/* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $Id: if_sk.c,v 1.7 1999/07/23 02:06:55 wpaul Exp $ */ /* * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports * the SK-984x series adapters, both single port and dual port. * References: * The XaQti XMAC II datasheet, http://www.xaqti.com * The SysKonnect GEnesis manual, http://www.syskonnect.com * * Written by Bill Paul * Department of Electrical Engineering * Columbia University, New York City */ /* * The SysKonnect gigabit ethernet adapters consist of two main * components: the SysKonnect GEnesis controller chip and the XaQti Corp. * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC * components and a PHY while the GEnesis controller provides a PCI * interface with DMA support. Each card may have between 512K and * 2MB of SRAM on board depending on the configuration. * * The SysKonnect GEnesis controller can have either one or two XMAC * chips connected to it, allowing single or dual port NIC configurations. * SysKonnect has the distinction of being the only vendor on the market * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs, * dual DMA queues, packet/MAC/transmit arbiters and direct access to the * XMAC registers. This driver takes advantage of these features to allow * both XMACs to operate as independent interfaces. */ #include "bpf.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPF > 0 #include #endif #include /* for vtophys */ #include /* for vtophys */ #include /* for DELAY */ #include #include #include #include #include #include #include #include #define SK_USEIOSPACE #include #include #ifndef lint static const char rcsid[] = "$Id: if_sk.c,v 1.7 1999/07/23 02:06:55 wpaul Exp $"; #endif static struct sk_type sk_devs[] = { { SK_VENDORID, SK_DEVICEID_GE, "SysKonnect Gigabit Ethernet" }, { 0, 0, NULL } }; static unsigned long sk_count = 0; static int sk_probe __P((device_t)); static int sk_attach __P((device_t)); static int sk_detach __P((device_t)); static int sk_attach_xmac __P((struct sk_softc *, int)); static void sk_intr __P((void *)); static void sk_intr_xmac __P((struct sk_if_softc *)); static void sk_rxeof __P((struct sk_if_softc *)); static void sk_txeof __P((struct sk_if_softc *)); static int sk_encap __P((struct sk_if_softc *, struct mbuf *, u_int32_t *)); static void sk_start __P((struct ifnet *)); static int sk_ioctl __P((struct ifnet *, u_long, caddr_t)); static void sk_init __P((void *)); static void sk_init_xmac __P((struct sk_if_softc *)); static void sk_stop __P((struct sk_if_softc *)); static void sk_watchdog __P((struct ifnet *)); static void sk_shutdown __P((device_t)); static int sk_ifmedia_upd __P((struct ifnet *)); static void sk_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); static void sk_reset __P((struct sk_softc *)); static int sk_newbuf __P((struct sk_if_softc *, struct sk_chain *, struct mbuf *)); static int sk_alloc_jumbo_mem __P((struct sk_if_softc *)); static void *sk_jalloc __P((struct sk_if_softc *)); static void sk_jfree __P((caddr_t, u_int)); static void sk_jref __P((caddr_t, u_int)); static int sk_init_rx_ring __P((struct sk_if_softc *)); static void sk_init_tx_ring __P((struct sk_if_softc *)); #ifdef notdef static u_int32_t sk_win_read_4 __P((struct sk_softc *, int)); #endif static u_int16_t sk_win_read_2 __P((struct sk_softc *, int)); static u_int8_t sk_win_read_1 __P((struct sk_softc *, int)); static void sk_win_write_4 __P((struct sk_softc *, int, u_int32_t)); static void sk_win_write_2 __P((struct sk_softc *, int, u_int32_t)); static void sk_win_write_1 __P((struct sk_softc *, int, u_int32_t)); static u_int8_t sk_vpd_readbyte __P((struct sk_softc *, int)); static void sk_vpd_read_res __P((struct sk_softc *, struct vpd_res *, int)); static void sk_vpd_read __P((struct sk_softc *)); static u_int16_t sk_phy_readreg __P((struct sk_if_softc *, int)); static void sk_phy_writereg __P((struct sk_if_softc *, int, u_int32_t)); static u_int32_t sk_calchash __P((caddr_t)); static void sk_setfilt __P((struct sk_if_softc *, caddr_t, int)); static void sk_setmulti __P((struct sk_if_softc *)); #ifdef SK_USEIOSPACE #define SK_RES SYS_RES_IOPORT #define SK_RID SK_PCI_LOIO #else #define SK_RES SYS_RES_MEMORY #define SK_RID SK_PCI_LOMEM #endif static device_method_t sk_methods[] = { /* Device interface */ DEVMETHOD(device_probe, sk_probe), DEVMETHOD(device_attach, sk_attach), DEVMETHOD(device_detach, sk_detach), DEVMETHOD(device_shutdown, sk_shutdown), { 0, 0 } }; static driver_t sk_driver = { "skc", sk_methods, sizeof(struct sk_softc) }; static devclass_t sk_devclass; DRIVER_MODULE(sk, pci, sk_driver, sk_devclass, 0, 0); #define SK_SETBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x) #define SK_CLRBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x) #define SK_WIN_SETBIT_4(sc, reg, x) \ sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x) #define SK_WIN_CLRBIT_4(sc, reg, x) \ sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x) #define SK_WIN_SETBIT_2(sc, reg, x) \ sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x) #define SK_WIN_CLRBIT_2(sc, reg, x) \ sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x) #ifdef notdef static u_int32_t sk_win_read_4(sc, reg) struct sk_softc *sc; int reg; { CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg))); } #endif static u_int16_t sk_win_read_2(sc, reg) struct sk_softc *sc; int reg; { CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg))); } static u_int8_t sk_win_read_1(sc, reg) struct sk_softc *sc; int reg; { CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg))); } static void sk_win_write_4(sc, reg, val) struct sk_softc *sc; int reg; u_int32_t val; { CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val); return; } static void sk_win_write_2(sc, reg, val) struct sk_softc *sc; int reg; u_int32_t val; { CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), (u_int32_t)val); return; } static void sk_win_write_1(sc, reg, val) struct sk_softc *sc; int reg; u_int32_t val; { CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val); return; } /* * The VPD EEPROM contains Vital Product Data, as suggested in * the PCI 2.1 specification. The VPD data is separared into areas * denoted by resource IDs. The SysKonnect VPD contains an ID string * resource (the name of the adapter), a read-only area resource * containing various key/data fields and a read/write area which * can be used to store asset management information or log messages. * We read the ID string and read-only into buffers attached to * the controller softc structure for later use. At the moment, * we only use the ID string during sk_attach(). */ static u_int8_t sk_vpd_readbyte(sc, addr) struct sk_softc *sc; int addr; { int i; sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr); for (i = 0; i < SK_TIMEOUT; i++) { DELAY(1); if (sk_win_read_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG) break; } if (i == SK_TIMEOUT) return(0); return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA))); } static void sk_vpd_read_res(sc, res, addr) struct sk_softc *sc; struct vpd_res *res; int addr; { int i; u_int8_t *ptr; ptr = (u_int8_t *)res; for (i = 0; i < sizeof(struct vpd_res); i++) ptr[i] = sk_vpd_readbyte(sc, i + addr); return; } static void sk_vpd_read(sc) struct sk_softc *sc; { int pos = 0, i; struct vpd_res res; if (sc->sk_vpd_prodname != NULL) free(sc->sk_vpd_prodname, M_DEVBUF); if (sc->sk_vpd_readonly != NULL) free(sc->sk_vpd_readonly, M_DEVBUF); sc->sk_vpd_prodname = NULL; sc->sk_vpd_readonly = NULL; sk_vpd_read_res(sc, &res, pos); if (res.vr_id != VPD_RES_ID) { printf("skc%d: bad VPD resource id: expected %x got %x\n", sc->sk_unit, VPD_RES_ID, res.vr_id); return; } pos += sizeof(res); sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT); for (i = 0; i < res.vr_len; i++) sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos); sc->sk_vpd_prodname[i] = '\0'; pos += i; sk_vpd_read_res(sc, &res, pos); if (res.vr_id != VPD_RES_READ) { printf("skc%d: bad VPD resource id: expected %x got %x\n", sc->sk_unit, VPD_RES_READ, res.vr_id); return; } pos += sizeof(res); sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT); for (i = 0; i < res.vr_len + 1; i++) sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos); return; } static u_int16_t sk_phy_readreg(sc_if, reg) struct sk_if_softc *sc_if; int reg; { int i; SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg); for (i = 0; i < SK_TIMEOUT; i++) { if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) break; } if (i == SK_TIMEOUT) { printf("sk%d: phy failed to come ready\n", sc_if->sk_unit); return(0); } return(SK_XM_READ_2(sc_if, XM_PHY_DATA)); } static void sk_phy_writereg(sc_if, reg, val) struct sk_if_softc *sc_if; int reg; u_int32_t val; { int i; SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg); for (i = 0; i < SK_TIMEOUT; i++) { if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) break; } if (i == SK_TIMEOUT) { printf("sk%d: phy failed to come ready\n", sc_if->sk_unit); return; } SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val); for (i = 0; i < SK_TIMEOUT; i++) { if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) break; } if (i == SK_TIMEOUT) printf("sk%d: phy write timed out\n", sc_if->sk_unit); return; } #define SK_POLY 0xEDB88320 #define SK_BITS 6 static u_int32_t sk_calchash(addr) caddr_t addr; { u_int32_t idx, bit, data, crc; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (idx = 0; idx < 6; idx++) { for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) crc = (crc >> 1) ^ (((crc ^ data) & 1) ? SK_POLY : 0); } return (~crc & ((1 << SK_BITS) - 1)); } static void sk_setfilt(sc_if, addr, slot) struct sk_if_softc *sc_if; caddr_t addr; int slot; { int base; base = XM_RXFILT_ENTRY(slot); SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0])); SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2])); SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4])); return; } static void sk_setmulti(sc_if) struct sk_if_softc *sc_if; { struct ifnet *ifp; u_int32_t hashes[2] = { 0, 0 }; int h, i; struct ifmultiaddr *ifma; u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 }; ifp = &sc_if->arpcom.ac_if; /* First, zot all the existing filters. */ for (i = 1; i < XM_RXFILT_MAX; i++) sk_setfilt(sc_if, (caddr_t)&dummy, i); SK_XM_WRITE_4(sc_if, XM_MAR0, 0); SK_XM_WRITE_4(sc_if, XM_MAR2, 0); /* Now program new ones. */ if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { hashes[0] = 0xFFFFFFFF; hashes[1] = 0xFFFFFFFF; } else { i = 1; /* First find the tail of the list. */ for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL; ifma = ifma->ifma_link.le_next) { if (ifma->ifma_link.le_next == NULL) break; } /* Now traverse the list backwards. */ for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs; ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; /* * Program the first XM_RXFILT_MAX multicast groups * into the perfect filter. For all others, * use the hash table. */ if (i < XM_RXFILT_MAX) { sk_setfilt(sc_if, LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i); i++; continue; } h = sk_calchash( LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); } } SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH| XM_MODE_RX_USE_PERFECT); SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]); SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]); return; } static int sk_init_rx_ring(sc_if) struct sk_if_softc *sc_if; { struct sk_chain_data *cd; struct sk_ring_data *rd; int i; cd = &sc_if->sk_cdata; rd = sc_if->sk_rdata; bzero((char *)rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT); for (i = 0; i < SK_RX_RING_CNT; i++) { cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i]; if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS) return(ENOBUFS); if (i == (SK_RX_RING_CNT - 1)) { cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0]; rd->sk_rx_ring[i].sk_next = vtophys(&rd->sk_rx_ring[0]); } else { cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1]; rd->sk_rx_ring[i].sk_next = vtophys(&rd->sk_rx_ring[i + 1]); } } sc_if->sk_cdata.sk_rx_prod = 0; sc_if->sk_cdata.sk_rx_cons = 0; return(0); } static void sk_init_tx_ring(sc_if) struct sk_if_softc *sc_if; { struct sk_chain_data *cd; struct sk_ring_data *rd; int i; cd = &sc_if->sk_cdata; rd = sc_if->sk_rdata; bzero((char *)sc_if->sk_rdata->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT); for (i = 0; i < SK_TX_RING_CNT; i++) { cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i]; if (i == (SK_TX_RING_CNT - 1)) { cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0]; rd->sk_tx_ring[i].sk_next = vtophys(&rd->sk_tx_ring[0]); } else { cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1]; rd->sk_tx_ring[i].sk_next = vtophys(&rd->sk_tx_ring[i + 1]); } } sc_if->sk_cdata.sk_tx_prod = 0; sc_if->sk_cdata.sk_tx_cons = 0; sc_if->sk_cdata.sk_tx_cnt = 0; return; } static int sk_newbuf(sc_if, c, m) struct sk_if_softc *sc_if; struct sk_chain *c; struct mbuf *m; { struct mbuf *m_new = NULL; struct sk_rx_desc *r; if (m == NULL) { caddr_t *buf = NULL; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("sk%d: no memory for rx list -- " "packet dropped!\n", sc_if->sk_unit); return(ENOBUFS); } /* Allocate the jumbo buffer */ buf = sk_jalloc(sc_if); if (buf == NULL) { m_freem(m_new); #ifdef SK_VERBOSE printf("sk%d: jumbo allocation failed " "-- packet dropped!\n", sc_if->sk_unit); #endif return(ENOBUFS); } /* Attach the buffer to the mbuf */ m_new->m_data = m_new->m_ext.ext_buf = (void *)buf; m_new->m_flags |= M_EXT; m_new->m_ext.ext_size = m_new->m_pkthdr.len = m_new->m_len = SK_MCLBYTES; m_new->m_ext.ext_free = sk_jfree; m_new->m_ext.ext_ref = sk_jref; } else { /* * We're re-using a previously allocated mbuf; * be sure to re-init pointers and lengths to * default values. */ m_new = m; m_new->m_len = m_new->m_pkthdr.len = SK_MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; } /* * Adjust alignment so packet payload begins on a * longword boundary. Mandatory for Alpha, useful on * x86 too. */ m_adj(m_new, ETHER_ALIGN); r = c->sk_desc; c->sk_mbuf = m_new; r->sk_data_lo = vtophys(mtod(m_new, caddr_t)); r->sk_ctl = m_new->m_len | SK_RXSTAT; return(0); } /* * Allocate jumbo buffer storage. The SysKonnect adapters support * "jumbograms" (9K frames), although SysKonnect doesn't currently * use them in their drivers. In order for us to use them, we need * large 9K receive buffers, however standard mbuf clusters are only * 2048 bytes in size. Consequently, we need to allocate and manage * our own jumbo buffer pool. Fortunately, this does not require an * excessive amount of additional code. */ static int sk_alloc_jumbo_mem(sc_if) struct sk_if_softc *sc_if; { caddr_t ptr; register int i; struct sk_jpool_entry *entry; /* Grab a big chunk o' storage. */ sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF, M_NOWAIT, 0x100000, 0xffffffff, PAGE_SIZE, 0); if (sc_if->sk_cdata.sk_jumbo_buf == NULL) { printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit); return(ENOBUFS); } SLIST_INIT(&sc_if->sk_jfree_listhead); SLIST_INIT(&sc_if->sk_jinuse_listhead); /* * Now divide it up into 9K pieces and save the addresses * in an array. Note that we play an evil trick here by using * the first few bytes in the buffer to hold the the address * of the softc structure for this interface. This is because * sk_jfree() needs it, but it is called by the mbuf management * code which will not pass it to us explicitly. */ ptr = sc_if->sk_cdata.sk_jumbo_buf; for (i = 0; i < SK_JSLOTS; i++) { u_int64_t **aptr; aptr = (u_int64_t **)ptr; aptr[0] = (u_int64_t *)sc_if; ptr += sizeof(u_int64_t); sc_if->sk_cdata.sk_jslots[i].sk_buf = ptr; sc_if->sk_cdata.sk_jslots[i].sk_inuse = 0; ptr += SK_MCLBYTES; entry = malloc(sizeof(struct sk_jpool_entry), M_DEVBUF, M_NOWAIT); if (entry == NULL) { free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF); sc_if->sk_cdata.sk_jumbo_buf = NULL; printf("sk%d: no memory for jumbo " "buffer queue!\n", sc_if->sk_unit); return(ENOBUFS); } entry->slot = i; SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries); } return(0); } /* * Allocate a jumbo buffer. */ static void *sk_jalloc(sc_if) struct sk_if_softc *sc_if; { struct sk_jpool_entry *entry; entry = SLIST_FIRST(&sc_if->sk_jfree_listhead); if (entry == NULL) { #ifdef SK_VERBOSE printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit); #endif return(NULL); } SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries); SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries); sc_if->sk_cdata.sk_jslots[entry->slot].sk_inuse = 1; return(sc_if->sk_cdata.sk_jslots[entry->slot].sk_buf); } /* * Adjust usage count on a jumbo buffer. In general this doesn't * get used much because our jumbo buffers don't get passed around * a lot, but it's implemented for correctness. */ static void sk_jref(buf, size) caddr_t buf; u_int size; { struct sk_if_softc *sc_if; u_int64_t **aptr; register int i; /* Extract the softc struct pointer. */ aptr = (u_int64_t **)(buf - sizeof(u_int64_t)); sc_if = (struct sk_if_softc *)(aptr[0]); if (sc_if == NULL) panic("sk_jref: can't find softc pointer!"); if (size != SK_MCLBYTES) panic("sk_jref: adjusting refcount of buf of wrong size!"); /* calculate the slot this buffer belongs to */ i = ((vm_offset_t)aptr - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN; if ((i < 0) || (i >= SK_JSLOTS)) panic("sk_jref: asked to reference buffer " "that we don't manage!"); else if (sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0) panic("sk_jref: buffer already free!"); else sc_if->sk_cdata.sk_jslots[i].sk_inuse++; return; } /* * Release a jumbo buffer. */ static void sk_jfree(buf, size) caddr_t buf; u_int size; { struct sk_if_softc *sc_if; u_int64_t **aptr; int i; struct sk_jpool_entry *entry; /* Extract the softc struct pointer. */ aptr = (u_int64_t **)(buf - sizeof(u_int64_t)); sc_if = (struct sk_if_softc *)(aptr[0]); if (sc_if == NULL) panic("sk_jfree: can't find softc pointer!"); if (size != SK_MCLBYTES) panic("sk_jfree: freeing buffer of wrong size!"); /* calculate the slot this buffer belongs to */ i = ((vm_offset_t)aptr - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN; if ((i < 0) || (i >= SK_JSLOTS)) panic("sk_jfree: asked to free buffer that we don't manage!"); else if (sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0) panic("sk_jfree: buffer already free!"); else { sc_if->sk_cdata.sk_jslots[i].sk_inuse--; if(sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0) { entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead); if (entry == NULL) panic("sk_jfree: buffer not in use!"); entry->slot = i; SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries); SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries); } } return; } /* * Set media options. */ static int sk_ifmedia_upd(ifp) struct ifnet *ifp; { struct sk_if_softc *sc_if; struct ifmedia *ifm; sc_if = ifp->if_softc; ifm = &sc_if->ifmedia; if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return(EINVAL); switch(IFM_SUBTYPE(ifm->ifm_media)) { case IFM_AUTO: sk_phy_writereg(sc_if, XM_PHY_BMCR, XM_BMCR_RENEGOTIATE|XM_BMCR_AUTONEGENBL); break; case IFM_1000_LX: case IFM_1000_SX: case IFM_1000_CX: case IFM_1000_TX: if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) sk_phy_writereg(sc_if, XM_PHY_BMCR, XM_BMCR_DUPLEX); else sk_phy_writereg(sc_if, XM_PHY_BMCR, 0); break; default: printf("sk%d: invalid media selected\n", sc_if->sk_unit); return(EINVAL); break; } return(0); } /* * Report current media status. */ static void sk_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct sk_softc *sc; struct sk_if_softc *sc_if; u_int16_t bmsr, extsts; sc_if = ifp->if_softc; sc = sc_if->sk_softc; ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; bmsr = sk_phy_readreg(sc_if, XM_PHY_BMSR); extsts = sk_phy_readreg(sc_if, XM_PHY_EXTSTS); if (!(bmsr & XM_BMSR_LINKSTAT)) return; ifmr->ifm_status |= IFM_ACTIVE; ifmr->ifm_active |= sc->sk_pmd;; if (extsts & XM_EXTSTS_FULLDUPLEX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; return; } static int sk_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct sk_if_softc *sc_if = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; int s, error = 0; s = splimp(); switch(command) { case SIOCSIFADDR: case SIOCGIFADDR: error = ether_ioctl(ifp, command, data); break; case SIOCSIFMTU: if (ifr->ifr_mtu > SK_JUMBO_MTU) error = EINVAL; else { ifp->if_mtu = ifr->ifr_mtu; sk_init(sc_if); } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc_if->sk_if_flags & IFF_PROMISC)) { SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); sk_setmulti(sc_if); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc_if->sk_if_flags & IFF_PROMISC) { SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); sk_setmulti(sc_if); } else sk_init(sc_if); } else { if (ifp->if_flags & IFF_RUNNING) sk_stop(sc_if); } sc_if->sk_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: sk_setmulti(sc_if); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc_if->ifmedia, command); break; default: error = EINVAL; break; } (void)splx(s); return(error); } /* * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int sk_probe(dev) device_t dev; { struct sk_type *t; t = sk_devs; while(t->sk_name != NULL) { if ((pci_get_vendor(dev) == t->sk_vid) && (pci_get_device(dev) == t->sk_did)) { device_set_desc(dev, t->sk_name); return(0); } t++; } return(ENXIO); } /* * Force the GEnesis into reset, then bring it out of reset. */ static void sk_reset(sc) struct sk_softc *sc; { CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_RESET); CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_RESET); DELAY(1000); CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_UNRESET); CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_UNRESET); /* Configure packet arbiter */ sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET); sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT); sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT); sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT); sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT); /* Enable RAM interface */ sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET); /* * Configure interrupt moderation. The moderation timer * defers interrupts specified in the interrupt moderation * timer mask based on the timeout specified in the interrupt * moderation timer init register. Each bit in the timer * register represents 18.825ns, so to specify a timeout in * microseconds, we have to multiply by 54. */ sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200)); sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF| SK_ISR_RX1_EOF|SK_ISR_RX2_EOF); sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START); return; } /* * Each XMAC chip is attached as a separate logical IP interface. * Single port cards will have only one logical interface of course. */ static int sk_attach_xmac(sc, port) struct sk_softc *sc; int port; { struct sk_if_softc *sc_if; struct ifnet *ifp; int i; if (sc == NULL) return(EINVAL); if (port != SK_PORT_A && port != SK_PORT_B) return(EINVAL); sc_if = malloc(sizeof(struct sk_if_softc), M_DEVBUF, M_NOWAIT); if (sc_if == NULL) { printf("sk%d: no memory for interface softc!\n", sc->sk_unit); return(ENOMEM); } bzero((char *)sc_if, sizeof(struct sk_if_softc)); sc_if->sk_unit = sk_count; sc_if->sk_port = port; sk_count++; sc_if->sk_softc = sc; sc->sk_if[port] = sc_if; if (port == SK_PORT_A) sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0; if (port == SK_PORT_B) sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1; /* * Get station address for this interface. Note that * dual port cards actually come with three station * addresses: one for each port, plus an extra. The * extra one is used by the SysKonnect driver software * as a 'virtual' station address for when both ports * are operating in failover mode. Currently we don't * use this extra address. */ for (i = 0; i < ETHER_ADDR_LEN; i++) sc_if->arpcom.ac_enaddr[i] = sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i); printf("sk%d: at skc%d port %d\n", sc_if->sk_unit, sc->sk_unit, port); printf("sk%d: Ethernet address: %6D\n", sc_if->sk_unit, sc_if->arpcom.ac_enaddr, ":"); /* * Set up RAM buffer addresses. The NIC will have a certain * amount of SRAM on it, somewhere between 512K and 2MB. We * need to divide this up a) between the transmitter and * receiver and b) between the two XMACs, if this is a * dual port NIC. Our algotithm is to divide up the memory * evenly so that everyone gets a fair share. */ if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) { u_int32_t chunk, val; chunk = sc->sk_ramsize / 2; val = sc->sk_rboff / sizeof(u_int64_t); sc_if->sk_rx_ramstart = val; val += (chunk / sizeof(u_int64_t)); sc_if->sk_rx_ramend = val - 1; sc_if->sk_tx_ramstart = val; val += (chunk / sizeof(u_int64_t)); sc_if->sk_tx_ramend = val - 1; } else { u_int32_t chunk, val; chunk = sc->sk_ramsize / 4; val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) / sizeof(u_int64_t); sc_if->sk_rx_ramstart = val; val += (chunk / sizeof(u_int64_t)); sc_if->sk_rx_ramend = val - 1; sc_if->sk_tx_ramstart = val; val += (chunk / sizeof(u_int64_t)); sc_if->sk_tx_ramend = val - 1; } /* Allocate the descriptor queues. */ sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF, M_NOWAIT, 0x100000, 0xffffffff, PAGE_SIZE, 0); if (sc_if->sk_rdata == NULL) { printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit); free(sc_if, M_DEVBUF); sc->sk_if[port] = NULL; return(ENOMEM); } bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data)); /* Try to allocate memory for jumbo buffers. */ if (sk_alloc_jumbo_mem(sc_if)) { printf("sk%d: jumbo buffer allocation failed\n", sc_if->sk_unit); free(sc_if->sk_rdata, M_DEVBUF); free(sc_if, M_DEVBUF); sc->sk_if[port] = NULL; return(ENOMEM); } ifp = &sc_if->arpcom.ac_if; ifp->if_softc = sc_if; ifp->if_unit = sc_if->sk_unit; ifp->if_name = "sk"; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = sk_ioctl; ifp->if_output = ether_output; ifp->if_start = sk_start; ifp->if_watchdog = sk_watchdog; ifp->if_init = sk_init; ifp->if_baudrate = 1000000000; ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1; /* * Do ifmedia setup. */ ifmedia_init(&sc_if->ifmedia, 0, sk_ifmedia_upd, sk_ifmedia_sts); ifmedia_add(&sc_if->ifmedia, IFM_ETHER|sc->sk_pmd, 0, NULL); ifmedia_add(&sc_if->ifmedia, IFM_ETHER|sc->sk_pmd|IFM_FDX, 0, NULL); ifmedia_add(&sc_if->ifmedia, IFM_ETHER|sc->sk_pmd|IFM_HDX, 0, NULL); ifmedia_add(&sc_if->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); ifmedia_set(&sc_if->ifmedia, IFM_ETHER|IFM_AUTO); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); #if NBPF > 0 bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif return(0); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int sk_attach(dev) device_t dev; { int s; u_int32_t command; struct sk_softc *sc; int unit, error = 0, rid; s = splimp(); sc = device_get_softc(dev); unit = device_get_unit(dev); bzero(sc, sizeof(struct sk_softc)); /* * Handle power management nonsense. */ command = pci_read_config(dev, SK_PCI_CAPID, 4) & 0x000000FF; if (command == 0x01) { command = pci_read_config(dev, SK_PCI_PWRMGMTCTRL, 4); if (command & SK_PSTATE_MASK) { u_int32_t iobase, membase, irq; /* Save important PCI config data. */ iobase = pci_read_config(dev, SK_PCI_LOIO, 4); membase = pci_read_config(dev, SK_PCI_LOMEM, 4); irq = pci_read_config(dev, SK_PCI_INTLINE, 4); /* Reset the power state. */ printf("skc%d: chip is in D%d power mode " "-- setting to D0\n", unit, command & SK_PSTATE_MASK); command &= 0xFFFFFFFC; pci_write_config(dev, SK_PCI_PWRMGMTCTRL, command, 4); /* Restore PCI config data. */ pci_write_config(dev, SK_PCI_LOIO, iobase, 4); pci_write_config(dev, SK_PCI_LOMEM, membase, 4); pci_write_config(dev, SK_PCI_INTLINE, irq, 4); } } /* * Map control/status registers. */ command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4); command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4); command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4); #ifdef SK_USEIOSPACE if (!(command & PCIM_CMD_PORTEN)) { printf("skc%d: failed to enable I/O ports!\n", unit); error = ENXIO; goto fail; } #else if (!(command & PCIM_CMD_MEMEN)) { printf("skc%d: failed to enable memory mapping!\n", unit); error = ENXIO; goto fail; } #endif rid = SK_RID; sc->sk_res = bus_alloc_resource(dev, SK_RES, &rid, 0, ~0, 1, RF_ACTIVE); if (sc->sk_res == NULL) { printf("sk%d: couldn't map ports/memory\n", unit); error = ENXIO; goto fail; } sc->sk_btag = rman_get_bustag(sc->sk_res); sc->sk_bhandle = rman_get_bushandle(sc->sk_res); /* Allocate interrupt */ rid = 0; sc->sk_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, RF_SHAREABLE | RF_ACTIVE); if (sc->sk_irq == NULL) { printf("skc%d: couldn't map interrupt\n", unit); bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res); error = ENXIO; goto fail; } error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET, sk_intr, sc, &sc->sk_intrhand); if (error) { printf("skc%d: couldn't set up irq\n", unit); bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_res); goto fail; } /* Reset the adapter. */ sk_reset(sc); sc->sk_unit = unit; /* Read and save vital product data from EEPROM. */ sk_vpd_read(sc); /* Read and save RAM size and RAMbuffer offset */ switch(sk_win_read_1(sc, SK_EPROM0)) { case SK_RAMSIZE_512K_64: sc->sk_ramsize = 0x80000; sc->sk_rboff = SK_RBOFF_0; break; case SK_RAMSIZE_1024K_64: sc->sk_ramsize = 0x100000; sc->sk_rboff = SK_RBOFF_80000; break; case SK_RAMSIZE_1024K_128: sc->sk_ramsize = 0x100000; sc->sk_rboff = SK_RBOFF_0; break; case SK_RAMSIZE_2048K_128: sc->sk_ramsize = 0x200000; sc->sk_rboff = SK_RBOFF_0; break; default: printf("skc%d: unknown ram size: %d\n", sc->sk_unit, sk_win_read_1(sc, SK_EPROM0)); bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq); bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res); error = ENXIO; goto fail; break; } /* Read and save physical media type */ switch(sk_win_read_1(sc, SK_PMDTYPE)) { case SK_PMD_1000BASESX: sc->sk_pmd = IFM_1000_SX; break; case SK_PMD_1000BASELX: sc->sk_pmd = IFM_1000_LX; break; case SK_PMD_1000BASECX: sc->sk_pmd = IFM_1000_CX; break; case SK_PMD_1000BASETX: sc->sk_pmd = IFM_1000_TX; break; default: printf("skc%d: unknown media type: 0x%x\n", sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE)); bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq); bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res); error = ENXIO; goto fail; } /* Announce the product name. */ printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname); sk_attach_xmac(sc, SK_PORT_A); if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) sk_attach_xmac(sc, SK_PORT_B); /* Turn on the 'driver is loaded' LED. */ CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); fail: splx(s); return(error); } static int sk_detach(dev) device_t dev; { struct sk_softc *sc; struct sk_if_softc *sc_if0 = NULL, *sc_if1 = NULL; struct ifnet *ifp0 = NULL, *ifp1 = NULL; int s; s = splimp(); sc = device_get_softc(dev); sc_if0 = sc->sk_if[SK_PORT_A]; ifp0 = &sc_if0->arpcom.ac_if; sk_stop(sc_if0); if_detach(ifp0); free(sc_if0->sk_cdata.sk_jumbo_buf, M_DEVBUF); ifmedia_removeall(&sc_if0->ifmedia); if (sc->sk_if[SK_PORT_B] != NULL) { sc_if1 = sc->sk_if[SK_PORT_B]; ifp1 = &sc_if1->arpcom.ac_if; sk_stop(sc_if1); if_detach(ifp1); free(sc_if1->sk_cdata.sk_jumbo_buf, M_DEVBUF); ifmedia_removeall(&sc_if1->ifmedia); } bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq); bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res); splx(s); return(0); } static int sk_encap(sc_if, m_head, txidx) struct sk_if_softc *sc_if; struct mbuf *m_head; u_int32_t *txidx; { struct sk_tx_desc *f = NULL; struct mbuf *m; u_int32_t frag, cur, cnt = 0; m = m_head; cur = frag = *txidx; /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ for (m = m_head; m != NULL; m = m->m_next) { if (m->m_len != 0) { if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) return(ENOBUFS); f = &sc_if->sk_rdata->sk_tx_ring[frag]; f->sk_data_lo = vtophys(mtod(m, vm_offset_t)); f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT; if (cnt == 0) f->sk_ctl |= SK_TXCTL_FIRSTFRAG; else f->sk_ctl |= SK_TXCTL_OWN; cur = frag; SK_INC(frag, SK_TX_RING_CNT); cnt++; } } if (m != NULL) return(ENOBUFS); sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR; sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head; sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN; sc_if->sk_cdata.sk_tx_cnt += cnt; *txidx = frag; return(0); } static void sk_start(ifp) struct ifnet *ifp; { struct sk_softc *sc; struct sk_if_softc *sc_if; struct mbuf *m_head = NULL; u_int32_t idx; sc_if = ifp->if_softc; sc = sc_if->sk_softc; idx = sc_if->sk_cdata.sk_tx_prod; while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) { IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (sk_encap(sc_if, m_head, &idx)) { IF_PREPEND(&ifp->if_snd, m_head); ifp->if_flags |= IFF_OACTIVE; break; } /* * If there's a BPF listener, bounce a copy of this frame * to him. */ #if NBPF > 0 if (ifp->if_bpf) bpf_mtap(ifp, m_head); #endif } /* Transmit */ sc_if->sk_cdata.sk_tx_prod = idx; CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); /* Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } static void sk_watchdog(ifp) struct ifnet *ifp; { struct sk_if_softc *sc_if; sc_if = ifp->if_softc; printf("sk%d: watchdog timeout\n", sc_if->sk_unit); sk_init(sc_if); return; } static void sk_shutdown(dev) device_t dev; { struct sk_softc *sc; sc = device_get_softc(dev); /* Turn off the 'driver is loaded' LED. */ CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); /* * Reset the GEnesis controller. Doing this should also * assert the resets on the attached XMAC(s). */ sk_reset(sc); return; } static void sk_rxeof(sc_if) struct sk_if_softc *sc_if; { struct ether_header *eh; struct mbuf *m; struct ifnet *ifp; struct sk_chain *cur_rx; int total_len = 0; int i; u_int32_t rxstat; ifp = &sc_if->arpcom.ac_if; i = sc_if->sk_cdata.sk_rx_prod; cur_rx = &sc_if->sk_cdata.sk_rx_chain[i]; while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) { cur_rx = &sc_if->sk_cdata.sk_rx_chain[i]; rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat; m = cur_rx->sk_mbuf; cur_rx->sk_mbuf = NULL; total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl); SK_INC(i, SK_RX_RING_CNT); if (rxstat & XM_RXSTAT_ERRFRAME) { ifp->if_ierrors++; sk_newbuf(sc_if, cur_rx, m); continue; } /* * Try to allocate a new jumbo buffer. If that * fails, copy the packet to mbufs and put the * jumbo buffer back in the ring so it can be * re-used. If allocating mbufs fails, then we * have to drop the packet. */ if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) { struct mbuf *m0; m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, total_len + ETHER_ALIGN, 0, ifp, NULL); sk_newbuf(sc_if, cur_rx, m); if (m0 == NULL) { printf("sk%d: no receive buffers " "available -- packet dropped!\n", sc_if->sk_unit); ifp->if_ierrors++; continue; } m_adj(m0, ETHER_ALIGN); m = m0; } else { m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; } ifp->if_ipackets++; eh = mtod(m, struct ether_header *); #if NBPF > 0 if (ifp->if_bpf) { bpf_mtap(ifp, m); if (ifp->if_flags & IFF_PROMISC && (bcmp(eh->ether_dhost, sc_if->arpcom.ac_enaddr, ETHER_ADDR_LEN) && !(eh->ether_dhost[0] & 1))) { m_freem(m); continue; } } #endif /* Remove header from mbuf and pass it on. */ m_adj(m, sizeof(struct ether_header)); ether_input(ifp, eh, m); } sc_if->sk_cdata.sk_rx_prod = i; return; } static void sk_txeof(sc_if) struct sk_if_softc *sc_if; { struct sk_tx_desc *cur_tx = NULL; struct ifnet *ifp; u_int32_t idx; ifp = &sc_if->arpcom.ac_if; /* * Go through our tx ring and free mbufs for those * frames that have been sent. */ idx = sc_if->sk_cdata.sk_tx_cons; while(idx != sc_if->sk_cdata.sk_tx_prod) { cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx]; if (cur_tx->sk_ctl & SK_TXCTL_OWN) break; if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG) ifp->if_opackets++; if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) { m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf); sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL; } sc_if->sk_cdata.sk_tx_cnt--; SK_INC(idx, SK_TX_RING_CNT); ifp->if_timer = 0; } sc_if->sk_cdata.sk_tx_cons = idx; if (cur_tx != NULL) ifp->if_flags &= ~IFF_OACTIVE; return; } static void sk_intr_xmac(sc_if) struct sk_if_softc *sc_if; { struct sk_softc *sc; u_int16_t status; u_int16_t bmsr; sc = sc_if->sk_softc; status = SK_XM_READ_2(sc_if, XM_ISR); if (status & XM_ISR_LINKEVENT) { SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_LINKEVENT); if (sc_if->sk_link == 1) { printf("sk%d: gigabit link down\n", sc_if->sk_unit); sc_if->sk_link = 0; } } if (status & XM_ISR_AUTONEG_DONE) { bmsr = sk_phy_readreg(sc_if, XM_PHY_BMSR); if (bmsr & XM_BMSR_LINKSTAT) { sc_if->sk_link = 1; SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_LINKEVENT); printf("sk%d: gigabit link up\n", sc_if->sk_unit); } } if (status & XM_IMR_TX_UNDERRUN) SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO); if (status & XM_IMR_RX_OVERRUN) SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO); return; } static void sk_intr(xsc) void *xsc; { struct sk_softc *sc = xsc; struct sk_if_softc *sc_if0 = NULL, *sc_if1 = NULL; struct ifnet *ifp0 = NULL, *ifp1 = NULL; u_int32_t status; sc_if0 = sc->sk_if[SK_PORT_A]; sc_if1 = sc->sk_if[SK_PORT_B]; if (sc_if0 != NULL) ifp0 = &sc_if0->arpcom.ac_if; if (sc_if1 != NULL) ifp1 = &sc_if0->arpcom.ac_if; for (;;) { status = CSR_READ_4(sc, SK_ISSR); if (!(status & sc->sk_intrmask)) break; /* Handle receive interrupts first. */ if (status & SK_ISR_RX1_EOF) { sk_rxeof(sc_if0); CSR_WRITE_4(sc, SK_BMU_RX_CSR0, SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); } if (status & SK_ISR_RX2_EOF) { sk_rxeof(sc_if1); CSR_WRITE_4(sc, SK_BMU_RX_CSR1, SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); } /* Then transmit interrupts. */ if (status & SK_ISR_TX1_S_EOF) { sk_txeof(sc_if0); CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF); } if (status & SK_ISR_TX2_S_EOF) { sk_txeof(sc_if1); CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF); } /* Then MAC interrupts. */ if (status & SK_ISR_MAC1) sk_intr_xmac(sc_if0); if (status & SK_ISR_MAC2) sk_intr_xmac(sc_if1); } CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); return; } static void sk_init_xmac(sc_if) struct sk_if_softc *sc_if; { struct sk_softc *sc; struct ifnet *ifp; sc = sc_if->sk_softc; ifp = &sc_if->arpcom.ac_if; /* Unreset the XMAC. */ SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET); DELAY(1000); /* Save the XMAC II revision */ sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID)); /* Set station address */ SK_XM_WRITE_2(sc_if, XM_PAR0, *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0])); SK_XM_WRITE_2(sc_if, XM_PAR1, *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2])); SK_XM_WRITE_2(sc_if, XM_PAR2, *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4])); SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION); if (ifp->if_flags & IFF_PROMISC) { SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); } else { SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); } if (ifp->if_flags & IFF_BROADCAST) { SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); } else { SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); } /* We don't need the FCS appended to the packet. */ SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS); /* We want short frames padded to 60 bytes. */ SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD); /* * Enable the reception of all error frames. This is is * a necessary evil due to the design of the XMAC. The * XMAC's receive FIFO is only 8K in size, however jumbo * frames can be up to 9000 bytes in length. When bad * frame filtering is enabled, the XMAC's RX FIFO operates * in 'store and forward' mode. For this to work, the * entire frame has to fit into the FIFO, but that means * that jumbo frames larger than 8192 bytes will be * truncated. Disabling all bad frame filtering causes * the RX FIFO to operate in streaming mode, in which * case the XMAC will start transfering frames out of the * RX FIFO as soon as the FIFO threshold is reached. */ SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES| XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS| XM_MODE_RX_INRANGELEN); if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); else SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); /* * Bump up the transmit threshold. This helps hold off transmit * underruns when we're blasting traffic from both ports at once. */ SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH); /* Set multicast filter */ sk_setmulti(sc_if); /* Clear and enable interrupts */ SK_XM_READ_2(sc_if, XM_ISR); SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS); sc_if->sk_link = 0; /* Configure MAC arbiter */ switch(sc_if->sk_xmac_rev) { case XM_XMAC_REV_B2: sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2); sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2); sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2); sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2); sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2); sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2); sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2); sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2); sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); break; case XM_XMAC_REV_C1: sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1); sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1); sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1); sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1); sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1); sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1); sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1); sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1); sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); break; default: break; } sk_win_write_2(sc, SK_MACARB_CTL, SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF); return; } /* * Note that to properly initialize any part of the GEnesis chip, * you first have to take it out of reset mode. */ static void sk_init(xsc) void *xsc; { struct sk_if_softc *sc_if = xsc; struct sk_softc *sc; struct ifnet *ifp; int s; s = splimp(); ifp = &sc_if->arpcom.ac_if; sc = sc_if->sk_softc; /* Cancel pending I/O and free all RX/TX buffers. */ sk_stop(sc_if); /* Configure LINK_SYNC LED */ SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON); SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_ON); /* Configure RX LED */ SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_START); /* Configure TX LED */ SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_START); /* Configure I2C registers */ /* Configure XMAC(s) */ sk_init_xmac(sc_if); /* Configure MAC FIFOs */ SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET); SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END); SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON); SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET); SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END); SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON); /* Configure transmit arbiter(s) */ SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON); /* Configure RAMbuffers */ SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON); /* Configure BMUs */ SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE); SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, vtophys(&sc_if->sk_rdata->sk_rx_ring[0])); SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0); SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE); SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO, vtophys(&sc_if->sk_rdata->sk_tx_ring[0])); SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0); /* Init descriptors */ if (sk_init_rx_ring(sc_if) == ENOBUFS) { printf("sk%d: initialization failed: no " "memory for rx buffers\n", sc_if->sk_unit); sk_stop(sc_if); (void)splx(s); return; } sk_init_tx_ring(sc_if); /* Configure interrupt handling */ CSR_READ_4(sc, SK_ISSR); if (sc_if->sk_port == SK_PORT_A) sc->sk_intrmask |= SK_INTRS1; else sc->sk_intrmask |= SK_INTRS2; CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); /* Start BMUs. */ SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START); /* Enable XMACs TX and RX state machines */ SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); return; } static void sk_stop(sc_if) struct sk_if_softc *sc_if; { int i; struct sk_softc *sc; sc = sc_if->sk_softc; /* Turn off various components of this interface. */ SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET); SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET); SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF); SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF); /* Disable interrupts */ if (sc_if->sk_port == SK_PORT_A) sc->sk_intrmask &= ~SK_INTRS1; else sc->sk_intrmask &= ~SK_INTRS2; CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); /* Free RX and TX mbufs still in the queues. */ for (i = 0; i < SK_RX_RING_CNT; i++) { if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) { m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf); sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL; } } for (i = 0; i < SK_TX_RING_CNT; i++) { if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) { m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf); sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL; } } return; }