irq, sc->ep_intrhand); if (sc->iobase) bus_release_resource(dev, SYS_RES_IOPORT, 0, sc->iobase); if (sc->irq) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq); sc->ep_intrhand = 0; sc->iobase = 0; sc->irq = 0; } static void ep_setup_station(struct ep_softc *sc, u_char *enaddr) { int i; /* * Setup the station address */ GO_WINDOW(sc, 2); for (i = 0; i < ETHER_ADDR_LEN; i++) CSR_WRITE_1(sc, EP_W2_ADDR_0 + i, enaddr[i]); } int ep_attach(struct ep_softc *sc) { struct ifnet *ifp = NULL; struct ifmedia *ifm = NULL; int error; sc->gone = 0; EP_LOCK_INIT(sc); if (! (sc->stat & F_ENADDR_SKIP)) { error = ep_get_macaddr(sc, sc->eaddr); if (error) { device_printf(sc->dev, "Unable to get MAC address!\n"); EP_LOCK_DESTROY(sc); return (ENXIO); } } ep_setup_station(sc, sc->eaddr); ifp = sc->ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(sc->dev, "if_alloc() failed\n"); EP_LOCK_DESTROY(sc); return (ENOSPC); } ifp->if_softc = sc; if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_start = epstart; ifp->if_ioctl = epioctl; ifp->if_init = epinit; IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; IFQ_SET_READY(&ifp->if_snd); callout_init_mtx(&sc->watchdog_timer, &sc->sc_mtx, 0); if (!sc->epb.mii_trans) { ifmedia_init(&sc->ifmedia, 0, ep_ifmedia_upd, ep_ifmedia_sts); if (sc->ep_connectors & AUI) ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_5, 0, NULL); if (sc->ep_connectors & UTP) ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL); if (sc->ep_connectors & BNC) ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_2, 0, NULL); if (!sc->ep_connectors) ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(&sc->ifmedia, IFM_ETHER | ep_media2if_media[sc->ep_connector]); ifm = &sc->ifmedia; ifm->ifm_media = ifm->ifm_cur->ifm_media; ep_ifmedia_upd(ifp); } ether_ifattach(ifp, sc->eaddr); #ifdef EP_LOCAL_STATS sc->rx_no_first = sc->rx_no_mbuf = sc->rx_bpf_disc = sc->rx_overrunf = sc->rx_overrunl = sc->tx_underrun = 0; #endif EP_FSET(sc, F_RX_FIRST); sc->top = sc->mcur = 0; epstop(sc); return (0); } int ep_detach(device_t dev) { struct ep_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); ifp = sc->ifp; EP_ASSERT_UNLOCKED(sc); EP_LOCK(sc); if (bus_child_present(dev)) epstop(sc); sc->gone = 1; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; EP_UNLOCK(sc); ether_ifdetach(ifp); callout_drain(&sc->watchdog_timer); ep_free(dev); if_free(ifp); EP_LOCK_DESTROY(sc); return (0); } static void epinit(void *xsc) { struct ep_softc *sc = xsc; EP_LOCK(sc); epinit_locked(sc); EP_UNLOCK(sc); } /* * The order in here seems important. Otherwise we may not receive * interrupts. ?! */ static void epinit_locked(struct ep_softc *sc) { struct ifnet *ifp = sc->ifp; int i; if (sc->gone) return; EP_ASSERT_LOCKED(sc); EP_BUSY_WAIT(sc); GO_WINDOW(sc, 0); CSR_WRITE_2(sc, EP_COMMAND, STOP_TRANSCEIVER); GO_WINDOW(sc, 4); CSR_WRITE_2(sc, EP_W4_MEDIA_TYPE, DISABLE_UTP); GO_WINDOW(sc, 0); /* Disable the card */ CSR_WRITE_2(sc, EP_W0_CONFIG_CTRL, 0); /* Enable the card */ CSR_WRITE_2(sc, EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ); GO_WINDOW(sc, 2); /* Reload the ether_addr. */ ep_setup_station(sc, IF_LLADDR(sc->ifp)); CSR_WRITE_2(sc, EP_COMMAND, RX_RESET); CSR_WRITE_2(sc, EP_COMMAND, TX_RESET); EP_BUSY_WAIT(sc); /* Window 1 is operating window */ GO_WINDOW(sc, 1); for (i = 0; i < 31; i++) CSR_READ_1(sc, EP_W1_TX_STATUS); /* get rid of stray intr's */ CSR_WRITE_2(sc, EP_COMMAND, ACK_INTR | 0xff); CSR_WRITE_2(sc, EP_COMMAND, SET_RD_0_MASK | S_5_INTS); CSR_WRITE_2(sc, EP_COMMAND, SET_INTR_MASK | S_5_INTS); if (ifp->if_flags & IFF_PROMISC) CSR_WRITE_2(sc, EP_COMMAND, SET_RX_FILTER | FIL_INDIVIDUAL | FIL_MULTICAST | FIL_BRDCST | FIL_PROMISC); else CSR_WRITE_2(sc, EP_COMMAND, SET_RX_FILTER | FIL_INDIVIDUAL | FIL_MULTICAST | FIL_BRDCST); if (!sc->epb.mii_trans) ep_ifmedia_upd(ifp); if (sc->stat & F_HAS_TX_PLL) CSR_WRITE_2(sc, EP_COMMAND, TX_PLL_ENABLE); CSR_WRITE_2(sc, EP_COMMAND, RX_ENABLE); CSR_WRITE_2(sc, EP_COMMAND, TX_ENABLE); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; /* just in case */ #ifdef EP_LOCAL_STATS sc->rx_no_first = sc->rx_no_mbuf = sc->rx_overrunf = sc->rx_overrunl = sc->tx_underrun = 0; #endif EP_FSET(sc, F_RX_FIRST); if (sc->top) { m_freem(sc->top); sc->top = sc->mcur = 0; } CSR_WRITE_2(sc, EP_COMMAND, SET_RX_EARLY_THRESH | RX_INIT_EARLY_THRESH); CSR_WRITE_2(sc, EP_COMMAND, SET_TX_START_THRESH | 16); GO_WINDOW(sc, 1); epstart_locked(ifp); callout_reset(&sc->watchdog_timer, hz, eptick, sc); } static void epstart(struct ifnet *ifp) { struct ep_softc *sc; sc = ifp->if_softc; EP_LOCK(sc); epstart_locked(ifp); EP_UNLOCK(sc); } static void epstart_locked(struct ifnet *ifp) { struct ep_softc *sc; u_int len; struct mbuf *m, *m0; int pad, started; sc = ifp->if_softc; if (sc->gone) return; EP_ASSERT_LOCKED(sc); EP_BUSY_WAIT(sc); if (ifp->if_drv_flags & IFF_DRV_OACTIVE) return; started = 0; startagain: /* Sneak a peek at the next packet */ IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) return; if (!started && (sc->stat & F_HAS_TX_PLL)) CSR_WRITE_2(sc, EP_COMMAND, TX_PLL_ENABLE); started++; for (len = 0, m = m0; m != NULL; m = m->m_next) len += m->m_len; pad = (4 - len) & 3; /* * The 3c509 automatically pads short packets to minimum * ethernet length, but we drop packets that are too large. * Perhaps we should truncate them instead? */ if (len + pad > ETHER_MAX_LEN) { /* packet is obviously too large: toss it */ ifp->if_oerrors++; m_freem(m0); goto readcheck; } if (CSR_READ_2(sc, EP_W1_FREE_TX) < len + pad + 4) { /* no room in FIFO */ CSR_WRITE_2(sc, EP_COMMAND, SET_TX_AVAIL_THRESH | (len + pad + 4)); /* make sure */ if (CSR_READ_2(sc, EP_W1_FREE_TX) < len + pad + 4) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; IFQ_DRV_PREPEND(&ifp->if_snd, m0); goto done; } } else CSR_WRITE_2(sc, EP_COMMAND, SET_TX_AVAIL_THRESH | EP_THRESH_DISABLE); /* XXX 4.x and earlier would splhigh here */ CSR_WRITE_2(sc, EP_W1_TX_PIO_WR_1, len); /* Second dword meaningless */ CSR_WRITE_2(sc, EP_W1_TX_PIO_WR_1, 0x0); if (EP_FTST(sc, F_ACCESS_32_BITS)) { for (m = m0; m != NULL; m = m->m_next) { if (m->m_len > 3) CSR_WRITE_MULTI_4(sc, EP_W1_TX_PIO_WR_1, mtod(m, uint32_t *), m->m_len / 4); if (m->m_len & 3) CSR_WRITE_MULTI_1(sc, EP_W1_TX_PIO_WR_1, mtod(m, uint8_t *)+(m->m_len & (~3)), m->m_len & 3); } } else { for (m = m0; m != NULL; m = m->m_next) { if (m->m_len > 1) CSR_WRITE_MULTI_2(sc, EP_W1_TX_PIO_WR_1, mtod(m, uint16_t *), m->m_len / 2); if (m->m_len & 1) CSR_WRITE_1(sc, EP_W1_TX_PIO_WR_1, *(mtod(m, uint8_t *)+m->m_len - 1)); } } while (pad--) CSR_WRITE_1(sc, EP_W1_TX_PIO_WR_1, 0); /* Padding */ /* XXX and drop splhigh here */ BPF_MTAP(ifp, m0); sc->tx_timer = 2; ifp->if_opackets++; m_freem(m0); /* * Is another packet coming in? We don't want to overflow * the tiny RX fifo. */ readcheck: if (CSR_READ_2(sc, EP_W1_RX_STATUS) & RX_BYTES_MASK) { /* * we check if we have packets left, in that case * we prepare to come back later */ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) CSR_WRITE_2(sc, EP_COMMAND, SET_TX_AVAIL_THRESH | 8); goto done; } goto startagain; done:; return; } void ep_intr(void *arg) { struct ep_softc *sc; sc = (struct ep_softc *) arg; EP_LOCK(sc); ep_intr_locked(sc); EP_UNLOCK(sc); } static void ep_intr_locked(struct ep_softc *sc) { int status; struct ifnet *ifp; /* XXX 4.x splbio'd here to reduce interruptability */ /* * quick fix: Try to detect an interrupt when the card goes away. */ if (sc->gone || CSR_READ_2(sc, EP_STATUS) == 0xffff) return; ifp = sc->ifp; CSR_WRITE_2(sc, EP_COMMAND, SET_INTR_MASK); /* disable all Ints */ rescan: while ((status = CSR_READ_2(sc, EP_STATUS)) & S_5_INTS) { /* first acknowledge all interrupt sources */ CSR_WRITE_2(sc, EP_COMMAND, ACK_INTR | (status & S_MASK)); if (status & (S_RX_COMPLETE | S_RX_EARLY)) epread(sc); if (status & S_TX_AVAIL) { /* we need ACK */ sc->tx_timer = 0; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; GO_WINDOW(sc, 1); CSR_READ_2(sc, EP_W1_FREE_TX); epstart_locked(ifp); } if (status & S_CARD_FAILURE) { sc->tx_timer = 0; #ifdef EP_LOCAL_STATS device_printf(sc->dev, "\n\tStatus: %x\n", status); GO_WINDOW(sc, 4); printf("\tFIFO Diagnostic: %x\n", CSR_READ_2(sc, EP_W4_FIFO_DIAG)); printf("\tStat: %x\n", sc->stat); printf("\tIpackets=%d, Opackets=%d\n", ifp->if_ipackets, ifp->if_opackets); printf("\tNOF=%d, NOMB=%d, RXOF=%d, RXOL=%d, TXU=%d\n", sc->rx_no_first, sc->rx_no_mbuf, sc->rx_overrunf, sc->rx_overrunl, sc->tx_underrun); #else #ifdef DIAGNOSTIC device_printf(sc->dev, "Status: %x (input buffer overflow)\n", status); #else ++ifp->if_ierrors; #endif #endif epinit_locked(sc); return; } if (status & S_TX_COMPLETE) { sc->tx_timer = 0; /* * We need ACK. We do it at the end. * * We need to read TX_STATUS until we get a * 0 status in order to turn off the interrupt flag. */ while ((status = CSR_READ_1(sc, EP_W1_TX_STATUS)) & TXS_COMPLETE) { if (status & TXS_SUCCES_INTR_REQ) ; /* nothing */ else if (status & (TXS_UNDERRUN | TXS_JABBER | TXS_MAX_COLLISION)) { CSR_WRITE_2(sc, EP_COMMAND, TX_RESET); if (status & TXS_UNDERRUN) { #ifdef EP_LOCAL_STATS sc->tx_underrun++; #endif } if (status & TXS_MAX_COLLISION) { /* * TXS_MAX_COLLISION we * shouldn't get here */ ++ifp->if_collisions; } ++ifp->if_oerrors; CSR_WRITE_2(sc, EP_COMMAND, TX_ENABLE); /* * To have a tx_avail_int but giving * the chance to the Reception */ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) CSR_WRITE_2(sc, EP_COMMAND, SET_TX_AVAIL_THRESH | 8); } /* pops up the next status */ CSR_WRITE_1(sc, EP_W1_TX_STATUS, 0x0); } /* while */ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; GO_WINDOW(sc, 1); CSR_READ_2(sc, EP_W1_FREE_TX); epstart_locked(ifp); } /* end TX_COMPLETE */ } CSR_WRITE_2(sc, EP_COMMAND, C_INTR_LATCH); /* ACK int Latch */ if ((status = CSR_READ_2(sc, EP_STATUS)) & S_5_INTS) goto rescan; /* re-enable Ints */ CSR_WRITE_2(sc, EP_COMMAND, SET_INTR_MASK | S_5_INTS); } static void epread(struct ep_softc *sc) { struct mbuf *top, *mcur, *m; struct ifnet *ifp; int lenthisone; short rx_fifo2, status; short rx_fifo; /* XXX Must be called with sc locked */ ifp = sc->ifp; status = CSR_READ_2(sc, EP_W1_RX_STATUS); read_again: if (status & ERR_RX) { ++ifp->if_ierrors; if (status & ERR_RX_OVERRUN) { /* * We can think the rx latency is actually * greather than we expect */ #ifdef EP_LOCAL_STATS if (EP_FTST(sc, F_RX_FIRST)) sc->rx_overrunf++; else sc->rx_overrunl++; #endif } goto out; } rx_fifo = rx_fifo2 = status & RX_BYTES_MASK; if (EP_FTST(sc, F_RX_FIRST)) { MGETHDR(m, M_DONTWAIT, MT_DATA); if (!m) goto out; if (rx_fifo >= MINCLSIZE) MCLGET(m, M_DONTWAIT); sc->top = sc->mcur = top = m; #define EROUND ((sizeof(struct ether_header) + 3) & ~3) #define EOFF (EROUND - sizeof(struct ether_header)) top->m_data += EOFF; /* Read what should be the header. */ CSR_READ_MULTI_2(sc, EP_W1_RX_PIO_RD_1, mtod(top, uint16_t *), sizeof(struct ether_header) / 2); top->m_len = sizeof(struct ether_header); rx_fifo -= sizeof(struct ether_header); sc->cur_len = rx_fifo2; } else { /* come here if we didn't have a complete packet last time */ top = sc->top; m = sc->mcur; sc->cur_len += rx_fifo2; } /* Reads what is left in the RX FIFO */ while (rx_fifo > 0) { lenthisone = min(rx_fifo, M_TRAILINGSPACE(m)); if (lenthisone == 0) { /* no room in this one */ mcur = m; MGET(m, M_DONTWAIT, MT_DATA); if (!m) goto out; if (rx_fifo >= MINCLSIZE) MCLGET(m, M_DONTWAIT); m->m_len = 0; mcur->m_next = m; lenthisone = min(rx_fifo, M_TRAILINGSPACE(m)); } if (EP_FTST(sc, F_ACCESS_32_BITS)) { /* default for EISA configured cards */ CSR_READ_MULTI_4(sc, EP_W1_RX_PIO_RD_1, (uint32_t *)(mtod(m, caddr_t)+m->m_len), lenthisone / 4); m->m_len += (lenthisone & ~3); if (lenthisone & 3) CSR_READ_MULTI_1(sc, EP_W1_RX_PIO_RD_1, mtod(m, caddr_t)+m->m_len, lenthisone & 3); m->m_len += (lenthisone & 3); } else { CSR_READ_MULTI_2(sc, EP_W1_RX_PIO_RD_1, (uint16_t *)(mtod(m, caddr_t)+m->m_len), lenthisone / 2); m->m_len += lenthisone; if (lenthisone & 1) *(mtod(m, caddr_t)+m->m_len - 1) = CSR_READ_1(sc, EP_W1_RX_PIO_RD_1); } rx_fifo -= lenthisone; } if (status & ERR_RX_INCOMPLETE) { /* we haven't received the complete packet */ sc->mcur = m; #ifdef EP_LOCAL_STATS /* to know how often we come here */ sc->rx_no_first++; #endif EP_FRST(sc, F_RX_FIRST); status = CSR_READ_2(sc, EP_W1_RX_STATUS); if (!status & ERR_RX_INCOMPLETE) { /* * We see if by now, the packet has completly * arrived */ goto read_again; } CSR_WRITE_2(sc, EP_COMMAND, SET_RX_EARLY_THRESH | RX_NEXT_EARLY_THRESH); return; } CSR_WRITE_2(sc, EP_COMMAND, RX_DISCARD_TOP_PACK); ++ifp->if_ipackets; EP_FSET(sc, F_RX_FIRST); top->m_pkthdr.rcvif = sc->ifp; top->m_pkthdr.len = sc->cur_len; /* * Drop locks before calling if_input() since it may re-enter * ep_start() in the netisr case. This would result in a * lock reversal. Better performance might be obtained by * chaining all packets received, dropping the lock, and then * calling if_input() on each one. */ EP_UNLOCK(sc); (*ifp->if_input) (ifp, top); EP_LOCK(sc); sc->top = 0; EP_BUSY_WAIT(sc); CSR_WRITE_2(sc, EP_COMMAND, SET_RX_EARLY_THRESH | RX_INIT_EARLY_THRESH); return; out: CSR_WRITE_2(sc, EP_COMMAND, RX_DISCARD_TOP_PACK); if (sc->top) { m_freem(sc->top); sc->top = 0; #ifdef EP_LOCAL_STATS sc->rx_no_mbuf++; #endif } EP_FSET(sc, F_RX_FIRST); EP_BUSY_WAIT(sc); CSR_WRITE_2(sc, EP_COMMAND, SET_RX_EARLY_THRESH | RX_INIT_EARLY_THRESH); } static int ep_ifmedia_upd(struct ifnet *ifp) { struct ep_softc *sc = ifp->if_softc; int i = 0, j; GO_WINDOW(sc, 0); CSR_WRITE_2(sc, EP_COMMAND, STOP_TRANSCEIVER); GO_WINDOW(sc, 4); CSR_WRITE_2(sc, EP_W4_MEDIA_TYPE, DISABLE_UTP); GO_WINDOW(sc, 0); switch (IFM_SUBTYPE(sc->ifmedia.ifm_media)) { case IFM_10_T: if (sc->ep_connectors & UTP) { i = ACF_CONNECTOR_UTP; GO_WINDOW(sc, 4); CSR_WRITE_2(sc, EP_W4_MEDIA_TYPE, ENABLE_UTP); } break; case IFM_10_2: if (sc->ep_connectors & BNC) { i = ACF_CONNECTOR_BNC; CSR_WRITE_2(sc, EP_COMMAND, START_TRANSCEIVER); DELAY(DELAY_MULTIPLE * 1000); } break; case IFM_10_5: if (sc->ep_connectors & AUI) i = ACF_CONNECTOR_AUI; break; default: i = sc->ep_connector; device_printf(sc->dev, "strange connector type in EEPROM: assuming AUI\n"); } GO_WINDOW(sc, 0); j = CSR_READ_2(sc, EP_W0_ADDRESS_CFG) & 0x3fff; CSR_WRITE_2(sc, EP_W0_ADDRESS_CFG, j | (i << ACF_CONNECTOR_BITS)); return (0); } static void ep_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct ep_softc *sc = ifp->if_softc; uint16_t ms; switch (IFM_SUBTYPE(sc->ifmedia.ifm_media)) { case IFM_10_T: GO_WINDOW(sc, 4); ms = CSR_READ_2(sc, EP_W4_MEDIA_TYPE); GO_WINDOW(sc, 0); ifmr->ifm_status = IFM_AVALID; if (ms & MT_LB) { ifmr->ifm_status |= IFM_ACTIVE; ifmr->ifm_active = IFM_ETHER | IFM_10_T; } else { ifmr->ifm_active = IFM_ETHER | IFM_NONE; } break; default: ifmr->ifm_active = sc->ifmedia.ifm_media; break; } } static int epioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ep_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; int error = 0; switch (cmd) { case SIOCSIFFLAGS: EP_LOCK(sc); if (((ifp->if_flags & IFF_UP) == 0) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) { epstop(sc); } else /* reinitialize card on any parameter change */ epinit_locked(sc); EP_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: /* * The Etherlink III has no programmable multicast * filter. We always initialize the card to be * promiscuous to multicast, since we're always a * member of the ALL-SYSTEMS group, so there's no * need to process SIOC*MULTI requests. */ error = 0; break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: if (!sc->epb.mii_trans) error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, cmd); else error = EINVAL; break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } static void eptick(void *arg) { struct ep_softc *sc; sc = arg; if (sc->tx_timer != 0 && --sc->tx_timer == 0) epwatchdog(sc); callout_reset(&sc->watchdog_timer, hz, eptick, sc); } static void epwatchdog(struct ep_softc *sc) { struct ifnet *ifp; ifp = sc->ifp; if (sc->gone) return; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; epstart_locked(ifp); ep_intr_locked(sc); } static void epstop(struct ep_softc *sc) { CSR_WRITE_2(sc, EP_COMMAND, RX_DISABLE); CSR_WRITE_2(sc, EP_COMMAND, RX_DISCARD_TOP_PACK); EP_BUSY_WAIT(sc); CSR_WRITE_2(sc, EP_COMMAND, TX_DISABLE); CSR_WRITE_2(sc, EP_COMMAND, STOP_TRANSCEIVER); DELAY(800); CSR_WRITE_2(sc, EP_COMMAND, RX_RESET); EP_BUSY_WAIT(sc); CSR_WRITE_2(sc, EP_COMMAND, TX_RESET); EP_BUSY_WAIT(sc); CSR_WRITE_2(sc, EP_COMMAND, C_INTR_LATCH); CSR_WRITE_2(sc, EP_COMMAND, SET_RD_0_MASK); CSR_WRITE_2(sc, EP_COMMAND, SET_INTR_MASK); CSR_WRITE_2(sc, EP_COMMAND, SET_RX_FILTER); sc->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); callout_stop(&sc->watchdog_timer); }