/*- * Copyright (c) 1998, 1999, 2003 Scott Mitchell * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Portions of this software were derived from Werner Koch's xirc2ps driver * for Linux under the terms of the following license (from v1.30 of the * xirc2ps driver): * * Copyright (c) 1997 by Werner Koch (dd9jn) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, and the entire permission notice in its entirety, * including the disclaimer of warranties. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * FreeBSD device driver for Xircom CreditCard PCMCIA Ethernet adapters. The * following cards are currently known to work with the driver: * Xircom CreditCard 10/100 (CE3) * Xircom CreditCard Ethernet + Modem 28 (CEM28) * Xircom CreditCard Ethernet 10/100 + Modem 56 (CEM56) * Xircom RealPort Ethernet 10 * Xircom RealPort Ethernet 10/100 * Xircom RealPort Ethernet 10/100 + Modem 56 (REM56, REM56G) * Intel EtherExpress Pro/100 PC Card Mobile Adapter 16 (Pro/100 M16A) * Compaq Netelligent 10/100 PC Card (CPQ-10/100) * * Some other cards *should* work, but support for them is either broken or in * an unknown state at the moment. I'm always interested in hearing from * people who own any of these cards: * Xircom CreditCard 10Base-T (PS-CE2-10) * Xircom CreditCard Ethernet + ModemII (CEM2) * Xircom CEM28 and CEM33 Ethernet/Modem cards (may be variants of CEM2?) * * Thanks to all who assisted with the development and testing of the driver, * especially: Werner Koch, Duke Kamstra, Duncan Barclay, Jason George, Dru * Nelson, Mike Kephart, Bill Rainey and Douglas Rand. Apologies if I've left * out anyone who deserves a mention here. * * Special thanks to Ade Lovett for both hosting the mailing list and doing * the CEM56/REM56 support code; and the FreeBSD UK Users' Group for hosting * the web pages. * * Author email: * Driver web page: http://ukug.uk.freebsd.org/~scott/xe_drv/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * MII command structure */ struct xe_mii_frame { u_int8_t mii_stdelim; u_int8_t mii_opcode; u_int8_t mii_phyaddr; u_int8_t mii_regaddr; u_int8_t mii_turnaround; u_int16_t mii_data; }; /* * Media autonegotiation progress constants */ #define XE_AUTONEG_NONE 0 /* No autonegotiation in progress */ #define XE_AUTONEG_WAITING 1 /* Waiting for transmitter to go idle */ #define XE_AUTONEG_STARTED 2 /* Waiting for autonegotiation to complete */ #define XE_AUTONEG_100TX 3 /* Trying to force 100baseTX link */ #define XE_AUTONEG_FAIL 4 /* Autonegotiation failed */ /* * Multicast hashing CRC constants */ #define XE_CRC_POLY 0x04c11db6 /* * Prototypes start here */ static void xe_init (void *xscp); static void xe_start (struct ifnet *ifp); static int xe_ioctl (struct ifnet *ifp, u_long command, caddr_t data); static void xe_watchdog (struct ifnet *ifp); static int xe_media_change (struct ifnet *ifp); static void xe_media_status (struct ifnet *ifp, struct ifmediareq *mrp); static timeout_t xe_setmedia; static void xe_reset (struct xe_softc *scp); static void xe_stop (struct xe_softc *scp); static void xe_enable_intr (struct xe_softc *scp); static void xe_disable_intr (struct xe_softc *scp); static void xe_set_multicast (struct xe_softc *scp); static void xe_set_addr (struct xe_softc *scp, u_int8_t* addr, unsigned idx); static void xe_mchash (struct xe_softc *scp, const uint8_t *addr); static int xe_pio_write_packet (struct xe_softc *scp, struct mbuf *mbp); /* * MII functions */ static void xe_mii_sync (struct xe_softc *scp); static int xe_mii_init (struct xe_softc *scp); static void xe_mii_send (struct xe_softc *scp, u_int32_t bits, int cnt); static int xe_mii_readreg (struct xe_softc *scp, struct xe_mii_frame *frame); static int xe_mii_writereg (struct xe_softc *scp, struct xe_mii_frame *frame); static u_int16_t xe_phy_readreg (struct xe_softc *scp, u_int16_t reg); static void xe_phy_writereg (struct xe_softc *scp, u_int16_t reg, u_int16_t data); /* * Debugging functions */ static void xe_mii_dump (struct xe_softc *scp); #if 0 static void xe_reg_dump (struct xe_softc *scp); #endif /* * Debug logging levels - set with hw.xe.debug sysctl * 0 = None * 1 = More hardware details, probe/attach progress * 2 = Most function calls, ioctls and media selection progress * 3 = Everything - interrupts, packets in/out and multicast address setup */ #define XE_DEBUG #ifdef XE_DEBUG /* sysctl vars */ SYSCTL_NODE(_hw, OID_AUTO, xe, CTLFLAG_RD, 0, "if_xe parameters"); int xe_debug = 0; SYSCTL_INT(_hw_xe, OID_AUTO, debug, CTLFLAG_RW, &xe_debug, 0, "if_xe debug level"); #define DEVPRINTF(level, arg) if (xe_debug >= (level)) device_printf arg #define DPRINTF(level, arg) if (xe_debug >= (level)) printf arg #define XE_MII_DUMP(scp) if (xe_debug >= 3) xe_mii_dump(scp) #if 0 #define XE_REG_DUMP(scp) if (xe_debug >= 3) xe_reg_dump(scp) #endif #else #define DEVPRINTF(level, arg) #define DPRINTF(level, arg) #define XE_MII_DUMP(scp) #if 0 #define XE_REG_DUMP(scp) #endif #endif /* * Attach a device. */ int xe_attach (device_t dev) { struct xe_softc *scp = device_get_softc(dev); DEVPRINTF(2, (dev, "attach\n")); /* Initialise stuff... */ scp->dev = dev; scp->ifp = &scp->arpcom.ac_if; scp->ifm = &scp->ifmedia; scp->autoneg_status = XE_AUTONEG_NONE; /* Initialise the ifnet structure */ scp->ifp->if_softc = scp; if_initname(scp->ifp, device_get_name(dev), device_get_unit(dev)); scp->ifp->if_timer = 0; scp->ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); scp->ifp->if_linkmib = &scp->mibdata; scp->ifp->if_linkmiblen = sizeof scp->mibdata; scp->ifp->if_output = ether_output; scp->ifp->if_start = xe_start; scp->ifp->if_ioctl = xe_ioctl; scp->ifp->if_watchdog = xe_watchdog; scp->ifp->if_init = xe_init; scp->ifp->if_baudrate = 100000000; scp->ifp->if_snd.ifq_maxlen = IFQ_MAXLEN; /* Initialise the ifmedia structure */ ifmedia_init(scp->ifm, 0, xe_media_change, xe_media_status); callout_handle_init(&scp->chand); /* Add supported media types */ if (scp->mohawk) { ifmedia_add(scp->ifm, IFM_ETHER|IFM_100_TX, 0, NULL); ifmedia_add(scp->ifm, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); ifmedia_add(scp->ifm, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL); } ifmedia_add(scp->ifm, IFM_ETHER|IFM_10_T, 0, NULL); if (scp->ce2) ifmedia_add(scp->ifm, IFM_ETHER|IFM_10_2, 0, NULL); ifmedia_add(scp->ifm, IFM_ETHER|IFM_AUTO, 0, NULL); /* Default is to autoselect best supported media type */ ifmedia_set(scp->ifm, IFM_ETHER|IFM_AUTO); /* Get the hardware into a known state */ xe_reset(scp); /* Get hardware version numbers */ XE_SELECT_PAGE(4); scp->version = XE_INB(XE_BOV); if (scp->mohawk) scp->srev = (XE_INB(XE_BOV) & 0x70) >> 4; else scp->srev = (XE_INB(XE_BOV) & 0x30) >> 4; /* Print some useful information */ device_printf(dev, "%s %s, version 0x%02x/0x%02x%s%s\n", scp->vendor, scp->card_type, scp->version, scp->srev, scp->mohawk ? ", 100Mbps capable" : "", scp->modem ? ", with modem" : ""); if (scp->mohawk) { XE_SELECT_PAGE(0x10); DEVPRINTF(1, (dev, "DingoID=0x%04x, RevisionID=0x%04x, VendorID=0x%04x\n", XE_INW(XE_DINGOID), XE_INW(XE_RevID), XE_INW(XE_VendorID))); } if (scp->ce2) { XE_SELECT_PAGE(0x45); DEVPRINTF(1, (dev, "CE2 version = 0x%#02x\n", XE_INB(XE_REV))); } device_printf(dev, "Ethernet address %6D\n", scp->arpcom.ac_enaddr, ":"); /* Attach the interface */ ether_ifattach(scp->ifp, scp->arpcom.ac_enaddr); /* Done */ return 0; } /* * Complete hardware intitialisation and enable output. Exits without doing * anything if there's no address assigned to the card, or if media selection * is in progress (the latter implies we've already run this function). */ static void xe_init(void *xscp) { struct xe_softc *scp = xscp; unsigned i; int s; if (TAILQ_EMPTY(&scp->ifp->if_addrhead)) return; if (scp->autoneg_status != XE_AUTONEG_NONE) return; DEVPRINTF(2, (scp->dev, "init\n")); s = splimp(); /* Reset transmitter flags */ scp->tx_queued = 0; scp->tx_tpr = 0; scp->tx_timeouts = 0; scp->tx_thres = 64; scp->tx_min = ETHER_MIN_LEN - ETHER_CRC_LEN; scp->ifp->if_timer = 0; /* Soft reset the card */ XE_SELECT_PAGE(0); XE_OUTB(XE_CR, XE_CR_SOFT_RESET); DELAY(40000); XE_OUTB(XE_CR, 0); DELAY(40000); if (scp->mohawk) { /* * set GP1 and GP2 as outputs (bits 2 & 3) * set GP1 low to power on the ML6692 (bit 0) * set GP2 high to power on the 10Mhz chip (bit 1) */ XE_SELECT_PAGE(4); XE_OUTB(XE_GPR0, XE_GPR0_GP2_SELECT|XE_GPR0_GP1_SELECT|XE_GPR0_GP2_OUT); } /* Shut off interrupts */ xe_disable_intr(scp); /* Wait for everything to wake up */ DELAY(500000); /* Check for PHY */ if (scp->mohawk) scp->phy_ok = xe_mii_init(scp); /* Disable 'source insertion' (not sure what that means) */ XE_SELECT_PAGE(0x42); XE_OUTB(XE_SWC0, XE_SWC0_NO_SRC_INSERT); /* Set 8K/24K Tx/Rx buffer split */ if (scp->srev != 1) { XE_SELECT_PAGE(2); XE_OUTW(XE_RBS, 0x2000); } /* Enable early transmit mode on Mohawk/Dingo */ if (scp->mohawk) { XE_SELECT_PAGE(0x03); XE_OUTW(XE_TPT, scp->tx_thres); XE_SELECT_PAGE(0x01); XE_OUTB(XE_ECR, XE_INB(XE_ECR) | XE_ECR_EARLY_TX); } /* Put MAC address in first 'individual address' register */ XE_SELECT_PAGE(0x50); for (i = 0; i < 6; i++) XE_OUTB(0x08 + i, scp->arpcom.ac_enaddr[scp->mohawk ? 5 - i : i]); /* Set up multicast addresses */ xe_set_multicast(scp); /* Fix the receive data offset -- reset can leave it off-by-one */ XE_SELECT_PAGE(0); XE_OUTW(XE_DO, 0x2000); /* Set interrupt masks */ XE_SELECT_PAGE(1); XE_OUTB(XE_IMR0, XE_IMR0_TX_PACKET | XE_IMR0_MAC_INTR | XE_IMR0_RX_PACKET); /* Set MAC interrupt masks */ XE_SELECT_PAGE(0x40); XE_OUTB(XE_RX0Msk, ~(XE_RX0M_RX_OVERRUN | XE_RX0M_CRC_ERROR | XE_RX0M_ALIGN_ERROR | XE_RX0M_LONG_PACKET)); XE_OUTB(XE_TX0Msk, ~(XE_TX0M_SQE_FAIL | XE_TX0M_LATE_COLLISION | XE_TX0M_TX_UNDERRUN | XE_TX0M_16_COLLISIONS | XE_TX0M_NO_CARRIER)); /* Clear MAC status registers */ XE_SELECT_PAGE(0x40); XE_OUTB(XE_RST0, 0x00); XE_OUTB(XE_TXST0, 0x00); /* Enable receiver and put MAC online */ XE_SELECT_PAGE(0x40); XE_OUTB(XE_CMD0, XE_CMD0_RX_ENABLE|XE_CMD0_ONLINE); /* Set up IMR, enable interrupts */ xe_enable_intr(scp); /* Start media selection */ xe_setmedia(scp); /* Enable output */ scp->ifp->if_flags |= IFF_RUNNING; scp->ifp->if_flags &= ~IFF_OACTIVE; (void)splx(s); } /* * Start output on interface. Should be called at splimp() priority. Check * that the output is idle (ie, IFF_OACTIVE is not set) before calling this * function. If media selection is in progress we set IFF_OACTIVE ourselves * and return immediately. */ static void xe_start(struct ifnet *ifp) { struct xe_softc *scp = ifp->if_softc; struct mbuf *mbp; if (scp->autoneg_status != XE_AUTONEG_NONE) { ifp->if_flags |= IFF_OACTIVE; return; } DEVPRINTF(3, (scp->dev, "start\n")); /* * Loop while there are packets to be sent, and space to send them. */ while (1) { /* Suck a packet off the send queue */ IF_DEQUEUE(&ifp->if_snd, mbp); if (mbp == NULL) { /* * We are using the !OACTIVE flag to indicate to the outside world that * we can accept an additional packet rather than that the transmitter * is _actually_ active. Indeed, the transmitter may be active, but if * we haven't filled all the buffers with data then we still want to * accept more. */ ifp->if_flags &= ~IFF_OACTIVE; return; } if (xe_pio_write_packet(scp, mbp) != 0) { /* Push the packet back onto the queue */ IF_PREPEND(&ifp->if_snd, mbp); ifp->if_flags |= IFF_OACTIVE; return; } /* Tap off here if there is a bpf listener */ BPF_MTAP(ifp, mbp); /* In case we don't hear from the card again... */ ifp->if_timer = 5; scp->tx_queued++; m_freem(mbp); } } /* * Process an ioctl request. Adapted from the ed driver. */ static int xe_ioctl (register struct ifnet *ifp, u_long command, caddr_t data) { struct xe_softc *scp; int s, error; scp = ifp->if_softc; error = 0; s = splimp(); switch (command) { case SIOCSIFFLAGS: DEVPRINTF(2, (scp->dev, "ioctl: SIOCSIFFLAGS: 0x%04x\n", ifp->if_flags)); /* * If the interface is marked up and stopped, then start it. If it is * marked down and running, then stop it. */ if (ifp->if_flags & IFF_UP) { if (!(ifp->if_flags & IFF_RUNNING)) { xe_reset(scp); xe_init(scp); } } else { if (ifp->if_flags & IFF_RUNNING) xe_stop(scp); } /* FALL THROUGH (handle changes to PROMISC/ALLMULTI flags) */ case SIOCADDMULTI: case SIOCDELMULTI: DEVPRINTF(2, (scp->dev, "ioctl: SIOC{ADD,DEL}MULTI\n")); /* * Multicast list has (maybe) changed; set the hardware filters * accordingly. */ xe_set_multicast(scp); error = 0; break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: DEVPRINTF(3, (scp->dev, "ioctl: bounce to ifmedia_ioctl\n")); /* * Someone wants to get/set media options. */ error = ifmedia_ioctl(ifp, (struct ifreq *)data, &scp->ifmedia, command); break; default: DEVPRINTF(3, (scp->dev, "ioctl: bounce to ether_ioctl\n")); error = ether_ioctl(ifp, command, data); } (void)splx(s); return error; } /* * Card interrupt handler. * * This function is probably more complicated than it needs to be, as it * attempts to deal with the case where multiple packets get sent between * interrupts. This is especially annoying when working out the collision * stats. Not sure whether this case ever really happens or not (maybe on a * slow/heavily loaded machine?) so it's probably best to leave this like it * is. * * Note that the crappy PIO used to get packets on and off the card means that * you will spend a lot of time in this routine -- I can get my P150 to spend * 90% of its time servicing interrupts if I really hammer the network. Could * fix this, but then you'd start dropping/losing packets. The moral of this * story? If you want good network performance _and_ some cycles left over to * get your work done, don't buy a Xircom card. Or convince them to tell me * how to do memory-mapped I/O :) */ static void xe_intr(void *xscp) { struct xe_softc *scp = (struct xe_softc *) xscp; struct ifnet *ifp; u_int8_t psr, isr, esr, rsr, rst0, txst0, txst1, coll; ifp = &scp->arpcom.ac_if; /* Disable interrupts */ if (scp->mohawk) XE_OUTB(XE_CR, 0); /* Cache current register page */ psr = XE_INB(XE_PR); /* Read ISR to see what caused this interrupt */ while ((isr = XE_INB(XE_ISR)) != 0) { /* 0xff might mean the card is no longer around */ if (isr == 0xff) { DEVPRINTF(3, (scp->dev, "intr: interrupt received for missing card?\n")); break; } /* Read other status registers */ XE_SELECT_PAGE(0x40); rst0 = XE_INB(XE_RST0); XE_OUTB(XE_RST0, 0); txst0 = XE_INB(XE_TXST0); txst1 = XE_INB(XE_TXST1); coll = txst1 & XE_TXST1_RETRY_COUNT; XE_OUTB(XE_TXST0, 0); XE_OUTB(XE_TXST1, 0); XE_SELECT_PAGE(0); DEVPRINTF(3, (scp->dev, "intr: ISR=0x%02x, RST=0x%02x, TXT=0x%02x%02x, COLL=0x%01x\n", isr, rst0, txst1, txst0, coll)); if (isr & XE_ISR_TX_PACKET) { u_int8_t tpr, sent; /* Update packet count, accounting for rollover */ tpr = XE_INB(XE_TPR); sent = -scp->tx_tpr + tpr; /* Update statistics if we actually sent anything */ if (sent > 0) { scp->tx_tpr = tpr; scp->tx_queued -= sent; ifp->if_opackets += sent; ifp->if_collisions += coll; /* * According to the Xircom manual, Dingo will sometimes manage to * transmit a packet with triggering an interrupt. If this happens, * we have sent > 1 and the collision count only reflects collisions * on the last packet sent (the one that triggered the interrupt). * Collision stats might therefore be a bit low, but there doesn't * seem to be anything we can do about that. */ switch (coll) { case 0: break; case 1: scp->mibdata.dot3StatsSingleCollisionFrames++; scp->mibdata.dot3StatsCollFrequencies[0]++; break; default: scp->mibdata.dot3StatsMultipleCollisionFrames++; scp->mibdata.dot3StatsCollFrequencies[coll-1]++; } } ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; } /* Handle most MAC interrupts */ if (isr & XE_ISR_MAC_INTR) { #if 0 /* Carrier sense lost -- only in 10Mbit HDX mode */ if (txst0 & XE_TXST0_NO_CARRIER || !(txst1 & XE_TXST1_LINK_STATUS)) { /* XXX - Need to update media status here */ device_printf(scp->dev, "no carrier\n"); ifp->if_oerrors++; scp->mibdata.dot3StatsCarrierSenseErrors++; } #endif /* Excessive collisions -- try sending again */ if (txst0 & XE_TXST0_16_COLLISIONS) { ifp->if_collisions += 16; ifp->if_oerrors++; scp->mibdata.dot3StatsExcessiveCollisions++; scp->mibdata.dot3StatsMultipleCollisionFrames++; scp->mibdata.dot3StatsCollFrequencies[15]++; XE_OUTB(XE_CR, XE_CR_RESTART_TX); } /* Transmit underrun -- increase early transmit threshold */ if (txst0 & XE_TXST0_TX_UNDERRUN && scp->mohawk) { DEVPRINTF(1, (scp->dev, "transmit underrun")); if (scp->tx_thres < ETHER_MAX_LEN) { if ((scp->tx_thres += 64) > ETHER_MAX_LEN) scp->tx_thres = ETHER_MAX_LEN; DPRINTF(1, (": increasing transmit threshold to %u", scp->tx_thres)); XE_SELECT_PAGE(0x3); XE_OUTW(XE_TPT, scp->tx_thres); XE_SELECT_PAGE(0x0); } DPRINTF(1, ("\n")); ifp->if_oerrors++; scp->mibdata.dot3StatsInternalMacTransmitErrors++; } /* Late collision -- just complain about it */ if (txst0 & XE_TXST0_LATE_COLLISION) { device_printf(scp->dev, "late collision\n"); ifp->if_oerrors++; scp->mibdata.dot3StatsLateCollisions++; } /* SQE test failure -- just complain about it */ if (txst0 & XE_TXST0_SQE_FAIL) { device_printf(scp->dev, "SQE test failure\n"); ifp->if_oerrors++; scp->mibdata.dot3StatsSQETestErrors++; } /* Packet too long -- what happens to these */ if (rst0 & XE_RST0_LONG_PACKET) { device_printf(scp->dev, "received giant packet\n"); ifp->if_ierrors++; scp->mibdata.dot3StatsFrameTooLongs++; } /* CRC error -- packet dropped */ if (rst0 & XE_RST0_CRC_ERROR) { device_printf(scp->dev, "CRC error\n"); ifp->if_ierrors++; scp->mibdata.dot3StatsFCSErrors++; } } /* Handle received packet(s) */ while ((esr = XE_INB(XE_ESR)) & XE_ESR_FULL_PACKET_RX) { rsr = XE_INB(XE_RSR); DEVPRINTF(3, (scp->dev, "intr: ESR=0x%02x, RSR=0x%02x\n", esr, rsr)); /* Make sure packet is a good one */ if (rsr & XE_RSR_RX_OK) { struct ether_header *ehp; struct mbuf *mbp; u_int16_t len; len = XE_INW(XE_RBC) - ETHER_CRC_LEN; DEVPRINTF(3, (scp->dev, "intr: receive length = %d\n", len)); if (len == 0) { ifp->if_iqdrops++; continue; } /* * Allocate mbuf to hold received packet. If the mbuf header isn't * big enough, we attach an mbuf cluster to hold the packet. Note the * +=2 to align the packet data on a 32-bit boundary, and the +3 to * allow for the possibility of reading one more byte than the actual * packet length (we always read 16-bit words). * XXX - Surely there's a better way to do this alignment? */ MGETHDR(mbp, M_DONTWAIT, MT_DATA); if (mbp == NULL) { ifp->if_iqdrops++; continue; } if (len + 3 > MHLEN) { MCLGET(mbp, M_DONTWAIT); if ((mbp->m_flags & M_EXT) == 0) { m_freem(mbp); ifp->if_iqdrops++; continue; } } mbp->m_data += 2; ehp = mtod(mbp, struct ether_header *); /* * Now get the packet in PIO mode, including the Ethernet header but * omitting the trailing CRC. */ /* * Work around a bug in CE2 cards. There seems to be a problem with * duplicated and extraneous bytes in the receive buffer, but without * any real documentation for the CE2 it's hard to tell for sure. * XXX - Needs testing on CE2 hardware */ if (scp->srev == 0) { u_short rhs; XE_SELECT_PAGE(5); rhs = XE_INW(XE_RHSA); XE_SELECT_PAGE(0); rhs += 3; /* Skip control info */ if (rhs >= 0x8000) rhs = 0; if (rhs + len > 0x8000) { int i; for (i = 0; i < len; i++, rhs++) { ((char *)ehp)[i] = XE_INB(XE_EDP); if (rhs == 0x8000) { rhs = 0; i--; } } } else bus_space_read_multi_2(scp->bst, scp->bsh, XE_EDP, (u_int16_t *) ehp, (len + 1) >> 1); } else bus_space_read_multi_2(scp->bst, scp->bsh, XE_EDP, (u_int16_t *) ehp, (len + 1) >> 1); /* Deliver packet to upper layers */ mbp->m_pkthdr.rcvif = ifp; mbp->m_pkthdr.len = mbp->m_len = len; (*ifp->if_input)(ifp, mbp); ifp->if_ipackets++; } /* Packet alignment error -- drop packet */ else if (rsr & XE_RSR_ALIGN_ERROR) { device_printf(scp->dev, "alignment error\n"); scp->mibdata.dot3StatsAlignmentErrors++; ifp->if_ierrors++; } /* Skip to next packet, if there is one */ XE_OUTW(XE_DO, 0x8000); } /* Clear receiver overruns now we have some free buffer space */ if (rst0 & XE_RST0_RX_OVERRUN) { DEVPRINTF(1, (scp->dev, "receive overrun\n")); ifp->if_ierrors++; scp->mibdata.dot3StatsInternalMacReceiveErrors++; XE_OUTB(XE_CR, XE_CR_CLEAR_OVERRUN); } } /* Restore saved page */ XE_SELECT_PAGE(psr); /* Re-enable interrupts */ XE_OUTB(XE_CR, XE_CR_ENABLE_INTR); return; } /* * Device timeout/watchdog routine. Called automatically if we queue a packet * for transmission but don't get an interrupt within a specified timeout * (usually 5 seconds). When this happens we assume the worst and reset the * card. */ static void xe_watchdog(struct ifnet *ifp) { struct xe_softc *scp = ifp->if_softc; device_printf(scp->dev, "watchdog timeout: resetting card\n"); scp->tx_timeouts++; ifp->if_oerrors += scp->tx_queued; xe_stop(scp); xe_reset(scp); xe_init(scp); } /* * Change media selection. */ static int xe_media_change(struct ifnet *ifp) { struct xe_softc *scp = ifp->if_softc; DEVPRINTF(2, (scp->dev, "media_change\n")); if (IFM_TYPE(scp->ifm->ifm_media) != IFM_ETHER) return(EINVAL); /* * Some card/media combos aren't always possible -- filter those out here. */ if ((IFM_SUBTYPE(scp->ifm->ifm_media) == IFM_AUTO || IFM_SUBTYPE(scp->ifm->ifm_media) == IFM_100_TX) && !scp->phy_ok) return (EINVAL); xe_setmedia(scp); return 0; } /* * Return current media selection. */ static void xe_media_status(struct ifnet *ifp, struct ifmediareq *mrp) { struct xe_softc *scp = ifp->if_softc; DEVPRINTF(3, (scp->dev, "media_status\n")); /* XXX - This is clearly wrong. Will fix once I have CE2 working */ mrp->ifm_status = IFM_AVALID | IFM_ACTIVE; mrp->ifm_active = ((struct xe_softc *)ifp->if_softc)->media; return; } /* * Select active media. */ static void xe_setmedia(void *xscp) { struct xe_softc *scp = xscp; u_int16_t bmcr, bmsr, anar, lpar; DEVPRINTF(2, (scp->dev, "setmedia\n")); /* Cancel any pending timeout */ untimeout(xe_setmedia, scp, scp->chand); xe_disable_intr(scp); /* Select media */ scp->media = IFM_ETHER; switch (IFM_SUBTYPE(scp->ifm->ifm_media)) { case IFM_AUTO: /* Autoselect media */ scp->media = IFM_ETHER|IFM_AUTO; /* * Autoselection is really awful. It goes something like this: * * Wait until the transmitter goes idle (2sec timeout). * Reset card * IF a 100Mbit PHY exists * Start NWAY autonegotiation (3.5sec timeout) * IF that succeeds * Select 100baseTX or 10baseT, whichever was detected * ELSE * Reset card * IF a 100Mbit PHY exists * Try to force a 100baseTX link (3sec timeout) * IF that succeeds * Select 100baseTX * ELSE * Disable the PHY * ENDIF * ENDIF * ENDIF * ENDIF * IF nothing selected so far * IF a 100Mbit PHY exists * Select 10baseT * ELSE * Select 10baseT or 10base2, whichever is connected * ENDIF * ENDIF */ switch (scp->autoneg_status) { case XE_AUTONEG_NONE: DEVPRINTF(2, (scp->dev, "Waiting for idle transmitter\n")); scp->arpcom.ac_if.if_flags |= IFF_OACTIVE; scp->autoneg_status = XE_AUTONEG_WAITING; /* FALL THROUGH */ case XE_AUTONEG_WAITING: if (scp->tx_queued != 0) { scp->chand = timeout(xe_setmedia, scp, hz/2); return; } if (scp->phy_ok) { DEVPRINTF(2, (scp->dev, "Starting autonegotiation\n")); bmcr = xe_phy_readreg(scp, PHY_BMCR); bmcr &= ~(PHY_BMCR_AUTONEGENBL); xe_phy_writereg(scp, PHY_BMCR, bmcr); anar = xe_phy_readreg(scp, PHY_ANAR); anar &= ~(PHY_ANAR_100BT4|PHY_ANAR_100BTXFULL|PHY_ANAR_10BTFULL); anar |= PHY_ANAR_100BTXHALF|PHY_ANAR_10BTHALF; xe_phy_writereg(scp, PHY_ANAR, anar); bmcr |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR; xe_phy_writereg(scp, PHY_BMCR, bmcr); scp->autoneg_status = XE_AUTONEG_STARTED; scp->chand = timeout(xe_setmedia, scp, hz * 7/2); return; } else { scp->autoneg_status = XE_AUTONEG_FAIL; } break; case XE_AUTONEG_STARTED: bmsr = xe_phy_readreg(scp, PHY_BMSR); lpar = xe_phy_readreg(scp, PHY_LPAR); if (bmsr & (PHY_BMSR_AUTONEGCOMP|PHY_BMSR_LINKSTAT)) { DEVPRINTF(2, (scp->dev, "Autonegotiation complete!\n")); /* * XXX - Shouldn't have to do this, but (on my hub at least) the * XXX - transmitter won't work after a successful autoneg. So we see * XXX - what the negotiation result was and force that mode. I'm * XXX - sure there is an easy fix for this. */ if (lpar & PHY_LPAR_100BTXHALF) { xe_phy_writereg(scp, PHY_BMCR, PHY_BMCR_SPEEDSEL); XE_MII_DUMP(scp); XE_SELECT_PAGE(2); XE_OUTB(XE_MSR, XE_INB(XE_MSR) | 0x08); scp->media = IFM_ETHER|IFM_100_TX; scp->autoneg_status = XE_AUTONEG_NONE; } else { /* * XXX - Bit of a hack going on in here. * XXX - This is derived from Ken Hughes patch to the Linux driver * XXX - to make it work with 10Mbit _autonegotiated_ links on CE3B * XXX - cards. What's a CE3B and how's it differ from a plain CE3? * XXX - these are the things we need to find out. */ xe_phy_writereg(scp, PHY_BMCR, 0x0000); XE_SELECT_PAGE(2); /* BEGIN HACK */ XE_OUTB(XE_MSR, XE_INB(XE_MSR) | 0x08); XE_SELECT_PAGE(0x42); XE_OUTB(XE_SWC1, 0x80); scp->media = IFM_ETHER|IFM_10_T; scp->autoneg_status = XE_AUTONEG_NONE; /* END HACK */ /*XE_OUTB(XE_MSR, XE_INB(XE_MSR) & ~0x08);*/ /* Disable PHY? */ /*scp->autoneg_status = XE_AUTONEG_FAIL;*/ } } else { DEVPRINTF(2, (scp->dev, "Autonegotiation failed; trying 100baseTX\n")); XE_MII_DUMP(scp); if (scp->phy_ok) { xe_phy_writereg(scp, PHY_BMCR, PHY_BMCR_SPEEDSEL); scp->autoneg_status = XE_AUTONEG_100TX; scp->chand = timeout(xe_setmedia, scp, hz * 3); return; } else { scp->autoneg_status = XE_AUTONEG_FAIL; } } break; case XE_AUTONEG_100TX: (void)xe_phy_readreg(scp, PHY_BMSR); bmsr = xe_phy_readreg(scp, PHY_BMSR); if (bmsr & PHY_BMSR_LINKSTAT) { DEVPRINTF(2, (scp->dev, "Got 100baseTX link!\n")); XE_MII_DUMP(scp); XE_SELECT_PAGE(2); XE_OUTB(XE_MSR, XE_INB(XE_MSR) | 0x08); scp->media = IFM_ETHER|IFM_100_TX; scp->autoneg_status = XE_AUTONEG_NONE; } else { DEVPRINTF(2, (scp->dev, "Autonegotiation failed; disabling PHY\n")); XE_MII_DUMP(scp); xe_phy_writereg(scp, PHY_BMCR, 0x0000); XE_SELECT_PAGE(2); XE_OUTB(XE_MSR, XE_INB(XE_MSR) & ~0x08); /* Disable PHY? */ scp->autoneg_status = XE_AUTONEG_FAIL; } break; } /* * If we got down here _and_ autoneg_status is XE_AUTONEG_FAIL, then * either autonegotiation failed, or never got started to begin with. In * either case, select a suitable 10Mbit media and hope it works. We * don't need to reset the card again, since it will have been done * already by the big switch above. */ if (scp->autoneg_status == XE_AUTONEG_FAIL) { DEVPRINTF(2, (scp->dev, "Selecting 10baseX\n")); if (scp->mohawk) { XE_SELECT_PAGE(0x42); XE_OUTB(XE_SWC1, 0x80); scp->media = IFM_ETHER|IFM_10_T; scp->autoneg_status = XE_AUTONEG_NONE; } else { XE_SELECT_PAGE(4); XE_OUTB(XE_GPR0, 4); DELAY(50000); XE_SELECT_PAGE(0x42); XE_OUTB(XE_SWC1, (XE_INB(XE_ESR) & XE_ESR_MEDIA_SELECT) ? 0x80 : 0xc0); scp->media = IFM_ETHER|((XE_INB(XE_ESR) & XE_ESR_MEDIA_SELECT) ? IFM_10_T : IFM_10_2); scp->autoneg_status = XE_AUTONEG_NONE; } } break; /* * If a specific media has been requested, we just reset the card and * select it (one small exception -- if 100baseTX is requested by there is * no PHY, we fall back to 10baseT operation). */ case IFM_100_TX: /* Force 100baseTX */ if (scp->phy_ok) { DEVPRINTF(2, (scp->dev, "Selecting 100baseTX\n")); XE_SELECT_PAGE(0x42); XE_OUTB(XE_SWC1, 0); xe_phy_writereg(scp, PHY_BMCR, PHY_BMCR_SPEEDSEL); XE_SELECT_PAGE(2); XE_OUTB(XE_MSR, XE_INB(XE_MSR) | 0x08); scp->media |= IFM_100_TX; break; } /* FALLTHROUGH */ case IFM_10_T: /* Force 10baseT */ DEVPRINTF(2, (scp->dev, "Selecting 10baseT\n")); if (scp->phy_ok) { xe_phy_writereg(scp, PHY_BMCR, 0x0000); XE_SELECT_PAGE(2); XE_OUTB(XE_MSR, XE_INB(XE_MSR) & ~0x08); /* Disable PHY */ } XE_SELECT_PAGE(0x42); XE_OUTB(XE_SWC1, 0x80); scp->media |= IFM_10_T; break; case IFM_10_2: DEVPRINTF(2, (scp->dev, "Selecting 10base2\n")); XE_SELECT_PAGE(0x42); XE_OUTB(XE_SWC1, 0xc0); scp->media |= IFM_10_2; break; } /* * Finally, the LEDs are set to match whatever media was chosen and the * transmitter is unblocked. */ DEVPRINTF(2, (scp->dev, "Setting LEDs\n")); XE_SELECT_PAGE(2); switch (IFM_SUBTYPE(scp->media)) { case IFM_100_TX: case IFM_10_T: XE_OUTB(XE_LED, 0x3b); if (scp->dingo) XE_OUTB(0x0b, 0x04); /* 100Mbit LED */ break; case IFM_10_2: XE_OUTB(XE_LED, 0x3a); break; } /* Restart output? */ xe_enable_intr(scp); scp->ifp->if_flags &= ~IFF_OACTIVE; xe_start(scp->ifp); } /* * Hard reset (power cycle) the card. */ static void xe_reset(struct xe_softc *scp) { int s; DEVPRINTF(2, (scp->dev, "reset\n")); s = splimp(); /* Power down */ XE_SELECT_PAGE(4); XE_OUTB(XE_GPR1, 0); DELAY(40000); /* Power up again */ if (scp->mohawk) XE_OUTB(XE_GPR1, XE_GPR1_POWER_DOWN); else XE_OUTB(XE_GPR1, XE_GPR1_POWER_DOWN|XE_GPR1_AIC); DELAY(40000); XE_SELECT_PAGE(0); (void)splx(s); } /* * Take interface offline. This is done by powering down the device, which I * assume means just shutting down the transceiver and Ethernet logic. This * requires a _hard_ reset to recover from, as we need to power up again. */ static void xe_stop(struct xe_softc *scp) { int s; DEVPRINTF(2, (scp->dev, "stop\n")); s = splimp(); /* * Shut off interrupts. */ xe_disable_intr(scp); /* * Power down. */ XE_SELECT_PAGE(4); XE_OUTB(XE_GPR1, 0); XE_SELECT_PAGE(0); if (scp->mohawk) { /* * set GP1 and GP2 as outputs (bits 2 & 3) * set GP1 high to power on the ML6692 (bit 0) * set GP2 low to power on the 10Mhz chip (bit 1) */ XE_SELECT_PAGE(4); XE_OUTB(XE_GPR0, XE_GPR0_GP2_SELECT|XE_GPR0_GP1_SELECT|XE_GPR0_GP1_OUT); } /* * ~IFF_RUNNING == interface down. */ scp->ifp->if_flags &= ~IFF_RUNNING; scp->ifp->if_flags &= ~IFF_OACTIVE; scp->ifp->if_timer = 0; (void)splx(s); } /* * Enable interrupts from the card. */ static void xe_enable_intr(struct xe_softc *scp) { DEVPRINTF(2, (scp->dev, "enable_intr\n")); XE_SELECT_PAGE(0); XE_OUTB(XE_CR, XE_CR_ENABLE_INTR); /* Enable interrupts */ if (scp->modem && !scp->dingo) { /* This bit is just magic */ if (!(XE_INB(0x10) & 0x01)) { XE_OUTB(0x10, 0x11); /* Unmask master int enable bit */ } } } /* * Disable interrupts from the card. */ static void xe_disable_intr(struct xe_softc *scp) { DEVPRINTF(2, (scp->dev, "disable_intr\n")); XE_SELECT_PAGE(0); XE_OUTB(XE_CR, 0); /* Disable interrupts */ if (scp->modem && !scp->dingo) { /* More magic */ XE_OUTB(0x10, 0x10); /* Mask the master int enable bit */ } } /* * Set up multicast filter and promiscuous modes. */ static void xe_set_multicast(struct xe_softc *scp) { struct ifnet *ifp; struct ifmultiaddr *maddr; unsigned count, i; DEVPRINTF(2, (scp->dev, "set_multicast\n")); ifp = &scp->arpcom.ac_if; XE_SELECT_PAGE(0x42); /* Handle PROMISC flag */ if (ifp->if_flags & IFF_PROMISC) { XE_OUTB(XE_SWC1, XE_INB(XE_SWC1) | XE_SWC1_PROMISCUOUS); return; } else XE_OUTB(XE_SWC1, XE_INB(XE_SWC1) & ~XE_SWC1_PROMISCUOUS); /* Handle ALLMULTI flag */ if (ifp->if_flags & IFF_ALLMULTI) { XE_OUTB(XE_SWC1, XE_INB(XE_SWC1) | XE_SWC1_ALLMULTI); return; } else XE_OUTB(XE_SWC1, XE_INB(XE_SWC1) & ~XE_SWC1_ALLMULTI); /* Iterate over multicast address list */ count = 0; #if __FreeBSD_version < 500000 LIST_FOREACH(maddr, &ifp->if_multiaddrs, ifma_link) { #else TAILQ_FOREACH(maddr, &ifp->if_multiaddrs, ifma_link) { #endif if (maddr->ifma_addr->sa_family != AF_LINK) continue; count++; if (count < 10) /* First 9 use Individual Addresses for exact matching */ xe_set_addr(scp, LLADDR((struct sockaddr_dl *)maddr->ifma_addr), count); else if (scp->mohawk) /* Use hash filter on Mohawk and Dingo */ xe_mchash(scp, LLADDR((struct sockaddr_dl *)maddr->ifma_addr)); else /* Nowhere else to put them on CE2 */ break; } DEVPRINTF(2, (scp->dev, "set_multicast: count = %u\n", count)); /* Now do some cleanup and enable multicast handling as needed */ if (count == 0) { /* Disable all multicast handling */ XE_SELECT_PAGE(0x42); XE_OUTB(XE_SWC1, XE_INB(XE_SWC1) & ~(XE_SWC1_IA_ENABLE|XE_SWC1_ALLMULTI)); if (scp->mohawk) { XE_SELECT_PAGE(0x02); XE_OUTB(XE_MSR, XE_INB(XE_MSR) & ~XE_MSR_HASH_TABLE); } } else if (count < 10) { /* Full in any unused Individual Addresses with our MAC address */ for (i = count + 1; i < 10; i++) xe_set_addr(scp, (u_int8_t *)(&scp->arpcom.ac_enaddr), i); /* Enable Individual Address matching only */ XE_SELECT_PAGE(0x42); XE_OUTB(XE_SWC1, (XE_INB(XE_SWC1) & ~XE_SWC1_ALLMULTI) | XE_SWC1_IA_ENABLE); if (scp->mohawk) { XE_SELECT_PAGE(0x02); XE_OUTB(XE_MSR, XE_INB(XE_MSR) & ~XE_MSR_HASH_TABLE); } } else { if (scp->mohawk) { /* Check whether hash table is full */ XE_SELECT_PAGE(0x58); for (i = 0x08; i < 0x10; i++) if (XE_INB(i) != 0xff) break; if (i == 0x10) { /* Hash table full - enable promiscuous multicast matching */ XE_SELECT_PAGE(0x42); XE_OUTB(XE_SWC1, (XE_INB(XE_SWC1) & ~XE_SWC1_IA_ENABLE) | XE_SWC1_ALLMULTI); XE_SELECT_PAGE(0x02); XE_OUTB(XE_MSR, XE_INB(XE_MSR) & ~XE_MSR_HASH_TABLE); } else { /* Enable hash table and Individual Address matching */ XE_SELECT_PAGE(0x42); XE_OUTB(XE_SWC1, (XE_INB(XE_SWC1) & ~XE_SWC1_ALLMULTI) | XE_SWC1_IA_ENABLE); XE_SELECT_PAGE(0x02); XE_OUTB(XE_MSR, XE_INB(XE_MSR) | XE_MSR_HASH_TABLE); } } else { /* Enable promiscuous multicast matching */ XE_SELECT_PAGE(0x42); XE_OUTB(XE_SWC1, (XE_INB(XE_SWC1) & ~XE_SWC1_IA_ENABLE) | XE_SWC1_ALLMULTI); } } XE_SELECT_PAGE(0); } /* * Copy the Ethernet multicast address in addr to the on-chip registers for * Individual Address idx. Assumes that addr is really a multicast address * and that idx > 0 (slot 0 is always used for the card MAC address). */ static void xe_set_addr(struct xe_softc *scp, u_int8_t* addr, unsigned idx) { u_int8_t page, reg; unsigned i; /* * Individual Addresses are stored in registers 8-F of pages 0x50-0x57. IA1 * therefore starts at register 0xE on page 0x50. The expressions below * compute the starting page and register for any IA index > 0. */ --idx; page = 0x50 + idx%4 + idx/4*3; reg = 0x0e - 2 * (idx%4); DEVPRINTF(3, (scp->dev, "set_addr: idx = %u, page = 0x%02x, reg = 0x%02x\n", idx+1, page, reg)); /* * Copy the IA bytes. Note that the byte order is reversed for Mohawk and * Dingo wrt. CE2 hardware. */ XE_SELECT_PAGE(page); for (i = 0; i < 6; i++) { if (i > 0) { DPRINTF(3, (":%02x", addr[i])); } else { DEVPRINTF(3, (scp->dev, "set_addr: %02x", addr[0])); } XE_OUTB(reg, addr[scp->mohawk ? 5 - i : i]); if (++reg == 0x10) { reg = 0x08; XE_SELECT_PAGE(++page); } } DPRINTF(3, ("\n")); } /* * Set the appropriate bit in the multicast hash table for the supplied * Ethernet multicast address addr. Assumes that addr is really a multicast * address. */ static void xe_mchash(struct xe_softc* scp, const uint8_t *addr) { uint32_t crc = 0xffffffff; int idx, bit; uint8_t carry, byte, data, crc31, hash; /* Compute CRC of the address -- standard Ethernet CRC function */ for (data = *addr++, idx = 0; idx < 6; idx++, data >>= 1) { for (bit = 1; bit <= 8; bit++) { if (crc & 0x80000000) crc31 = 0x01; else crc31 = 0; carry = crc31 ^ (data & 0x01); crc <<= 1; data >>= 1; crc = (crc ^ XE_CRC_POLY) | (carry|0x1); } } DEVPRINTF(3, (scp->dev, "set_hash: CRC = 0x%08x\n", crc)); /* * Convert a CRC into an index into the multicast hash table. What we do is * take the most-significant 6 bits of the CRC, reverse them, and use that as * the bit number in the hash table. Bits 5:3 of the result give the byte * within the table (0-7); bits 2:0 give the bit number within that byte (also * 0-7), ie. the number of shifts needed to get it into the lsb position. */ for (idx = 0, hash = 0; idx < 6; idx++) { hash >>= 1; if (crc & 0x80000000) { hash |= 0x20; } crc <<= 1; } /* Top 3 bits of hash give register - 8, bottom 3 give bit within register */ byte = hash >> 3 | 0x08; carry = 0x01 << (hash & 0x07); DEVPRINTF(3, (scp->dev, "set_hash: hash = 0x%02x, byte = 0x%02x, carry = 0x%02x\n", hash, byte, carry)); XE_SELECT_PAGE(0x58); XE_OUTB(byte, XE_INB(byte) | carry); } /* * Write an outgoing packet to the card using programmed I/O. */ static int xe_pio_write_packet(struct xe_softc *scp, struct mbuf *mbp) { unsigned len, pad; unsigned char wantbyte; u_int8_t *data; u_int8_t savebyte[2]; /* Get total packet length */ if (mbp->m_flags & M_PKTHDR) len = mbp->m_pkthdr.len; else { struct mbuf* mbp2 = mbp; for (len = 0; mbp2 != NULL; len += mbp2->m_len, mbp2 = mbp2->m_next); } DEVPRINTF(3, (scp->dev, "pio_write_packet: len = %u\n", len)); /* Packets < minimum length may need to be padded out */ pad = 0; if (len < scp->tx_min) { pad = scp->tx_min - len; len = scp->tx_min; } /* Check transmit buffer space */ XE_SELECT_PAGE(0); XE_OUTW(XE_TRS, len+2); /* Only effective on rev. 1 CE2 cards */ if ((XE_INW(XE_TSO) & 0x7fff) <= len + 2) return 1; /* Send packet length to card */ XE_OUTW(XE_EDP, len); /* * Write packet to card using PIO (code stolen from the ed driver) */ wantbyte = 0; while (mbp != NULL) { len = mbp->m_len; if (len > 0) { data = mtod(mbp, caddr_t); if (wantbyte) { /* Finish the last word */ savebyte[1] = *data; XE_OUTW(XE_EDP, *(u_short *)savebyte); data++; len--; wantbyte = 0; } if (len > 1) { /* Output contiguous words */ bus_space_write_multi_2(scp->bst, scp->bsh, XE_EDP, (u_int16_t *) data, len >> 1); data += len & ~1; len &= 1; } if (len == 1) { /* Save last byte, if necessary */ savebyte[0] = *data; wantbyte = 1; } } mbp = mbp->m_next; } /* * Send last byte of odd-length packets */ if (wantbyte) XE_OUTB(XE_EDP, savebyte[0]); /* * Can just tell CE3 cards to send; short packets will be padded out with * random cruft automatically. For CE2, manually pad the packet with * garbage; it will be sent when the required number or bytes have been * delivered to the card. */ if (scp->mohawk) XE_OUTB(XE_CR, XE_CR_TX_PACKET | XE_CR_RESTART_TX | XE_CR_ENABLE_INTR); else if (pad > 0) { if (pad & 0x01) XE_OUTB(XE_EDP, 0xaa); pad >>= 1; while (pad > 0) { XE_OUTW(XE_EDP, 0xdead); pad--; } } return 0; } /************************************************************** * * * M I I F U N C T I O N S * * * **************************************************************/ /* * Alternative MII/PHY handling code adapted from the xl driver. It doesn't * seem to work any better than the xirc2_ps stuff, but it's cleaner code. * XXX - this stuff shouldn't be here. It should all be abstracted off to * XXX - some kind of common MII-handling code, shared by all drivers. But * XXX - that's a whole other mission. */ #define XE_MII_SET(x) XE_OUTB(XE_GPR2, (XE_INB(XE_GPR2) | 0x04) | (x)) #define XE_MII_CLR(x) XE_OUTB(XE_GPR2, (XE_INB(XE_GPR2) | 0x04) & ~(x)) /* * Sync the PHYs by setting data bit and strobing the clock 32 times. */ static void xe_mii_sync(struct xe_softc *scp) { register int i; XE_SELECT_PAGE(2); XE_MII_SET(XE_MII_DIR|XE_MII_WRD); for (i = 0; i < 32; i++) { XE_MII_SET(XE_MII_CLK); DELAY(1); XE_MII_CLR(XE_MII_CLK); DELAY(1); } } /* * Look for a MII-compliant PHY. If we find one, reset it. */ static int xe_mii_init(struct xe_softc *scp) { u_int16_t status; status = xe_phy_readreg(scp, PHY_BMSR); if ((status & 0xff00) != 0x7800) { DEVPRINTF(2, (scp->dev, "no PHY found, %0x\n", status)); return 0; } else { DEVPRINTF(2, (scp->dev, "PHY OK!\n")); /* Reset the PHY */ xe_phy_writereg(scp, PHY_BMCR, PHY_BMCR_RESET); DELAY(500); while(xe_phy_readreg(scp, PHY_BMCR) & PHY_BMCR_RESET); XE_MII_DUMP(scp); return 1; } } /* * Clock a series of bits through the MII. */ static void xe_mii_send(struct xe_softc *scp, u_int32_t bits, int cnt) { int i; XE_SELECT_PAGE(2); XE_MII_CLR(XE_MII_CLK); for (i = (0x1 << (cnt - 1)); i; i >>= 1) { if (bits & i) { XE_MII_SET(XE_MII_WRD); } else { XE_MII_CLR(XE_MII_WRD); } DELAY(1); XE_MII_CLR(XE_MII_CLK); DELAY(1); XE_MII_SET(XE_MII_CLK); } } /* * Read an PHY register through the MII. */ static int xe_mii_readreg(struct xe_softc *scp, struct xe_mii_frame *frame) { int i, ack, s; s = splimp(); /* * Set up frame for RX. */ frame->mii_stdelim = XE_MII_STARTDELIM; frame->mii_opcode = XE_MII_READOP; frame->mii_turnaround = 0; frame->mii_data = 0; XE_SELECT_PAGE(2); XE_OUTB(XE_GPR2, 0); /* * Turn on data xmit. */ XE_MII_SET(XE_MII_DIR); xe_mii_sync(scp); /* * Send command/address info. */ xe_mii_send(scp, frame->mii_stdelim, 2); xe_mii_send(scp, frame->mii_opcode, 2); xe_mii_send(scp, frame->mii_phyaddr, 5); xe_mii_send(scp, frame->mii_regaddr, 5); /* Idle bit */ XE_MII_CLR((XE_MII_CLK|XE_MII_WRD)); DELAY(1); XE_MII_SET(XE_MII_CLK); DELAY(1); /* Turn off xmit. */ XE_MII_CLR(XE_MII_DIR); /* Check for ack */ XE_MII_CLR(XE_MII_CLK); DELAY(1); ack = XE_INB(XE_GPR2) & XE_MII_RDD; XE_MII_SET(XE_MII_CLK); DELAY(1); /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHY(s) in sync. */ if (ack) { for(i = 0; i < 16; i++) { XE_MII_CLR(XE_MII_CLK); DELAY(1); XE_MII_SET(XE_MII_CLK); DELAY(1); } goto fail; } for (i = 0x8000; i; i >>= 1) { XE_MII_CLR(XE_MII_CLK); DELAY(1); if (!ack) { if (XE_INB(XE_GPR2) & XE_MII_RDD) frame->mii_data |= i; DELAY(1); } XE_MII_SET(XE_MII_CLK); DELAY(1); } fail: XE_MII_CLR(XE_MII_CLK); DELAY(1); XE_MII_SET(XE_MII_CLK); DELAY(1); splx(s); if (ack) return(1); return(0); } /* * Write to a PHY register through the MII. */ static int xe_mii_writereg(struct xe_softc *scp, struct xe_mii_frame *frame) { int s; s = splimp(); /* * Set up frame for TX. */ frame->mii_stdelim = XE_MII_STARTDELIM; frame->mii_opcode = XE_MII_WRITEOP; frame->mii_turnaround = XE_MII_TURNAROUND; XE_SELECT_PAGE(2); /* * Turn on data output. */ XE_MII_SET(XE_MII_DIR); xe_mii_sync(scp); xe_mii_send(scp, frame->mii_stdelim, 2); xe_mii_send(scp, frame->mii_opcode, 2); xe_mii_send(scp, frame->mii_phyaddr, 5); xe_mii_send(scp, frame->mii_regaddr, 5); xe_mii_send(scp, frame->mii_turnaround, 2); xe_mii_send(scp, frame->mii_data, 16); /* Idle bit. */ XE_MII_SET(XE_MII_CLK); DELAY(1); XE_MII_CLR(XE_MII_CLK); DELAY(1); /* * Turn off xmit. */ XE_MII_CLR(XE_MII_DIR); splx(s); return(0); } /* * Read a register from the PHY. */ static u_int16_t xe_phy_readreg(struct xe_softc *scp, u_int16_t reg) { struct xe_mii_frame frame; bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = 0; frame.mii_regaddr = reg; xe_mii_readreg(scp, &frame); return(frame.mii_data); } /* * Write to a PHY register. */ static void xe_phy_writereg(struct xe_softc *scp, u_int16_t reg, u_int16_t data) { struct xe_mii_frame frame; bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = 0; frame.mii_regaddr = reg; frame.mii_data = data; xe_mii_writereg(scp, &frame); return; } /* * A bit of debugging code. */ static void xe_mii_dump(struct xe_softc *scp) { int i, s; s = splimp(); device_printf(scp->dev, "MII registers: "); for (i = 0; i < 2; i++) { printf(" %d:%04x", i, xe_phy_readreg(scp, i)); } for (i = 4; i < 7; i++) { printf(" %d:%04x", i, xe_phy_readreg(scp, i)); } printf("\n"); (void)splx(s); } #if 0 void xe_reg_dump(struct xe_softc *scp) { int page, i, s; s = splimp(); device_printf(scp->dev, "Common registers: "); for (i = 0; i < 8; i++) { printf(" %2.2x", XE_INB(i)); } printf("\n"); for (page = 0; page <= 8; page++) { device_printf(scp->dev, "Register page %2.2x: ", page); XE_SELECT_PAGE(page); for (i = 8; i < 16; i++) { printf(" %2.2x", XE_INB(i)); } printf("\n"); } for (page = 0x10; page < 0x5f; page++) { if ((page >= 0x11 && page <= 0x3f) || (page == 0x41) || (page >= 0x43 && page <= 0x4f) || (page >= 0x59)) continue; device_printf(scp->dev, "Register page %2.2x: ", page); XE_SELECT_PAGE(page); for (i = 8; i < 16; i++) { printf(" %2.2x", XE_INB(i)); } printf("\n"); } (void)splx(s); } #endif int xe_activate(device_t dev) { struct xe_softc *sc = device_get_softc(dev); int start, err, i; DEVPRINTF(2, (dev, "activate\n")); if (!sc->modem) { sc->port_rid = 0; /* 0 is managed by pccard */ sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port_rid, 0, ~0, 16, RF_ACTIVE); } else if (sc->dingo) { /* * Find a 16 byte aligned ioport for the card. */ DEVPRINTF(1, (dev, "Finding an aligned port for RealPort\n")); sc->port_rid = 1; /* 0 is managed by pccard */ start = 0x100; do { sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port_rid, start, 0x3ff, 16, RF_ACTIVE); if (sc->port_res == 0) break; /* we failed */ if ((rman_get_start(sc->port_res) & 0xf) == 0) break; /* good */ bus_release_resource(dev, SYS_RES_IOPORT, sc->port_rid, sc->port_res); start = (rman_get_start(sc->port_res) + 15) & ~0xf; } while (1); DEVPRINTF(1, (dev, "RealPort port 0x%0lx, size 0x%0lx\n", bus_get_resource_start(dev, SYS_RES_IOPORT, sc->port_rid), bus_get_resource_count(dev, SYS_RES_IOPORT, sc->port_rid))); } else if (sc->ce2) { /* * Find contiguous I/O port for the Ethernet function on CEM2 and * CEM3 cards. We allocate window 0 wherever pccard has decided * it should be, then find an available window adjacent to it for * the second function. Not sure that both windows are actually * needed. */ DEVPRINTF(1, (dev, "Finding I/O port for CEM2/CEM3\n")); sc->ce2_port_rid = 0; /* 0 is managed by pccard */ sc->ce2_port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->ce2_port_rid, 0, ~0, 8, RF_ACTIVE); if (!sc->ce2_port_res) { DEVPRINTF(1, (dev, "Cannot allocate I/O port for modem\n")); return ENOMEM; } sc->port_rid = 1; start = bus_get_resource_start(dev, SYS_RES_IOPORT, sc->ce2_port_rid); for (i = 0; i < 2; i++) { start += (i == 0 ? 8 : -24); sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port_rid, start, start + 18, 18, RF_ACTIVE); if (sc->port_res == 0) continue; /* Failed, try again if possible */ if (bus_get_resource_start(dev, SYS_RES_IOPORT, sc->port_rid) == start) break; /* Success! */ bus_release_resource(dev, SYS_RES_IOPORT, sc->port_rid, sc->port_res); sc->port_res = 0; } DEVPRINTF(1, (dev, "CEM2/CEM3 port 0x%0lx, size 0x%0lx\n", bus_get_resource_start(dev, SYS_RES_IOPORT, sc->port_rid), bus_get_resource_count(dev, SYS_RES_IOPORT, sc->port_rid))); } if (!sc->port_res) { DEVPRINTF(1, (dev, "Cannot allocate ioport\n")); return ENOMEM; } sc->irq_rid = 0; sc->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irq_rid, 0, ~0, 1, RF_ACTIVE); if (!sc->irq_res) { DEVPRINTF(1, (dev, "Cannot allocate irq\n")); xe_deactivate(dev); return ENOMEM; } if ((err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET, xe_intr, sc, &sc->intrhand)) != 0) { xe_deactivate(dev); return err; } sc->bst = rman_get_bustag(sc->port_res); sc->bsh = rman_get_bushandle(sc->port_res); return (0); } void xe_deactivate(device_t dev) { struct xe_softc *sc = device_get_softc(dev); DEVPRINTF(2, (dev, "deactivate\n")); xe_disable_intr(sc); if (sc->intrhand) bus_teardown_intr(dev, sc->irq_res, sc->intrhand); sc->intrhand = 0; if (sc->port_res) bus_release_resource(dev, SYS_RES_IOPORT, sc->port_rid, sc->port_res); sc->port_res = 0; if (sc->ce2_port_res) bus_release_resource(dev, SYS_RES_IOPORT, sc->ce2_port_rid, sc->ce2_port_res); sc->ce2_port_res = 0; if (sc->irq_res) bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq_res); sc->irq_res = 0; return; }