/*- * Copyright (c) 1991 Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department and William Jolitz of UUNET Technologies Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Derived from hp300 version by Mike Hibler, this version by William * Jolitz uses a recursive map [a pde points to the page directory] to * map the page tables using the pagetables themselves. This is done to * reduce the impact on kernel virtual memory for lots of sparse address * space, and to reduce the cost of memory to each process. * * from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90 * from: @(#)pmap.h 7.4 (Berkeley) 5/12/91 * $FreeBSD$ */ #ifndef _MACHINE_PMAP_H_ #define _MACHINE_PMAP_H_ /* * Page-directory and page-table entries follow this format, with a few * of the fields not present here and there, depending on a lot of things. */ /* ---- Intel Nomenclature ---- */ #define PG_V 0x001 /* P Valid */ #define PG_RW 0x002 /* R/W Read/Write */ #define PG_U 0x004 /* U/S User/Supervisor */ #define PG_NC_PWT 0x008 /* PWT Write through */ #define PG_NC_PCD 0x010 /* PCD Cache disable */ #define PG_A 0x020 /* A Accessed */ #define PG_M 0x040 /* D Dirty */ #define PG_PS 0x080 /* PS Page size (0=4k,1=4M) */ #define PG_PTE_PAT 0x080 /* PAT PAT index */ #define PG_G 0x100 /* G Global */ #define PG_AVAIL1 0x200 /* / Available for system */ #define PG_AVAIL2 0x400 /* < programmers use */ #define PG_AVAIL3 0x800 /* \ */ #define PG_PDE_PAT 0x1000 /* PAT PAT index */ #ifdef PAE #define PG_NX (1ull<<63) /* No-execute */ #endif /* Our various interpretations of the above */ #define PG_W PG_AVAIL1 /* "Wired" pseudoflag */ #define PG_MANAGED PG_AVAIL2 #ifdef PAE #define PG_FRAME (0x000ffffffffff000ull) #define PG_PS_FRAME (0x000fffffffe00000ull) #else #define PG_FRAME (~PAGE_MASK) #define PG_PS_FRAME (0xffc00000) #endif #define PG_PROT (PG_RW|PG_U) /* all protection bits . */ #define PG_N (PG_NC_PWT|PG_NC_PCD) /* Non-cacheable */ /* Page level cache control fields used to determine the PAT type */ #define PG_PDE_CACHE (PG_PDE_PAT | PG_NC_PWT | PG_NC_PCD) #define PG_PTE_CACHE (PG_PTE_PAT | PG_NC_PWT | PG_NC_PCD) /* * Promotion to a 2 or 4MB (PDE) page mapping requires that the corresponding * 4KB (PTE) page mappings have identical settings for the following fields: */ #define PG_PTE_PROMOTE (PG_MANAGED | PG_W | PG_G | PG_PTE_PAT | \ PG_M | PG_A | PG_NC_PCD | PG_NC_PWT | PG_U | PG_RW | PG_V) /* * Page Protection Exception bits */ #define PGEX_P 0x01 /* Protection violation vs. not present */ #define PGEX_W 0x02 /* during a Write cycle */ #define PGEX_U 0x04 /* access from User mode (UPL) */ #define PGEX_RSV 0x08 /* reserved PTE field is non-zero */ #define PGEX_I 0x10 /* during an instruction fetch */ /* * Size of Kernel address space. This is the number of page table pages * (4MB each) to use for the kernel. 256 pages == 1 Gigabyte. * This **MUST** be a multiple of 4 (eg: 252, 256, 260, etc). * For PAE, the page table page unit size is 2MB. This means that 512 pages * is 1 Gigabyte. Double everything. It must be a multiple of 8 for PAE. */ #ifndef KVA_PAGES #ifdef PAE #define KVA_PAGES 512 #else #define KVA_PAGES 256 #endif #endif /* * Pte related macros */ #define VADDR(pdi, pti) ((vm_offset_t)(((pdi)< #include #include #ifdef PAE typedef uint64_t pdpt_entry_t; typedef uint64_t pd_entry_t; typedef uint64_t pt_entry_t; #define PTESHIFT (3) #define PDESHIFT (3) #else typedef uint32_t pd_entry_t; typedef uint32_t pt_entry_t; #define PTESHIFT (2) #define PDESHIFT (2) #endif /* * Address of current address space page table maps and directories. */ #ifdef _KERNEL extern pt_entry_t PTmap[]; extern pd_entry_t PTD[]; extern pd_entry_t PTDpde[]; #ifdef PAE extern pdpt_entry_t *IdlePDPT; #endif extern pd_entry_t *IdlePTD; /* physical address of "Idle" state directory */ /* * virtual address to page table entry and * to physical address. * Note: these work recursively, thus vtopte of a pte will give * the corresponding pde that in turn maps it. */ #define vtopte(va) (PTmap + i386_btop(va)) #define vtophys(va) pmap_kextract((vm_offset_t)(va)) #ifdef XEN #include #include #include #include extern pt_entry_t pg_nx; #define PG_KERNEL (PG_V | PG_A | PG_RW | PG_M) #define MACH_TO_VM_PAGE(ma) PHYS_TO_VM_PAGE(xpmap_mtop((ma))) #define VM_PAGE_TO_MACH(m) xpmap_ptom(VM_PAGE_TO_PHYS((m))) static __inline vm_paddr_t pmap_kextract_ma(vm_offset_t va) { vm_paddr_t ma; if ((ma = PTD[va >> PDRSHIFT]) & PG_PS) { ma = (ma & ~(NBPDR - 1)) | (va & (NBPDR - 1)); } else { ma = (*vtopte(va) & PG_FRAME) | (va & PAGE_MASK); } return ma; } static __inline vm_paddr_t pmap_kextract(vm_offset_t va) { return xpmap_mtop(pmap_kextract_ma(va)); } #define vtomach(va) pmap_kextract_ma(((vm_offset_t) (va))) vm_paddr_t pmap_extract_ma(struct pmap *pmap, vm_offset_t va); void pmap_kenter_ma(vm_offset_t va, vm_paddr_t pa); void pmap_map_readonly(struct pmap *pmap, vm_offset_t va, int len); void pmap_map_readwrite(struct pmap *pmap, vm_offset_t va, int len); static __inline pt_entry_t pte_load_store(pt_entry_t *ptep, pt_entry_t v) { pt_entry_t r; v = xpmap_ptom(v); r = *ptep; PT_SET_VA(ptep, v, TRUE); return (r); } static __inline pt_entry_t pte_load_store_ma(pt_entry_t *ptep, pt_entry_t v) { pt_entry_t r; r = *ptep; PT_SET_VA_MA(ptep, v, TRUE); return (r); } #define pte_load_clear(ptep) pte_load_store((ptep), (pt_entry_t)0ULL) #define pte_store(ptep, pte) pte_load_store((ptep), (pt_entry_t)pte) #define pte_store_ma(ptep, pte) pte_load_store_ma((ptep), (pt_entry_t)pte) #define pde_store_ma(ptep, pte) pte_load_store_ma((ptep), (pt_entry_t)pte) #elif !defined(XEN) /* * KPTmap is a linear mapping of the kernel page table. It differs from the * recursive mapping in two ways: (1) it only provides access to kernel page * table pages, and not user page table pages, and (2) it provides access to * a kernel page table page after the corresponding virtual addresses have * been promoted to a 2/4MB page mapping. */ extern pt_entry_t *KPTmap; /* * Routine: pmap_kextract * Function: * Extract the physical page address associated * kernel virtual address. */ static __inline vm_paddr_t pmap_kextract(vm_offset_t va) { vm_paddr_t pa; if ((pa = PTD[va >> PDRSHIFT]) & PG_PS) { pa = (pa & PG_PS_FRAME) | (va & PDRMASK); } else { /* * Beware of a concurrent promotion that changes the PDE at * this point! For example, vtopte() must not be used to * access the PTE because it would use the new PDE. It is, * however, safe to use the old PDE because the page table * page is preserved by the promotion. */ pa = KPTmap[i386_btop(va)]; pa = (pa & PG_FRAME) | (va & PAGE_MASK); } return (pa); } #define PT_UPDATES_FLUSH() #endif #if defined(PAE) && !defined(XEN) #define pde_cmpset(pdep, old, new) \ atomic_cmpset_64((pdep), (old), (new)) static __inline pt_entry_t pte_load(pt_entry_t *ptep) { pt_entry_t r; __asm __volatile( "lock; cmpxchg8b %1" : "=A" (r) : "m" (*ptep), "a" (0), "d" (0), "b" (0), "c" (0)); return (r); } static __inline pt_entry_t pte_load_store(pt_entry_t *ptep, pt_entry_t v) { pt_entry_t r; r = *ptep; __asm __volatile( "1:\n" "\tlock; cmpxchg8b %1\n" "\tjnz 1b" : "+A" (r) : "m" (*ptep), "b" ((uint32_t)v), "c" ((uint32_t)(v >> 32))); return (r); } /* XXXRU move to atomic.h? */ static __inline int atomic_cmpset_64(volatile uint64_t *dst, uint64_t exp, uint64_t src) { int64_t res = exp; __asm __volatile ( " lock ; " " cmpxchg8b %2 ; " " setz %%al ; " " movzbl %%al,%0 ; " "# atomic_cmpset_64" : "+A" (res), /* 0 (result) */ "=m" (*dst) /* 1 */ : "m" (*dst), /* 2 */ "b" ((uint32_t)src), "c" ((uint32_t)(src >> 32))); return (res); } #define pte_load_clear(ptep) pte_load_store((ptep), (pt_entry_t)0ULL) #define pte_store(ptep, pte) pte_load_store((ptep), (pt_entry_t)pte) extern pt_entry_t pg_nx; #elif !defined(PAE) && !defined (XEN) #define pde_cmpset(pdep, old, new) \ atomic_cmpset_int((pdep), (old), (new)) static __inline pt_entry_t pte_load(pt_entry_t *ptep) { pt_entry_t r; r = *ptep; return (r); } static __inline pt_entry_t pte_load_store(pt_entry_t *ptep, pt_entry_t pte) { __asm volatile("xchgl %0, %1" : "+m" (*ptep), "+r" (pte)); return (pte); } #define pte_load_clear(pte) atomic_readandclear_int(pte) static __inline void pte_store(pt_entry_t *ptep, pt_entry_t pte) { *ptep = pte; } #endif /* PAE */ #define pte_clear(ptep) pte_store((ptep), (pt_entry_t)0ULL) #define pde_store(pdep, pde) pte_store((pdep), (pde)) #endif /* _KERNEL */ /* * Pmap stuff */ struct pv_entry; struct pv_chunk; struct md_page { TAILQ_HEAD(,pv_entry) pv_list; int pat_mode; }; struct pmap { struct mtx pm_mtx; pd_entry_t *pm_pdir; /* KVA of page directory */ TAILQ_HEAD(,pv_chunk) pm_pvchunk; /* list of mappings in pmap */ u_int pm_active; /* active on cpus */ struct pmap_statistics pm_stats; /* pmap statistics */ LIST_ENTRY(pmap) pm_list; /* List of all pmaps */ uint32_t pm_gen_count; /* generation count (pmap lock dropped) */ u_int pm_retries; #ifdef PAE pdpt_entry_t *pm_pdpt; /* KVA of page director pointer table */ #endif vm_page_t pm_root; /* spare page table pages */ }; typedef struct pmap *pmap_t; #ifdef _KERNEL extern struct pmap kernel_pmap_store; #define kernel_pmap (&kernel_pmap_store) #define PMAP_LOCK(pmap) mtx_lock(&(pmap)->pm_mtx) #define PMAP_LOCK_ASSERT(pmap, type) \ mtx_assert(&(pmap)->pm_mtx, (type)) #define PMAP_LOCK_DESTROY(pmap) mtx_destroy(&(pmap)->pm_mtx) #define PMAP_LOCK_INIT(pmap) mtx_init(&(pmap)->pm_mtx, "pmap", \ NULL, MTX_DEF | MTX_DUPOK) #define PMAP_LOCKED(pmap) mtx_owned(&(pmap)->pm_mtx) #define PMAP_MTX(pmap) (&(pmap)->pm_mtx) #define PMAP_TRYLOCK(pmap) mtx_trylock(&(pmap)->pm_mtx) #define PMAP_UNLOCK(pmap) mtx_unlock(&(pmap)->pm_mtx) #endif /* * For each vm_page_t, there is a list of all currently valid virtual * mappings of that page. An entry is a pv_entry_t, the list is pv_list. */ typedef struct pv_entry { vm_offset_t pv_va; /* virtual address for mapping */ TAILQ_ENTRY(pv_entry) pv_list; } *pv_entry_t; /* * pv_entries are allocated in chunks per-process. This avoids the * need to track per-pmap assignments. */ #define _NPCM 11 #define _NPCPV 336 struct pv_chunk { pmap_t pc_pmap; TAILQ_ENTRY(pv_chunk) pc_list; uint32_t pc_map[_NPCM]; /* bitmap; 1 = free */ uint32_t pc_spare[2]; struct pv_entry pc_pventry[_NPCPV]; }; #ifdef _KERNEL extern caddr_t CADDR1; extern pt_entry_t *CMAP1; extern vm_paddr_t phys_avail[]; extern vm_paddr_t dump_avail[]; extern int pseflag; extern int pgeflag; extern char *ptvmmap; /* poor name! */ extern vm_offset_t virtual_avail; extern vm_offset_t virtual_end; #define pmap_page_get_memattr(m) ((vm_memattr_t)(m)->md.pat_mode) #define pmap_unmapbios(va, sz) pmap_unmapdev((va), (sz)) void pmap_bootstrap(vm_paddr_t); int pmap_cache_bits(int mode, boolean_t is_pde); int pmap_change_attr(vm_offset_t, vm_size_t, int); void pmap_init_pat(void); void pmap_kenter(vm_offset_t va, vm_paddr_t pa); void *pmap_kenter_temporary(vm_paddr_t pa, int i); void pmap_kremove(vm_offset_t); void *pmap_mapbios(vm_paddr_t, vm_size_t); void *pmap_mapdev(vm_paddr_t, vm_size_t); void *pmap_mapdev_attr(vm_paddr_t, vm_size_t, int); boolean_t pmap_page_is_mapped(vm_page_t m); void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma); void pmap_unmapdev(vm_offset_t, vm_size_t); pt_entry_t *pmap_pte(pmap_t, vm_offset_t) __pure2; void pmap_invalidate_page(pmap_t, vm_offset_t); void pmap_invalidate_range(pmap_t, vm_offset_t, vm_offset_t); void pmap_invalidate_all(pmap_t); void pmap_invalidate_cache(void); void pmap_invalidate_cache_range(vm_offset_t, vm_offset_t); #endif /* _KERNEL */ #endif /* !LOCORE */ #endif /* !_MACHINE_PMAP_H_ */