/*- * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #define BXE_DRIVER_VERSION "1.78.78" #include "bxe.h" #include "ecore_sp.h" #include "ecore_init.h" #include "ecore_init_ops.h" #include "57710_int_offsets.h" #include "57711_int_offsets.h" #include "57712_int_offsets.h" /* * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these * explicitly here for older kernels that don't include this changeset. */ #ifndef CTLTYPE_U64 #define CTLTYPE_U64 CTLTYPE_QUAD #define sysctl_handle_64 sysctl_handle_quad #endif /* * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these * here as zero(0) for older kernels that don't include this changeset * thereby masking the functionality. */ #ifndef CSUM_TCP_IPV6 #define CSUM_TCP_IPV6 0 #define CSUM_UDP_IPV6 0 #endif /* * pci_find_cap was added in r219865. Re-define this at pci_find_extcap * for older kernels that don't include this changeset. */ #if __FreeBSD_version < 900035 #define pci_find_cap pci_find_extcap #endif #define BXE_DEF_SB_ATT_IDX 0x0001 #define BXE_DEF_SB_IDX 0x0002 /* * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per * function HW initialization. */ #define FLR_WAIT_USEC 10000 /* 10 msecs */ #define FLR_WAIT_INTERVAL 50 /* usecs */ #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ struct pbf_pN_buf_regs { int pN; uint32_t init_crd; uint32_t crd; uint32_t crd_freed; }; struct pbf_pN_cmd_regs { int pN; uint32_t lines_occup; uint32_t lines_freed; }; /* * PCI Device ID Table used by bxe_probe(). */ #define BXE_DEVDESC_MAX 64 static struct bxe_device_type bxe_devs[] = { { BRCM_VENDORID, CHIP_NUM_57710, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM57710 10GbE" }, { BRCM_VENDORID, CHIP_NUM_57711, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM57711 10GbE" }, { BRCM_VENDORID, CHIP_NUM_57711E, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM57711E 10GbE" }, { BRCM_VENDORID, CHIP_NUM_57712, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM57712 10GbE" }, { BRCM_VENDORID, CHIP_NUM_57712_MF, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM57712 MF 10GbE" }, #if 0 { BRCM_VENDORID, CHIP_NUM_57712_VF, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM57712 VF 10GbE" }, #endif { BRCM_VENDORID, CHIP_NUM_57800, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM57800 10GbE" }, { BRCM_VENDORID, CHIP_NUM_57800_MF, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM57800 MF 10GbE" }, #if 0 { BRCM_VENDORID, CHIP_NUM_57800_VF, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM57800 VF 10GbE" }, #endif { BRCM_VENDORID, CHIP_NUM_57810, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM57810 10GbE" }, { BRCM_VENDORID, CHIP_NUM_57810_MF, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM57810 MF 10GbE" }, #if 0 { BRCM_VENDORID, CHIP_NUM_57810_VF, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM57810 VF 10GbE" }, #endif { BRCM_VENDORID, CHIP_NUM_57811, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM57811 10GbE" }, { BRCM_VENDORID, CHIP_NUM_57811_MF, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM57811 MF 10GbE" }, #if 0 { BRCM_VENDORID, CHIP_NUM_57811_VF, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM57811 VF 10GbE" }, #endif { BRCM_VENDORID, CHIP_NUM_57840_4_10, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM57840 4x10GbE" }, #if 0 { BRCM_VENDORID, CHIP_NUM_57840_2_20, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM57840 2x20GbE" }, #endif { BRCM_VENDORID, CHIP_NUM_57840_MF, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM57840 MF 10GbE" }, #if 0 { BRCM_VENDORID, CHIP_NUM_57840_VF, PCI_ANY_ID, PCI_ANY_ID, "QLogic NetXtreme II BCM57840 VF 10GbE" }, #endif { 0, 0, 0, 0, NULL } }; MALLOC_DECLARE(M_BXE_ILT); MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); /* * FreeBSD device entry points. */ static int bxe_probe(device_t); static int bxe_attach(device_t); static int bxe_detach(device_t); static int bxe_shutdown(device_t); /* * FreeBSD KLD module/device interface event handler method. */ static device_method_t bxe_methods[] = { /* Device interface (device_if.h) */ DEVMETHOD(device_probe, bxe_probe), DEVMETHOD(device_attach, bxe_attach), DEVMETHOD(device_detach, bxe_detach), DEVMETHOD(device_shutdown, bxe_shutdown), #if 0 DEVMETHOD(device_suspend, bxe_suspend), DEVMETHOD(device_resume, bxe_resume), #endif /* Bus interface (bus_if.h) */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), KOBJMETHOD_END }; /* * FreeBSD KLD Module data declaration */ static driver_t bxe_driver = { "bxe", /* module name */ bxe_methods, /* event handler */ sizeof(struct bxe_softc) /* extra data */ }; /* * FreeBSD dev class is needed to manage dev instances and * to associate with a bus type */ static devclass_t bxe_devclass; MODULE_DEPEND(bxe, pci, 1, 1, 1); MODULE_DEPEND(bxe, ether, 1, 1, 1); DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); /* resources needed for unloading a previously loaded device */ #define BXE_PREV_WAIT_NEEDED 1 struct mtx bxe_prev_mtx; MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); struct bxe_prev_list_node { LIST_ENTRY(bxe_prev_list_node) node; uint8_t bus; uint8_t slot; uint8_t path; uint8_t aer; /* XXX automatic error recovery */ uint8_t undi; }; static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ /* Tunable device values... */ SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); /* Debug */ unsigned long bxe_debug = 0; SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, &bxe_debug, 0, "Debug logging mode"); /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ static int bxe_interrupt_mode = INTR_MODE_MSIX; SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ static int bxe_queue_count = 4; SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, &bxe_queue_count, 0, "Multi-Queue queue count"); /* max number of buffers per queue (default RX_BD_USABLE) */ static int bxe_max_rx_bufs = 0; SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); /* Host interrupt coalescing RX tick timer (usecs) */ static int bxe_hc_rx_ticks = 25; SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); /* Host interrupt coalescing TX tick timer (usecs) */ static int bxe_hc_tx_ticks = 50; SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); /* Maximum number of Rx packets to process at a time */ static int bxe_rx_budget = 0xffffffff; SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, &bxe_rx_budget, 0, "Rx processing budget"); /* Maximum LRO aggregation size */ static int bxe_max_aggregation_size = 0; SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, &bxe_max_aggregation_size, 0, "max aggregation size"); /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ static int bxe_mrrs = -1; SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, &bxe_mrrs, 0, "PCIe maximum read request size"); /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ static int bxe_autogreeen = 0; SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, &bxe_autogreeen, 0, "AutoGrEEEn support"); /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ static int bxe_udp_rss = 0; SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, &bxe_udp_rss, 0, "UDP RSS support"); #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ #define STATS_OFFSET32(stat_name) \ (offsetof(struct bxe_eth_stats, stat_name) / 4) #define Q_STATS_OFFSET32(stat_name) \ (offsetof(struct bxe_eth_q_stats, stat_name) / 4) static const struct { uint32_t offset; uint32_t size; uint32_t flags; #define STATS_FLAGS_PORT 1 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) char string[STAT_NAME_LEN]; } bxe_eth_stats_arr[] = { { STATS_OFFSET32(total_bytes_received_hi), 8, STATS_FLAGS_BOTH, "rx_bytes" }, { STATS_OFFSET32(error_bytes_received_hi), 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, { STATS_OFFSET32(total_unicast_packets_received_hi), 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, { STATS_OFFSET32(total_multicast_packets_received_hi), 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, { STATS_OFFSET32(total_broadcast_packets_received_hi), 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 8, STATS_FLAGS_PORT, "rx_crc_errors" }, { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 8, STATS_FLAGS_PORT, "rx_align_errors" }, { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 8, STATS_FLAGS_PORT, "rx_fragments" }, { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 8, STATS_FLAGS_PORT, "rx_jabbers" }, { STATS_OFFSET32(no_buff_discard_hi), 8, STATS_FLAGS_BOTH, "rx_discards" }, { STATS_OFFSET32(mac_filter_discard), 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, { STATS_OFFSET32(mf_tag_discard), 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, { STATS_OFFSET32(pfc_frames_received_hi), 8, STATS_FLAGS_PORT, "pfc_frames_received" }, { STATS_OFFSET32(pfc_frames_sent_hi), 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, { STATS_OFFSET32(brb_drop_hi), 8, STATS_FLAGS_PORT, "rx_brb_discard" }, { STATS_OFFSET32(brb_truncate_hi), 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, { STATS_OFFSET32(pause_frames_received_hi), 8, STATS_FLAGS_PORT, "rx_pause_frames" }, { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, { STATS_OFFSET32(nig_timer_max), 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, { STATS_OFFSET32(total_bytes_transmitted_hi), 8, STATS_FLAGS_BOTH, "tx_bytes" }, { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 8, STATS_FLAGS_PORT, "tx_error_bytes" }, { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 8, STATS_FLAGS_PORT, "tx_mac_errors" }, { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 8, STATS_FLAGS_PORT, "tx_single_collisions" }, { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 8, STATS_FLAGS_PORT, "tx_deferred" }, { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 8, STATS_FLAGS_PORT, "tx_late_collisions" }, { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 8, STATS_FLAGS_PORT, "tx_total_collisions" }, { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, { STATS_OFFSET32(etherstatspktsover1522octets_hi), 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, { STATS_OFFSET32(pause_frames_sent_hi), 8, STATS_FLAGS_PORT, "tx_pause_frames" }, { STATS_OFFSET32(total_tpa_aggregations_hi), 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, { STATS_OFFSET32(total_tpa_bytes_hi), 8, STATS_FLAGS_FUNC, "tpa_bytes"}, #if 0 { STATS_OFFSET32(recoverable_error), 4, STATS_FLAGS_FUNC, "recoverable_errors" }, { STATS_OFFSET32(unrecoverable_error), 4, STATS_FLAGS_FUNC, "unrecoverable_errors" }, #endif { STATS_OFFSET32(eee_tx_lpi), 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, { STATS_OFFSET32(rx_calls), 4, STATS_FLAGS_FUNC, "rx_calls"}, { STATS_OFFSET32(rx_pkts), 4, STATS_FLAGS_FUNC, "rx_pkts"}, { STATS_OFFSET32(rx_tpa_pkts), 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, { STATS_OFFSET32(rx_soft_errors), 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, { STATS_OFFSET32(rx_hw_csum_errors), 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, { STATS_OFFSET32(rx_ofld_frames_csum_ip), 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, { STATS_OFFSET32(rx_budget_reached), 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, { STATS_OFFSET32(tx_pkts), 4, STATS_FLAGS_FUNC, "tx_pkts"}, { STATS_OFFSET32(tx_soft_errors), 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, { STATS_OFFSET32(tx_ofld_frames_csum_ip), 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, { STATS_OFFSET32(tx_ofld_frames_csum_udp), 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, { STATS_OFFSET32(tx_ofld_frames_lso), 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, { STATS_OFFSET32(tx_encap_failures), 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, { STATS_OFFSET32(tx_hw_queue_full), 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, { STATS_OFFSET32(tx_hw_max_queue_depth), 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, { STATS_OFFSET32(tx_dma_mapping_failure), 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, { STATS_OFFSET32(tx_max_drbr_queue_depth), 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, { STATS_OFFSET32(tx_window_violation_std), 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, { STATS_OFFSET32(tx_window_violation_tso), 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, #if 0 { STATS_OFFSET32(tx_unsupported_tso_request_ipv6), 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"}, { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"}, #endif { STATS_OFFSET32(tx_chain_lost_mbuf), 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, { STATS_OFFSET32(tx_frames_deferred), 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, { STATS_OFFSET32(tx_queue_xoff), 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, { STATS_OFFSET32(mbuf_defrag_attempts), 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, { STATS_OFFSET32(mbuf_defrag_failures), 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, { STATS_OFFSET32(mbuf_alloc_tx), 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, { STATS_OFFSET32(mbuf_alloc_rx), 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, { STATS_OFFSET32(mbuf_alloc_sge), 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, { STATS_OFFSET32(mbuf_alloc_tpa), 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"} }; static const struct { uint32_t offset; uint32_t size; char string[STAT_NAME_LEN]; } bxe_eth_q_stats_arr[] = { { Q_STATS_OFFSET32(total_bytes_received_hi), 8, "rx_bytes" }, { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 8, "rx_ucast_packets" }, { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 8, "rx_mcast_packets" }, { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 8, "rx_bcast_packets" }, { Q_STATS_OFFSET32(no_buff_discard_hi), 8, "rx_discards" }, { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 8, "tx_bytes" }, { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 8, "tx_ucast_packets" }, { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 8, "tx_mcast_packets" }, { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 8, "tx_bcast_packets" }, { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 8, "tpa_aggregations" }, { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 8, "tpa_aggregated_frames"}, { Q_STATS_OFFSET32(total_tpa_bytes_hi), 8, "tpa_bytes"}, { Q_STATS_OFFSET32(rx_calls), 4, "rx_calls"}, { Q_STATS_OFFSET32(rx_pkts), 4, "rx_pkts"}, { Q_STATS_OFFSET32(rx_tpa_pkts), 4, "rx_tpa_pkts"}, { Q_STATS_OFFSET32(rx_soft_errors), 4, "rx_soft_errors"}, { Q_STATS_OFFSET32(rx_hw_csum_errors), 4, "rx_hw_csum_errors"}, { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 4, "rx_ofld_frames_csum_ip"}, { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 4, "rx_ofld_frames_csum_tcp_udp"}, { Q_STATS_OFFSET32(rx_budget_reached), 4, "rx_budget_reached"}, { Q_STATS_OFFSET32(tx_pkts), 4, "tx_pkts"}, { Q_STATS_OFFSET32(tx_soft_errors), 4, "tx_soft_errors"}, { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 4, "tx_ofld_frames_csum_ip"}, { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 4, "tx_ofld_frames_csum_tcp"}, { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 4, "tx_ofld_frames_csum_udp"}, { Q_STATS_OFFSET32(tx_ofld_frames_lso), 4, "tx_ofld_frames_lso"}, { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 4, "tx_ofld_frames_lso_hdr_splits"}, { Q_STATS_OFFSET32(tx_encap_failures), 4, "tx_encap_failures"}, { Q_STATS_OFFSET32(tx_hw_queue_full), 4, "tx_hw_queue_full"}, { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 4, "tx_hw_max_queue_depth"}, { Q_STATS_OFFSET32(tx_dma_mapping_failure), 4, "tx_dma_mapping_failure"}, { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 4, "tx_max_drbr_queue_depth"}, { Q_STATS_OFFSET32(tx_window_violation_std), 4, "tx_window_violation_std"}, { Q_STATS_OFFSET32(tx_window_violation_tso), 4, "tx_window_violation_tso"}, #if 0 { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6), 4, "tx_unsupported_tso_request_ipv6"}, { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), 4, "tx_unsupported_tso_request_not_tcp"}, #endif { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 4, "tx_chain_lost_mbuf"}, { Q_STATS_OFFSET32(tx_frames_deferred), 4, "tx_frames_deferred"}, { Q_STATS_OFFSET32(tx_queue_xoff), 4, "tx_queue_xoff"}, { Q_STATS_OFFSET32(mbuf_defrag_attempts), 4, "mbuf_defrag_attempts"}, { Q_STATS_OFFSET32(mbuf_defrag_failures), 4, "mbuf_defrag_failures"}, { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 4, "mbuf_rx_bd_alloc_failed"}, { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 4, "mbuf_rx_bd_mapping_failed"}, { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 4, "mbuf_rx_tpa_alloc_failed"}, { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 4, "mbuf_rx_tpa_mapping_failed"}, { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 4, "mbuf_rx_sge_alloc_failed"}, { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 4, "mbuf_rx_sge_mapping_failed"}, { Q_STATS_OFFSET32(mbuf_alloc_tx), 4, "mbuf_alloc_tx"}, { Q_STATS_OFFSET32(mbuf_alloc_rx), 4, "mbuf_alloc_rx"}, { Q_STATS_OFFSET32(mbuf_alloc_sge), 4, "mbuf_alloc_sge"}, { Q_STATS_OFFSET32(mbuf_alloc_tpa), 4, "mbuf_alloc_tpa"} }; #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) static void bxe_cmng_fns_init(struct bxe_softc *sc, uint8_t read_cfg, uint8_t cmng_type); static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); static void storm_memset_cmng(struct bxe_softc *sc, struct cmng_init *cmng, uint8_t port); static void bxe_set_reset_global(struct bxe_softc *sc); static void bxe_set_reset_in_progress(struct bxe_softc *sc); static uint8_t bxe_reset_is_done(struct bxe_softc *sc, int engine); static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, uint8_t *global, uint8_t print); static void bxe_int_disable(struct bxe_softc *sc); static int bxe_release_leader_lock(struct bxe_softc *sc); static void bxe_pf_disable(struct bxe_softc *sc); static void bxe_free_fp_buffers(struct bxe_softc *sc); static inline void bxe_update_rx_prod(struct bxe_softc *sc, struct bxe_fastpath *fp, uint16_t rx_bd_prod, uint16_t rx_cq_prod, uint16_t rx_sge_prod); static void bxe_link_report_locked(struct bxe_softc *sc); static void bxe_link_report(struct bxe_softc *sc); static void bxe_link_status_update(struct bxe_softc *sc); static void bxe_periodic_callout_func(void *xsc); static void bxe_periodic_start(struct bxe_softc *sc); static void bxe_periodic_stop(struct bxe_softc *sc); static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, uint16_t prev_index, uint16_t index); static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, int queue); static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, uint16_t index); static uint8_t bxe_txeof(struct bxe_softc *sc, struct bxe_fastpath *fp); static void bxe_task_fp(struct bxe_fastpath *fp); static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, struct mbuf *m, uint8_t contents); static int bxe_alloc_mem(struct bxe_softc *sc); static void bxe_free_mem(struct bxe_softc *sc); static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); static void bxe_free_fw_stats_mem(struct bxe_softc *sc); static int bxe_interrupt_attach(struct bxe_softc *sc); static void bxe_interrupt_detach(struct bxe_softc *sc); static void bxe_set_rx_mode(struct bxe_softc *sc); static int bxe_init_locked(struct bxe_softc *sc); static int bxe_stop_locked(struct bxe_softc *sc); static __noinline int bxe_nic_load(struct bxe_softc *sc, int load_mode); static __noinline int bxe_nic_unload(struct bxe_softc *sc, uint32_t unload_mode, uint8_t keep_link); static void bxe_handle_sp_tq(void *context, int pending); static void bxe_handle_rx_mode_tq(void *context, int pending); static void bxe_handle_fp_tq(void *context, int pending); /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ uint32_t calc_crc32(uint8_t *crc32_packet, uint32_t crc32_length, uint32_t crc32_seed, uint8_t complement) { uint32_t byte = 0; uint32_t bit = 0; uint8_t msb = 0; uint32_t temp = 0; uint32_t shft = 0; uint8_t current_byte = 0; uint32_t crc32_result = crc32_seed; const uint32_t CRC32_POLY = 0x1edc6f41; if ((crc32_packet == NULL) || (crc32_length == 0) || ((crc32_length % 8) != 0)) { return (crc32_result); } for (byte = 0; byte < crc32_length; byte = byte + 1) { current_byte = crc32_packet[byte]; for (bit = 0; bit < 8; bit = bit + 1) { /* msb = crc32_result[31]; */ msb = (uint8_t)(crc32_result >> 31); crc32_result = crc32_result << 1; /* it (msb != current_byte[bit]) */ if (msb != (0x1 & (current_byte >> bit))) { crc32_result = crc32_result ^ CRC32_POLY; /* crc32_result[0] = 1 */ crc32_result |= 1; } } } /* Last step is to: * 1. "mirror" every bit * 2. swap the 4 bytes * 3. complement each bit */ /* Mirror */ temp = crc32_result; shft = sizeof(crc32_result) * 8 - 1; for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) { temp <<= 1; temp |= crc32_result & 1; shft-- ; } /* temp[31-bit] = crc32_result[bit] */ temp <<= shft; /* Swap */ /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ { uint32_t t0, t1, t2, t3; t0 = (0x000000ff & (temp >> 24)); t1 = (0x0000ff00 & (temp >> 8)); t2 = (0x00ff0000 & (temp << 8)); t3 = (0xff000000 & (temp << 24)); crc32_result = t0 | t1 | t2 | t3; } /* Complement */ if (complement) { crc32_result = ~crc32_result; } return (crc32_result); } int bxe_test_bit(int nr, volatile unsigned long *addr) { return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); } void bxe_set_bit(unsigned int nr, volatile unsigned long *addr) { atomic_set_acq_long(addr, (1 << nr)); } void bxe_clear_bit(int nr, volatile unsigned long *addr) { atomic_clear_acq_long(addr, (1 << nr)); } int bxe_test_and_set_bit(int nr, volatile unsigned long *addr) { unsigned long x; nr = (1 << nr); do { x = *addr; } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); // if (x & nr) bit_was_set; else bit_was_not_set; return (x & nr); } int bxe_test_and_clear_bit(int nr, volatile unsigned long *addr) { unsigned long x; nr = (1 << nr); do { x = *addr; } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); // if (x & nr) bit_was_set; else bit_was_not_set; return (x & nr); } int bxe_cmpxchg(volatile int *addr, int old, int new) { int x; do { x = *addr; } while (atomic_cmpset_acq_int(addr, old, new) == 0); return (x); } /* * Get DMA memory from the OS. * * Validates that the OS has provided DMA buffers in response to a * bus_dmamap_load call and saves the physical address of those buffers. * When the callback is used the OS will return 0 for the mapping function * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any * failures back to the caller. * * Returns: * Nothing. */ static void bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct bxe_dma *dma = arg; if (error) { dma->paddr = 0; dma->nseg = 0; BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); } else { dma->paddr = segs->ds_addr; dma->nseg = nseg; #if 0 BLOGD(dma->sc, DBG_LOAD, "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", dma->msg, dma->vaddr, (void *)dma->paddr, dma->nseg, dma->size); #endif } } /* * Allocate a block of memory and map it for DMA. No partial completions * allowed and release any resources acquired if we can't acquire all * resources. * * Returns: * 0 = Success, !0 = Failure */ int bxe_dma_alloc(struct bxe_softc *sc, bus_size_t size, struct bxe_dma *dma, const char *msg) { int rc; if (dma->size > 0) { BLOGE(sc, "dma block '%s' already has size %lu\n", msg, (unsigned long)dma->size); return (1); } memset(dma, 0, sizeof(*dma)); /* sanity */ dma->sc = sc; dma->size = size; snprintf(dma->msg, sizeof(dma->msg), "%s", msg); rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ BCM_PAGE_SIZE, /* alignment */ 0, /* boundary limit */ BUS_SPACE_MAXADDR, /* restricted low */ BUS_SPACE_MAXADDR, /* restricted hi */ NULL, /* addr filter() */ NULL, /* addr filter() arg */ size, /* max map size */ 1, /* num discontinuous */ size, /* max seg size */ BUS_DMA_ALLOCNOW, /* flags */ NULL, /* lock() */ NULL, /* lock() arg */ &dma->tag); /* returned dma tag */ if (rc != 0) { BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); memset(dma, 0, sizeof(*dma)); return (1); } rc = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr, (BUS_DMA_NOWAIT | BUS_DMA_ZERO), &dma->map); if (rc != 0) { BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); bus_dma_tag_destroy(dma->tag); memset(dma, 0, sizeof(*dma)); return (1); } rc = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size, bxe_dma_map_addr, /* BLOGD in here */ dma, BUS_DMA_NOWAIT); if (rc != 0) { BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); bus_dmamem_free(dma->tag, dma->vaddr, dma->map); bus_dma_tag_destroy(dma->tag); memset(dma, 0, sizeof(*dma)); return (1); } return (0); } void bxe_dma_free(struct bxe_softc *sc, struct bxe_dma *dma) { if (dma->size > 0) { #if 0 BLOGD(sc, DBG_LOAD, "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", dma->msg, dma->vaddr, (void *)dma->paddr, dma->nseg, dma->size); #endif DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); bus_dmamap_sync(dma->tag, dma->map, (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); bus_dmamap_unload(dma->tag, dma->map); bus_dmamem_free(dma->tag, dma->vaddr, dma->map); bus_dma_tag_destroy(dma->tag); } memset(dma, 0, sizeof(*dma)); } /* * These indirect read and write routines are only during init. * The locking is handled by the MCP. */ void bxe_reg_wr_ind(struct bxe_softc *sc, uint32_t addr, uint32_t val) { pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); } uint32_t bxe_reg_rd_ind(struct bxe_softc *sc, uint32_t addr) { uint32_t val; pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); return (val); } #if 0 void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl) { uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC; switch (dmae->opcode & DMAE_COMMAND_DST) { case DMAE_CMD_DST_PCI: if (src_type == DMAE_CMD_SRC_PCI) DP(msglvl, "DMAE: opcode 0x%08x\n" "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" "comp_addr [%x:%08x], comp_val 0x%08x\n", dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, dmae->comp_addr_hi, dmae->comp_addr_lo, dmae->comp_val); else DP(msglvl, "DMAE: opcode 0x%08x\n" "src [%08x], len [%d*4], dst [%x:%08x]\n" "comp_addr [%x:%08x], comp_val 0x%08x\n", dmae->opcode, dmae->src_addr_lo >> 2, dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, dmae->comp_addr_hi, dmae->comp_addr_lo, dmae->comp_val); break; case DMAE_CMD_DST_GRC: if (src_type == DMAE_CMD_SRC_PCI) DP(msglvl, "DMAE: opcode 0x%08x\n" "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" "comp_addr [%x:%08x], comp_val 0x%08x\n", dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, dmae->len, dmae->dst_addr_lo >> 2, dmae->comp_addr_hi, dmae->comp_addr_lo, dmae->comp_val); else DP(msglvl, "DMAE: opcode 0x%08x\n" "src [%08x], len [%d*4], dst [%08x]\n" "comp_addr [%x:%08x], comp_val 0x%08x\n", dmae->opcode, dmae->src_addr_lo >> 2, dmae->len, dmae->dst_addr_lo >> 2, dmae->comp_addr_hi, dmae->comp_addr_lo, dmae->comp_val); break; default: if (src_type == DMAE_CMD_SRC_PCI) DP(msglvl, "DMAE: opcode 0x%08x\n" "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" "comp_addr [%x:%08x] comp_val 0x%08x\n", dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, dmae->comp_val); else DP(msglvl, "DMAE: opcode 0x%08x\n" "src_addr [%08x] len [%d * 4] dst_addr [none]\n" "comp_addr [%x:%08x] comp_val 0x%08x\n", dmae->opcode, dmae->src_addr_lo >> 2, dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, dmae->comp_val); break; } } #endif static int bxe_acquire_hw_lock(struct bxe_softc *sc, uint32_t resource) { uint32_t lock_status; uint32_t resource_bit = (1 << resource); int func = SC_FUNC(sc); uint32_t hw_lock_control_reg; int cnt; /* validate the resource is within range */ if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); return (-1); } if (func <= 5) { hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); } else { hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); } /* validate the resource is not already taken */ lock_status = REG_RD(sc, hw_lock_control_reg); if (lock_status & resource_bit) { BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n", lock_status, resource_bit); return (-1); } /* try every 5ms for 5 seconds */ for (cnt = 0; cnt < 1000; cnt++) { REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); lock_status = REG_RD(sc, hw_lock_control_reg); if (lock_status & resource_bit) { return (0); } DELAY(5000); } BLOGE(sc, "Resource lock timeout!\n"); return (-1); } static int bxe_release_hw_lock(struct bxe_softc *sc, uint32_t resource) { uint32_t lock_status; uint32_t resource_bit = (1 << resource); int func = SC_FUNC(sc); uint32_t hw_lock_control_reg; /* validate the resource is within range */ if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); return (-1); } if (func <= 5) { hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); } else { hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); } /* validate the resource is currently taken */ lock_status = REG_RD(sc, hw_lock_control_reg); if (!(lock_status & resource_bit)) { BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n", lock_status, resource_bit); return (-1); } REG_WR(sc, hw_lock_control_reg, resource_bit); return (0); } /* * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, * had we done things the other way around, if two pfs from the same port * would attempt to access nvram at the same time, we could run into a * scenario such as: * pf A takes the port lock. * pf B succeeds in taking the same lock since they are from the same port. * pf A takes the per pf misc lock. Performs eeprom access. * pf A finishes. Unlocks the per pf misc lock. * Pf B takes the lock and proceeds to perform it's own access. * pf A unlocks the per port lock, while pf B is still working (!). * mcp takes the per port lock and corrupts pf B's access (and/or has it's own * access corrupted by pf B).* */ static int bxe_acquire_nvram_lock(struct bxe_softc *sc) { int port = SC_PORT(sc); int count, i; uint32_t val = 0; /* acquire HW lock: protect against other PFs in PF Direct Assignment */ bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); /* adjust timeout for emulation/FPGA */ count = NVRAM_TIMEOUT_COUNT; if (CHIP_REV_IS_SLOW(sc)) { count *= 100; } /* request access to nvram interface */ REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); for (i = 0; i < count*10; i++) { val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { break; } DELAY(5); } if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { BLOGE(sc, "Cannot get access to nvram interface\n"); return (-1); } return (0); } static int bxe_release_nvram_lock(struct bxe_softc *sc) { int port = SC_PORT(sc); int count, i; uint32_t val = 0; /* adjust timeout for emulation/FPGA */ count = NVRAM_TIMEOUT_COUNT; if (CHIP_REV_IS_SLOW(sc)) { count *= 100; } /* relinquish nvram interface */ REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); for (i = 0; i < count*10; i++) { val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { break; } DELAY(5); } if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { BLOGE(sc, "Cannot free access to nvram interface\n"); return (-1); } /* release HW lock: protect against other PFs in PF Direct Assignment */ bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); return (0); } static void bxe_enable_nvram_access(struct bxe_softc *sc) { uint32_t val; val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); /* enable both bits, even on read */ REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); } static void bxe_disable_nvram_access(struct bxe_softc *sc) { uint32_t val; val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); /* disable both bits, even after read */ REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN))); } static int bxe_nvram_read_dword(struct bxe_softc *sc, uint32_t offset, uint32_t *ret_val, uint32_t cmd_flags) { int count, i, rc; uint32_t val; /* build the command word */ cmd_flags |= MCPR_NVM_COMMAND_DOIT; /* need to clear DONE bit separately */ REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); /* address of the NVRAM to read from */ REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); /* issue a read command */ REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); /* adjust timeout for emulation/FPGA */ count = NVRAM_TIMEOUT_COUNT; if (CHIP_REV_IS_SLOW(sc)) { count *= 100; } /* wait for completion */ *ret_val = 0; rc = -1; for (i = 0; i < count; i++) { DELAY(5); val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); if (val & MCPR_NVM_COMMAND_DONE) { val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); /* we read nvram data in cpu order * but ethtool sees it as an array of bytes * converting to big-endian will do the work */ *ret_val = htobe32(val); rc = 0; break; } } if (rc == -1) { BLOGE(sc, "nvram read timeout expired\n"); } return (rc); } static int bxe_nvram_read(struct bxe_softc *sc, uint32_t offset, uint8_t *ret_buf, int buf_size) { uint32_t cmd_flags; uint32_t val; int rc; if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", offset, buf_size); return (-1); } if ((offset + buf_size) > sc->devinfo.flash_size) { BLOGE(sc, "Invalid parameter, " "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", offset, buf_size, sc->devinfo.flash_size); return (-1); } /* request access to nvram interface */ rc = bxe_acquire_nvram_lock(sc); if (rc) { return (rc); } /* enable access to nvram interface */ bxe_enable_nvram_access(sc); /* read the first word(s) */ cmd_flags = MCPR_NVM_COMMAND_FIRST; while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); memcpy(ret_buf, &val, 4); /* advance to the next dword */ offset += sizeof(uint32_t); ret_buf += sizeof(uint32_t); buf_size -= sizeof(uint32_t); cmd_flags = 0; } if (rc == 0) { cmd_flags |= MCPR_NVM_COMMAND_LAST; rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); memcpy(ret_buf, &val, 4); } /* disable access to nvram interface */ bxe_disable_nvram_access(sc); bxe_release_nvram_lock(sc); return (rc); } static int bxe_nvram_write_dword(struct bxe_softc *sc, uint32_t offset, uint32_t val, uint32_t cmd_flags) { int count, i, rc; /* build the command word */ cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); /* need to clear DONE bit separately */ REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); /* write the data */ REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); /* address of the NVRAM to write to */ REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); /* issue the write command */ REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); /* adjust timeout for emulation/FPGA */ count = NVRAM_TIMEOUT_COUNT; if (CHIP_REV_IS_SLOW(sc)) { count *= 100; } /* wait for completion */ rc = -1; for (i = 0; i < count; i++) { DELAY(5); val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); if (val & MCPR_NVM_COMMAND_DONE) { rc = 0; break; } } if (rc == -1) { BLOGE(sc, "nvram write timeout expired\n"); } return (rc); } #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) static int bxe_nvram_write1(struct bxe_softc *sc, uint32_t offset, uint8_t *data_buf, int buf_size) { uint32_t cmd_flags; uint32_t align_offset; uint32_t val; int rc; if ((offset + buf_size) > sc->devinfo.flash_size) { BLOGE(sc, "Invalid parameter, " "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", offset, buf_size, sc->devinfo.flash_size); return (-1); } /* request access to nvram interface */ rc = bxe_acquire_nvram_lock(sc); if (rc) { return (rc); } /* enable access to nvram interface */ bxe_enable_nvram_access(sc); cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); align_offset = (offset & ~0x03); rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); if (rc == 0) { val &= ~(0xff << BYTE_OFFSET(offset)); val |= (*data_buf << BYTE_OFFSET(offset)); /* nvram data is returned as an array of bytes * convert it back to cpu order */ val = be32toh(val); rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); } /* disable access to nvram interface */ bxe_disable_nvram_access(sc); bxe_release_nvram_lock(sc); return (rc); } static int bxe_nvram_write(struct bxe_softc *sc, uint32_t offset, uint8_t *data_buf, int buf_size) { uint32_t cmd_flags; uint32_t val; uint32_t written_so_far; int rc; if (buf_size == 1) { return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); } if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", offset, buf_size); return (-1); } if (buf_size == 0) { return (0); /* nothing to do */ } if ((offset + buf_size) > sc->devinfo.flash_size) { BLOGE(sc, "Invalid parameter, " "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", offset, buf_size, sc->devinfo.flash_size); return (-1); } /* request access to nvram interface */ rc = bxe_acquire_nvram_lock(sc); if (rc) { return (rc); } /* enable access to nvram interface */ bxe_enable_nvram_access(sc); written_so_far = 0; cmd_flags = MCPR_NVM_COMMAND_FIRST; while ((written_so_far < buf_size) && (rc == 0)) { if (written_so_far == (buf_size - sizeof(uint32_t))) { cmd_flags |= MCPR_NVM_COMMAND_LAST; } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { cmd_flags |= MCPR_NVM_COMMAND_LAST; } else if ((offset % NVRAM_PAGE_SIZE) == 0) { cmd_flags |= MCPR_NVM_COMMAND_FIRST; } memcpy(&val, data_buf, 4); rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); /* advance to the next dword */ offset += sizeof(uint32_t); data_buf += sizeof(uint32_t); written_so_far += sizeof(uint32_t); cmd_flags = 0; } /* disable access to nvram interface */ bxe_disable_nvram_access(sc); bxe_release_nvram_lock(sc); return (rc); } /* copy command into DMAE command memory and set DMAE command Go */ void bxe_post_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int idx) { uint32_t cmd_offset; int i; cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx)); for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) { REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); } REG_WR(sc, dmae_reg_go_c[idx], 1); } uint32_t bxe_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type) { return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | DMAE_COMMAND_C_TYPE_ENABLE)); } uint32_t bxe_dmae_opcode_clr_src_reset(uint32_t opcode) { return (opcode & ~DMAE_COMMAND_SRC_RESET); } uint32_t bxe_dmae_opcode(struct bxe_softc *sc, uint8_t src_type, uint8_t dst_type, uint8_t with_comp, uint8_t comp_type) { uint32_t opcode = 0; opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | (dst_type << DMAE_COMMAND_DST_SHIFT)); opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET); opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) | (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT)); opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); #ifdef __BIG_ENDIAN opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; #else opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; #endif if (with_comp) { opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); } return (opcode); } static void bxe_prep_dmae_with_comp(struct bxe_softc *sc, struct dmae_command *dmae, uint8_t src_type, uint8_t dst_type) { memset(dmae, 0, sizeof(struct dmae_command)); /* set the opcode */ dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, TRUE, DMAE_COMP_PCI); /* fill in the completion parameters */ dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); dmae->comp_val = DMAE_COMP_VAL; } /* issue a DMAE command over the init channel and wait for completion */ static int bxe_issue_dmae_with_comp(struct bxe_softc *sc, struct dmae_command *dmae) { uint32_t *wb_comp = BXE_SP(sc, wb_comp); int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; BXE_DMAE_LOCK(sc); /* reset completion */ *wb_comp = 0; /* post the command on the channel used for initializations */ bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); /* wait for completion */ DELAY(5); while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { if (!timeout || (sc->recovery_state != BXE_RECOVERY_DONE && sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { BLOGE(sc, "DMAE timeout!\n"); BXE_DMAE_UNLOCK(sc); return (DMAE_TIMEOUT); } timeout--; DELAY(50); } if (*wb_comp & DMAE_PCI_ERR_FLAG) { BLOGE(sc, "DMAE PCI error!\n"); BXE_DMAE_UNLOCK(sc); return (DMAE_PCI_ERROR); } BXE_DMAE_UNLOCK(sc); return (0); } void bxe_read_dmae(struct bxe_softc *sc, uint32_t src_addr, uint32_t len32) { struct dmae_command dmae; uint32_t *data; int i, rc; DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); if (!sc->dmae_ready) { data = BXE_SP(sc, wb_data[0]); for (i = 0; i < len32; i++) { data[i] = (CHIP_IS_E1(sc)) ? bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : REG_RD(sc, (src_addr + (i * 4))); } return; } /* set opcode and fixed command fields */ bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); /* fill in addresses and len */ dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ dmae.src_addr_hi = 0; dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); dmae.len = len32; /* issue the command and wait for completion */ if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { bxe_panic(sc, ("DMAE failed (%d)\n", rc)); }; } void bxe_write_dmae(struct bxe_softc *sc, bus_addr_t dma_addr, uint32_t dst_addr, uint32_t len32) { struct dmae_command dmae; int rc; if (!sc->dmae_ready) { DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); if (CHIP_IS_E1(sc)) { ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); } else { ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); } return; } /* set opcode and fixed command fields */ bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); /* fill in addresses and len */ dmae.src_addr_lo = U64_LO(dma_addr); dmae.src_addr_hi = U64_HI(dma_addr); dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ dmae.dst_addr_hi = 0; dmae.len = len32; /* issue the command and wait for completion */ if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { bxe_panic(sc, ("DMAE failed (%d)\n", rc)); } } void bxe_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr, uint32_t addr, uint32_t len) { int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); int offset = 0; while (len > dmae_wr_max) { bxe_write_dmae(sc, (phys_addr + offset), /* src DMA address */ (addr + offset), /* dst GRC address */ dmae_wr_max); offset += (dmae_wr_max * 4); len -= dmae_wr_max; } bxe_write_dmae(sc, (phys_addr + offset), /* src DMA address */ (addr + offset), /* dst GRC address */ len); } void bxe_set_ctx_validation(struct bxe_softc *sc, struct eth_context *cxt, uint32_t cid) { /* ustorm cxt validation */ cxt->ustorm_ag_context.cdu_usage = CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); /* xcontext validation */ cxt->xstorm_ag_context.cdu_reserved = CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); } static void bxe_storm_memset_hc_timeout(struct bxe_softc *sc, uint8_t port, uint8_t fw_sb_id, uint8_t sb_index, uint8_t ticks) { uint32_t addr = (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); REG_WR8(sc, addr, ticks); BLOGD(sc, DBG_LOAD, "port %d fw_sb_id %d sb_index %d ticks %d\n", port, fw_sb_id, sb_index, ticks); } static void bxe_storm_memset_hc_disable(struct bxe_softc *sc, uint8_t port, uint16_t fw_sb_id, uint8_t sb_index, uint8_t disable) { uint32_t enable_flag = (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); uint32_t addr = (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); uint8_t flags; /* clear and set */ flags = REG_RD8(sc, addr); flags &= ~HC_INDEX_DATA_HC_ENABLED; flags |= enable_flag; REG_WR8(sc, addr, flags); BLOGD(sc, DBG_LOAD, "port %d fw_sb_id %d sb_index %d disable %d\n", port, fw_sb_id, sb_index, disable); } void bxe_update_coalesce_sb_index(struct bxe_softc *sc, uint8_t fw_sb_id, uint8_t sb_index, uint8_t disable, uint16_t usec) { int port = SC_PORT(sc); uint8_t ticks = (usec / 4); /* XXX ??? */ bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); disable = (disable) ? 1 : ((usec) ? 0 : 1); bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); } void elink_cb_udelay(struct bxe_softc *sc, uint32_t usecs) { DELAY(usecs); } uint32_t elink_cb_reg_read(struct bxe_softc *sc, uint32_t reg_addr) { return (REG_RD(sc, reg_addr)); } void elink_cb_reg_write(struct bxe_softc *sc, uint32_t reg_addr, uint32_t val) { REG_WR(sc, reg_addr, val); } void elink_cb_reg_wb_write(struct bxe_softc *sc, uint32_t offset, uint32_t *wb_write, uint16_t len) { REG_WR_DMAE(sc, offset, wb_write, len); } void elink_cb_reg_wb_read(struct bxe_softc *sc, uint32_t offset, uint32_t *wb_write, uint16_t len) { REG_RD_DMAE(sc, offset, wb_write, len); } uint8_t elink_cb_path_id(struct bxe_softc *sc) { return (SC_PATH(sc)); } void elink_cb_event_log(struct bxe_softc *sc, const elink_log_id_t elink_log_id, ...) { /* XXX */ #if 0 //va_list ap; va_start(ap, elink_log_id); _XXX_(sc, lm_log_id, ap); va_end(ap); #endif BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); } static int bxe_set_spio(struct bxe_softc *sc, int spio, uint32_t mode) { uint32_t spio_reg; /* Only 2 SPIOs are configurable */ if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { BLOGE(sc, "Invalid SPIO 0x%x\n", spio); return (-1); } bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); /* read SPIO and mask except the float bits */ spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); switch (mode) { case MISC_SPIO_OUTPUT_LOW: BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); /* clear FLOAT and set CLR */ spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); spio_reg |= (spio << MISC_SPIO_CLR_POS); break; case MISC_SPIO_OUTPUT_HIGH: BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); /* clear FLOAT and set SET */ spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); spio_reg |= (spio << MISC_SPIO_SET_POS); break; case MISC_SPIO_INPUT_HI_Z: BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); /* set FLOAT */ spio_reg |= (spio << MISC_SPIO_FLOAT_POS); break; default: break; } REG_WR(sc, MISC_REG_SPIO, spio_reg); bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); return (0); } static int bxe_gpio_read(struct bxe_softc *sc, int gpio_num, uint8_t port) { /* The GPIO should be swapped if swap register is set and active */ int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); int gpio_shift = (gpio_num + (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); uint32_t gpio_mask = (1 << gpio_shift); uint32_t gpio_reg; if (gpio_num > MISC_REGISTERS_GPIO_3) { BLOGE(sc, "Invalid GPIO %d\n", gpio_num); return (-1); } /* read GPIO value */ gpio_reg = REG_RD(sc, MISC_REG_GPIO); /* get the requested pin value */ return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; } static int bxe_gpio_write(struct bxe_softc *sc, int gpio_num, uint32_t mode, uint8_t port) { /* The GPIO should be swapped if swap register is set and active */ int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); int gpio_shift = (gpio_num + (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); uint32_t gpio_mask = (1 << gpio_shift); uint32_t gpio_reg; if (gpio_num > MISC_REGISTERS_GPIO_3) { BLOGE(sc, "Invalid GPIO %d\n", gpio_num); return (-1); } bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); /* read GPIO and mask except the float bits */ gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); switch (mode) { case MISC_REGISTERS_GPIO_OUTPUT_LOW: BLOGD(sc, DBG_PHY, "Set GPIO %d (shift %d) -> output low\n", gpio_num, gpio_shift); /* clear FLOAT and set CLR */ gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); break; case MISC_REGISTERS_GPIO_OUTPUT_HIGH: BLOGD(sc, DBG_PHY, "Set GPIO %d (shift %d) -> output high\n", gpio_num, gpio_shift); /* clear FLOAT and set SET */ gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); break; case MISC_REGISTERS_GPIO_INPUT_HI_Z: BLOGD(sc, DBG_PHY, "Set GPIO %d (shift %d) -> input\n", gpio_num, gpio_shift); /* set FLOAT */ gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); break; default: break; } REG_WR(sc, MISC_REG_GPIO, gpio_reg); bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); return (0); } static int bxe_gpio_mult_write(struct bxe_softc *sc, uint8_t pins, uint32_t mode) { uint32_t gpio_reg; /* any port swapping should be handled by caller */ bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); /* read GPIO and mask except the float bits */ gpio_reg = REG_RD(sc, MISC_REG_GPIO); gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); switch (mode) { case MISC_REGISTERS_GPIO_OUTPUT_LOW: BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); /* set CLR */ gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); break; case MISC_REGISTERS_GPIO_OUTPUT_HIGH: BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); /* set SET */ gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); break; case MISC_REGISTERS_GPIO_INPUT_HI_Z: BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); /* set FLOAT */ gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); break; default: BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode); bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); return (-1); } REG_WR(sc, MISC_REG_GPIO, gpio_reg); bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); return (0); } static int bxe_gpio_int_write(struct bxe_softc *sc, int gpio_num, uint32_t mode, uint8_t port) { /* The GPIO should be swapped if swap register is set and active */ int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); int gpio_shift = (gpio_num + (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); uint32_t gpio_mask = (1 << gpio_shift); uint32_t gpio_reg; if (gpio_num > MISC_REGISTERS_GPIO_3) { BLOGE(sc, "Invalid GPIO %d\n", gpio_num); return (-1); } bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); /* read GPIO int */ gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); switch (mode) { case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: BLOGD(sc, DBG_PHY, "Clear GPIO INT %d (shift %d) -> output low\n", gpio_num, gpio_shift); /* clear SET and set CLR */ gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); break; case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: BLOGD(sc, DBG_PHY, "Set GPIO INT %d (shift %d) -> output high\n", gpio_num, gpio_shift); /* clear CLR and set SET */ gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); break; default: break; } REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); return (0); } uint32_t elink_cb_gpio_read(struct bxe_softc *sc, uint16_t gpio_num, uint8_t port) { return (bxe_gpio_read(sc, gpio_num, port)); } uint8_t elink_cb_gpio_write(struct bxe_softc *sc, uint16_t gpio_num, uint8_t mode, /* 0=low 1=high */ uint8_t port) { return (bxe_gpio_write(sc, gpio_num, mode, port)); } uint8_t elink_cb_gpio_mult_write(struct bxe_softc *sc, uint8_t pins, uint8_t mode) /* 0=low 1=high */ { return (bxe_gpio_mult_write(sc, pins, mode)); } uint8_t elink_cb_gpio_int_write(struct bxe_softc *sc, uint16_t gpio_num, uint8_t mode, /* 0=low 1=high */ uint8_t port) { return (bxe_gpio_int_write(sc, gpio_num, mode, port)); } void elink_cb_notify_link_changed(struct bxe_softc *sc) { REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + (SC_FUNC(sc) * sizeof(uint32_t))), 1); } /* send the MCP a request, block until there is a reply */ uint32_t elink_cb_fw_command(struct bxe_softc *sc, uint32_t command, uint32_t param) { int mb_idx = SC_FW_MB_IDX(sc); uint32_t seq; uint32_t rc = 0; uint32_t cnt = 1; uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; BXE_FWMB_LOCK(sc); seq = ++sc->fw_seq; SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); BLOGD(sc, DBG_PHY, "wrote command 0x%08x to FW MB param 0x%08x\n", (command | seq), param); /* Let the FW do it's magic. GIve it up to 5 seconds... */ do { DELAY(delay * 1000); rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); BLOGD(sc, DBG_PHY, "[after %d ms] read 0x%x seq 0x%x from FW MB\n", cnt*delay, rc, seq); /* is this a reply to our command? */ if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { rc &= FW_MSG_CODE_MASK; } else { /* Ruh-roh! */ BLOGE(sc, "FW failed to respond!\n"); // XXX bxe_fw_dump(sc); rc = 0; } BXE_FWMB_UNLOCK(sc); return (rc); } static uint32_t bxe_fw_command(struct bxe_softc *sc, uint32_t command, uint32_t param) { return (elink_cb_fw_command(sc, command, param)); } static void __storm_memset_dma_mapping(struct bxe_softc *sc, uint32_t addr, bus_addr_t mapping) { REG_WR(sc, addr, U64_LO(mapping)); REG_WR(sc, (addr + 4), U64_HI(mapping)); } static void storm_memset_spq_addr(struct bxe_softc *sc, bus_addr_t mapping, uint16_t abs_fid) { uint32_t addr = (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); __storm_memset_dma_mapping(sc, addr, mapping); } static void storm_memset_vf_to_pf(struct bxe_softc *sc, uint16_t abs_fid, uint16_t pf_id) { REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); } static void storm_memset_func_en(struct bxe_softc *sc, uint16_t abs_fid, uint8_t enable) { REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); } static void storm_memset_eq_data(struct bxe_softc *sc, struct event_ring_data *eq_data, uint16_t pfid) { uint32_t addr; size_t size; addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); size = sizeof(struct event_ring_data); ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); } static void storm_memset_eq_prod(struct bxe_softc *sc, uint16_t eq_prod, uint16_t pfid) { uint32_t addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid)); REG_WR16(sc, addr, eq_prod); } /* * Post a slowpath command. * * A slowpath command is used to propogate a configuration change through * the controller in a controlled manner, allowing each STORM processor and * other H/W blocks to phase in the change. The commands sent on the * slowpath are referred to as ramrods. Depending on the ramrod used the * completion of the ramrod will occur in different ways. Here's a * breakdown of ramrods and how they complete: * * RAMROD_CMD_ID_ETH_PORT_SETUP * Used to setup the leading connection on a port. Completes on the * Receive Completion Queue (RCQ) of that port (typically fp[0]). * * RAMROD_CMD_ID_ETH_CLIENT_SETUP * Used to setup an additional connection on a port. Completes on the * RCQ of the multi-queue/RSS connection being initialized. * * RAMROD_CMD_ID_ETH_STAT_QUERY * Used to force the storm processors to update the statistics database * in host memory. This ramrod is send on the leading connection CID and * completes as an index increment of the CSTORM on the default status * block. * * RAMROD_CMD_ID_ETH_UPDATE * Used to update the state of the leading connection, usually to udpate * the RSS indirection table. Completes on the RCQ of the leading * connection. (Not currently used under FreeBSD until OS support becomes * available.) * * RAMROD_CMD_ID_ETH_HALT * Used when tearing down a connection prior to driver unload. Completes * on the RCQ of the multi-queue/RSS connection being torn down. Don't * use this on the leading connection. * * RAMROD_CMD_ID_ETH_SET_MAC * Sets the Unicast/Broadcast/Multicast used by the port. Completes on * the RCQ of the leading connection. * * RAMROD_CMD_ID_ETH_CFC_DEL * Used when tearing down a conneciton prior to driver unload. Completes * on the RCQ of the leading connection (since the current connection * has been completely removed from controller memory). * * RAMROD_CMD_ID_ETH_PORT_DEL * Used to tear down the leading connection prior to driver unload, * typically fp[0]. Completes as an index increment of the CSTORM on the * default status block. * * RAMROD_CMD_ID_ETH_FORWARD_SETUP * Used for connection offload. Completes on the RCQ of the multi-queue * RSS connection that is being offloaded. (Not currently used under * FreeBSD.) * * There can only be one command pending per function. * * Returns: * 0 = Success, !0 = Failure. */ /* must be called under the spq lock */ static inline struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) { struct eth_spe *next_spe = sc->spq_prod_bd; if (sc->spq_prod_bd == sc->spq_last_bd) { /* wrap back to the first eth_spq */ sc->spq_prod_bd = sc->spq; sc->spq_prod_idx = 0; } else { sc->spq_prod_bd++; sc->spq_prod_idx++; } return (next_spe); } /* must be called under the spq lock */ static inline void bxe_sp_prod_update(struct bxe_softc *sc) { int func = SC_FUNC(sc); /* * Make sure that BD data is updated before writing the producer. * BD data is written to the memory, the producer is read from the * memory, thus we need a full memory barrier to ensure the ordering. */ mb(); REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), sc->spq_prod_idx); bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, BUS_SPACE_BARRIER_WRITE); } /** * bxe_is_contextless_ramrod - check if the current command ends on EQ * * @cmd: command to check * @cmd_type: command type */ static inline int bxe_is_contextless_ramrod(int cmd, int cmd_type) { if ((cmd_type == NONE_CONNECTION_TYPE) || (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { return (TRUE); } else { return (FALSE); } } /** * bxe_sp_post - place a single command on an SP ring * * @sc: driver handle * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) * @cid: SW CID the command is related to * @data_hi: command private data address (high 32 bits) * @data_lo: command private data address (low 32 bits) * @cmd_type: command type (e.g. NONE, ETH) * * SP data is handled as if it's always an address pair, thus data fields are * not swapped to little endian in upper functions. Instead this function swaps * data as if it's two uint32 fields. */ int bxe_sp_post(struct bxe_softc *sc, int command, int cid, uint32_t data_hi, uint32_t data_lo, int cmd_type) { struct eth_spe *spe; uint16_t type; int common; common = bxe_is_contextless_ramrod(command, cmd_type); BXE_SP_LOCK(sc); if (common) { if (!atomic_load_acq_long(&sc->eq_spq_left)) { BLOGE(sc, "EQ ring is full!\n"); BXE_SP_UNLOCK(sc); return (-1); } } else { if (!atomic_load_acq_long(&sc->cq_spq_left)) { BLOGE(sc, "SPQ ring is full!\n"); BXE_SP_UNLOCK(sc); return (-1); } } spe = bxe_sp_get_next(sc); /* CID needs port number to be encoded int it */ spe->hdr.conn_and_cmd_data = htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid)); type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE; /* TBD: Check if it works for VFs */ type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) & SPE_HDR_FUNCTION_ID); spe->hdr.type = htole16(type); spe->data.update_data_addr.hi = htole32(data_hi); spe->data.update_data_addr.lo = htole32(data_lo); /* * It's ok if the actual decrement is issued towards the memory * somewhere between the lock and unlock. Thus no more explict * memory barrier is needed. */ if (common) { atomic_subtract_acq_long(&sc->eq_spq_left, 1); } else { atomic_subtract_acq_long(&sc->cq_spq_left, 1); } BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); BLOGD(sc, DBG_SP, "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", sc->spq_prod_idx, (uint32_t)U64_HI(sc->spq_dma.paddr), (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), command, common, HW_CID(sc, cid), data_hi, data_lo, type, atomic_load_acq_long(&sc->cq_spq_left), atomic_load_acq_long(&sc->eq_spq_left)); bxe_sp_prod_update(sc); BXE_SP_UNLOCK(sc); return (0); } /** * bxe_debug_print_ind_table - prints the indirection table configuration. * * @sc: driver hanlde * @p: pointer to rss configuration */ #if 0 static void bxe_debug_print_ind_table(struct bxe_softc *sc, struct ecore_config_rss_params *p) { int i; BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n"); BLOGD(sc, DBG_LOAD, " 0x0000: "); for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) { BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]); /* Print 4 bytes in a line */ if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) && (((i + 1) & 0x3) == 0)) { BLOGD(sc, DBG_LOAD, "\n"); BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1); } } BLOGD(sc, DBG_LOAD, "\n"); } #endif /* * FreeBSD Device probe function. * * Compares the device found to the driver's list of supported devices and * reports back to the bsd loader whether this is the right driver for the device. * This is the driver entry function called from the "kldload" command. * * Returns: * BUS_PROBE_DEFAULT on success, positive value on failure. */ static int bxe_probe(device_t dev) { struct bxe_softc *sc; struct bxe_device_type *t; char *descbuf; uint16_t did, sdid, svid, vid; /* Find our device structure */ sc = device_get_softc(dev); sc->dev = dev; t = bxe_devs; /* Get the data for the device to be probed. */ vid = pci_get_vendor(dev); did = pci_get_device(dev); svid = pci_get_subvendor(dev); sdid = pci_get_subdevice(dev); BLOGD(sc, DBG_LOAD, "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); /* Look through the list of known devices for a match. */ while (t->bxe_name != NULL) { if ((vid == t->bxe_vid) && (did == t->bxe_did) && ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); if (descbuf == NULL) return (ENOMEM); /* Print out the device identity. */ snprintf(descbuf, BXE_DEVDESC_MAX, "%s (%c%d) BXE v:%s\n", t->bxe_name, (((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'), (pci_read_config(dev, PCIR_REVID, 4) & 0xf), BXE_DRIVER_VERSION); device_set_desc_copy(dev, descbuf); free(descbuf, M_TEMP); return (BUS_PROBE_DEFAULT); } t++; } return (ENXIO); } static void bxe_init_mutexes(struct bxe_softc *sc) { #ifdef BXE_CORE_LOCK_SX snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), "bxe%d_core_lock", sc->unit); sx_init(&sc->core_sx, sc->core_sx_name); #else snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), "bxe%d_core_lock", sc->unit); mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); #endif snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), "bxe%d_sp_lock", sc->unit); mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), "bxe%d_dmae_lock", sc->unit); mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), "bxe%d_phy_lock", sc->unit); mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), "bxe%d_fwmb_lock", sc->unit); mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), "bxe%d_print_lock", sc->unit); mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), "bxe%d_stats_lock", sc->unit); mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), "bxe%d_mcast_lock", sc->unit); mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); } static void bxe_release_mutexes(struct bxe_softc *sc) { #ifdef BXE_CORE_LOCK_SX sx_destroy(&sc->core_sx); #else if (mtx_initialized(&sc->core_mtx)) { mtx_destroy(&sc->core_mtx); } #endif if (mtx_initialized(&sc->sp_mtx)) { mtx_destroy(&sc->sp_mtx); } if (mtx_initialized(&sc->dmae_mtx)) { mtx_destroy(&sc->dmae_mtx); } if (mtx_initialized(&sc->port.phy_mtx)) { mtx_destroy(&sc->port.phy_mtx); } if (mtx_initialized(&sc->fwmb_mtx)) { mtx_destroy(&sc->fwmb_mtx); } if (mtx_initialized(&sc->print_mtx)) { mtx_destroy(&sc->print_mtx); } if (mtx_initialized(&sc->stats_mtx)) { mtx_destroy(&sc->stats_mtx); } if (mtx_initialized(&sc->mcast_mtx)) { mtx_destroy(&sc->mcast_mtx); } } static void bxe_tx_disable(struct bxe_softc* sc) { if_t ifp = sc->ifp; /* tell the stack the driver is stopped and TX queue is full */ if (ifp != NULL) { if_setdrvflags(ifp, 0); } } static void bxe_drv_pulse(struct bxe_softc *sc) { SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, sc->fw_drv_pulse_wr_seq); } static inline uint16_t bxe_tx_avail(struct bxe_softc *sc, struct bxe_fastpath *fp) { int16_t used; uint16_t prod; uint16_t cons; prod = fp->tx_bd_prod; cons = fp->tx_bd_cons; used = SUB_S16(prod, cons); #if 0 KASSERT((used < 0), ("used tx bds < 0")); KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size")); KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL), ("invalid number of tx bds used")); #endif return (int16_t)(sc->tx_ring_size) - used; } static inline int bxe_tx_queue_has_work(struct bxe_fastpath *fp) { uint16_t hw_cons; mb(); /* status block fields can change */ hw_cons = le16toh(*fp->tx_cons_sb); return (hw_cons != fp->tx_pkt_cons); } static inline uint8_t bxe_has_tx_work(struct bxe_fastpath *fp) { /* expand this for multi-cos if ever supported */ return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; } static inline int bxe_has_rx_work(struct bxe_fastpath *fp) { uint16_t rx_cq_cons_sb; mb(); /* status block fields can change */ rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) rx_cq_cons_sb++; return (fp->rx_cq_cons != rx_cq_cons_sb); } static void bxe_sp_event(struct bxe_softc *sc, struct bxe_fastpath *fp, union eth_rx_cqe *rr_cqe) { int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); #if 0 /* * If cid is within VF range, replace the slowpath object with the * one corresponding to this VF */ if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) { bxe_iov_set_queue_sp_obj(sc, cid, &q_obj); } #endif switch (command) { case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); drv_cmd = ECORE_Q_CMD_UPDATE; break; case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); drv_cmd = ECORE_Q_CMD_SETUP; break; case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; break; case (RAMROD_CMD_ID_ETH_HALT): BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); drv_cmd = ECORE_Q_CMD_HALT; break; case (RAMROD_CMD_ID_ETH_TERMINATE): BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); drv_cmd = ECORE_Q_CMD_TERMINATE; break; case (RAMROD_CMD_ID_ETH_EMPTY): BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); drv_cmd = ECORE_Q_CMD_EMPTY; break; default: BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", command, fp->index); return; } if ((drv_cmd != ECORE_Q_CMD_MAX) && q_obj->complete_cmd(sc, q_obj, drv_cmd)) { /* * q_obj->complete_cmd() failure means that this was * an unexpected completion. * * In this case we don't want to increase the sc->spq_left * because apparently we haven't sent this command the first * place. */ // bxe_panic(sc, ("Unexpected SP completion\n")); return; } #if 0 /* SRIOV: reschedule any 'in_progress' operations */ bxe_iov_sp_event(sc, cid, TRUE); #endif atomic_add_acq_long(&sc->cq_spq_left, 1); BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", atomic_load_acq_long(&sc->cq_spq_left)); #if 0 if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) { /* * If Queue update ramrod is completed for last Queue in AFEX VIF set * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to * prevent case that both bits are cleared. At the end of load/unload * driver checks that sp_state is cleared and this order prevents * races. */ bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state); wmb(); bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state); /* schedule the sp task as MCP ack is required */ bxe_schedule_sp_task(sc); } #endif } /* * The current mbuf is part of an aggregation. Move the mbuf into the TPA * aggregation queue, put an empty mbuf back onto the receive chain, and mark * the current aggregation queue as in-progress. */ static void bxe_tpa_start(struct bxe_softc *sc, struct bxe_fastpath *fp, uint16_t queue, uint16_t cons, uint16_t prod, struct eth_fast_path_rx_cqe *cqe) { struct bxe_sw_rx_bd tmp_bd; struct bxe_sw_rx_bd *rx_buf; struct eth_rx_bd *rx_bd; int max_agg_queues; struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; uint16_t index; BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " "cons=%d prod=%d\n", fp->index, queue, cons, prod); max_agg_queues = MAX_AGG_QS(sc); KASSERT((queue < max_agg_queues), ("fp[%02d] invalid aggr queue (%d >= %d)!", fp->index, queue, max_agg_queues)); KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", fp->index, queue)); /* copy the existing mbuf and mapping from the TPA pool */ tmp_bd = tpa_info->bd; if (tmp_bd.m == NULL) { BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n", fp->index, queue); /* XXX Error handling? */ return; } /* change the TPA queue to the start state */ tpa_info->state = BXE_TPA_STATE_START; tpa_info->placement_offset = cqe->placement_offset; tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); tpa_info->vlan_tag = le16toh(cqe->vlan_tag); tpa_info->len_on_bd = le16toh(cqe->len_on_bd); fp->rx_tpa_queue_used |= (1 << queue); /* * If all the buffer descriptors are filled with mbufs then fill in * the current consumer index with a new BD. Else if a maximum Rx * buffer limit is imposed then fill in the next producer index. */ index = (sc->max_rx_bufs != RX_BD_USABLE) ? prod : cons; /* move the received mbuf and mapping to TPA pool */ tpa_info->bd = fp->rx_mbuf_chain[cons]; /* release any existing RX BD mbuf mappings */ if (cons != index) { rx_buf = &fp->rx_mbuf_chain[cons]; if (rx_buf->m_map != NULL) { bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); } /* * We get here when the maximum number of rx buffers is less than * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL * it out here without concern of a memory leak. */ fp->rx_mbuf_chain[cons].m = NULL; } /* update the Rx SW BD with the mbuf info from the TPA pool */ fp->rx_mbuf_chain[index] = tmp_bd; /* update the Rx BD with the empty mbuf phys address from the TPA pool */ rx_bd = &fp->rx_chain[index]; rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); } /* * When a TPA aggregation is completed, loop through the individual mbufs * of the aggregation, combining them into a single mbuf which will be sent * up the stack. Refill all freed SGEs with mbufs as we go along. */ static int bxe_fill_frag_mbuf(struct bxe_softc *sc, struct bxe_fastpath *fp, struct bxe_sw_tpa_info *tpa_info, uint16_t queue, uint16_t pages, struct mbuf *m, struct eth_end_agg_rx_cqe *cqe, uint16_t cqe_idx) { struct mbuf *m_frag; uint32_t frag_len, frag_size, i; uint16_t sge_idx; int rc = 0; int j; frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", fp->index, queue, tpa_info->len_on_bd, frag_size, pages); /* make sure the aggregated frame is not too big to handle */ if (pages > 8 * PAGES_PER_SGE) { BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " "pkt_len=%d len_on_bd=%d frag_size=%d\n", fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), tpa_info->len_on_bd, frag_size); bxe_panic(sc, ("sge page count error\n")); return (EINVAL); } /* * Scan through the scatter gather list pulling individual mbufs into a * single mbuf for the host stack. */ for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); /* * Firmware gives the indices of the SGE as if the ring is an array * (meaning that the "next" element will consume 2 indices). */ frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " "sge_idx=%d frag_size=%d frag_len=%d\n", fp->index, queue, i, j, sge_idx, frag_size, frag_len); m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; /* allocate a new mbuf for the SGE */ rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); if (rc) { /* Leave all remaining SGEs in the ring! */ return (rc); } /* update the fragment length */ m_frag->m_len = frag_len; /* concatenate the fragment to the head mbuf */ m_cat(m, m_frag); fp->eth_q_stats.mbuf_alloc_sge--; /* update the TPA mbuf size and remaining fragment size */ m->m_pkthdr.len += frag_len; frag_size -= frag_len; } BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", fp->index, queue, frag_size); return (rc); } static inline void bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) { int i, j; for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; for (j = 0; j < 2; j++) { BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); idx--; } } } static inline void bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) { /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); /* * Clear the two last indices in the page to 1. These are the indices that * correspond to the "next" element, hence will never be indicated and * should be removed from the calculations. */ bxe_clear_sge_mask_next_elems(fp); } static inline void bxe_update_last_max_sge(struct bxe_fastpath *fp, uint16_t idx) { uint16_t last_max = fp->last_max_sge; if (SUB_S16(idx, last_max) > 0) { fp->last_max_sge = idx; } } static inline void bxe_update_sge_prod(struct bxe_softc *sc, struct bxe_fastpath *fp, uint16_t sge_len, struct eth_end_agg_rx_cqe *cqe) { uint16_t last_max, last_elem, first_elem; uint16_t delta = 0; uint16_t i; if (!sge_len) { return; } /* first mark all used pages */ for (i = 0; i < sge_len; i++) { BIT_VEC64_CLEAR_BIT(fp->sge_mask, RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i]))); } BLOGD(sc, DBG_LRO, "fp[%02d] fp_cqe->sgl[%d] = %d\n", fp->index, sge_len - 1, le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1])); /* assume that the last SGE index is the biggest */ bxe_update_last_max_sge(fp, le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1])); last_max = RX_SGE(fp->last_max_sge); last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; /* if ring is not full */ if (last_elem + 1 != first_elem) { last_elem++; } /* now update the prod */ for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { if (__predict_true(fp->sge_mask[i])) { break; } fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; delta += BIT_VEC64_ELEM_SZ; } if (delta > 0) { fp->rx_sge_prod += delta; /* clear page-end entries */ bxe_clear_sge_mask_next_elems(fp); } BLOGD(sc, DBG_LRO, "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", fp->index, fp->last_max_sge, fp->rx_sge_prod); } /* * The aggregation on the current TPA queue has completed. Pull the individual * mbuf fragments together into a single mbuf, perform all necessary checksum * calculations, and send the resuting mbuf to the stack. */ static void bxe_tpa_stop(struct bxe_softc *sc, struct bxe_fastpath *fp, struct bxe_sw_tpa_info *tpa_info, uint16_t queue, uint16_t pages, struct eth_end_agg_rx_cqe *cqe, uint16_t cqe_idx) { if_t ifp = sc->ifp; struct mbuf *m; int rc = 0; BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", fp->index, queue, tpa_info->placement_offset, le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); m = tpa_info->bd.m; /* allocate a replacement before modifying existing mbuf */ rc = bxe_alloc_rx_tpa_mbuf(fp, queue); if (rc) { /* drop the frame and log an error */ fp->eth_q_stats.rx_soft_errors++; goto bxe_tpa_stop_exit; } /* we have a replacement, fixup the current mbuf */ m_adj(m, tpa_info->placement_offset); m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; /* mark the checksums valid (taken care of by the firmware) */ fp->eth_q_stats.rx_ofld_frames_csum_ip++; fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; m->m_pkthdr.csum_data = 0xffff; m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); /* aggregate all of the SGEs into a single mbuf */ rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); if (rc) { /* drop the packet and log an error */ fp->eth_q_stats.rx_soft_errors++; m_freem(m); } else { if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) { m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; m->m_flags |= M_VLANTAG; } /* assign packet to this interface interface */ if_setrcvif(m, ifp); #if __FreeBSD_version >= 800000 /* specify what RSS queue was used for this flow */ m->m_pkthdr.flowid = fp->index; m->m_flags |= M_FLOWID; #endif if_incipackets(ifp, 1); fp->eth_q_stats.rx_tpa_pkts++; /* pass the frame to the stack */ if_input(ifp, m); } /* we passed an mbuf up the stack or dropped the frame */ fp->eth_q_stats.mbuf_alloc_tpa--; bxe_tpa_stop_exit: fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; fp->rx_tpa_queue_used &= ~(1 << queue); } static uint8_t bxe_rxeof(struct bxe_softc *sc, struct bxe_fastpath *fp) { if_t ifp = sc->ifp; uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; int rx_pkts = 0; int rc; BXE_FP_RX_LOCK(fp); /* CQ "next element" is of the size of the regular element */ hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { hw_cq_cons++; } bd_cons = fp->rx_bd_cons; bd_prod = fp->rx_bd_prod; bd_prod_fw = bd_prod; sw_cq_cons = fp->rx_cq_cons; sw_cq_prod = fp->rx_cq_prod; /* * Memory barrier necessary as speculative reads of the rx * buffer can be ahead of the index in the status block */ rmb(); BLOGD(sc, DBG_RX, "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", fp->index, hw_cq_cons, sw_cq_cons); while (sw_cq_cons != hw_cq_cons) { struct bxe_sw_rx_bd *rx_buf = NULL; union eth_rx_cqe *cqe; struct eth_fast_path_rx_cqe *cqe_fp; uint8_t cqe_fp_flags; enum eth_rx_cqe_type cqe_fp_type; uint16_t len, pad; struct mbuf *m = NULL; comp_ring_cons = RCQ(sw_cq_cons); bd_prod = RX_BD(bd_prod); bd_cons = RX_BD(bd_cons); cqe = &fp->rcq_chain[comp_ring_cons]; cqe_fp = &cqe->fast_path_cqe; cqe_fp_flags = cqe_fp->type_error_flags; cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; BLOGD(sc, DBG_RX, "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " "BD prod=%d cons=%d CQE type=0x%x err=0x%x " "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n", fp->index, hw_cq_cons, sw_cq_cons, bd_prod, bd_cons, CQE_TYPE(cqe_fp_flags), cqe_fp_flags, cqe_fp->status_flags, le32toh(cqe_fp->rss_hash_result), le16toh(cqe_fp->vlan_tag), le16toh(cqe_fp->pkt_len_or_gro_seg_len)); /* is this a slowpath msg? */ if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { bxe_sp_event(sc, fp, cqe); goto next_cqe; } rx_buf = &fp->rx_mbuf_chain[bd_cons]; if (!CQE_TYPE_FAST(cqe_fp_type)) { struct bxe_sw_tpa_info *tpa_info; uint16_t frag_size, pages; uint8_t queue; #if 0 /* sanity check */ if (!fp->tpa_enable && (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) { BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n", CQE_TYPE(cqe_fp_type)); } #endif if (CQE_TYPE_START(cqe_fp_type)) { bxe_tpa_start(sc, fp, cqe_fp->queue_index, bd_cons, bd_prod, cqe_fp); m = NULL; /* packet not ready yet */ goto next_rx; } KASSERT(CQE_TYPE_STOP(cqe_fp_type), ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); queue = cqe->end_agg_cqe.queue_index; tpa_info = &fp->rx_tpa_info[queue]; BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", fp->index, queue); frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - tpa_info->len_on_bd); pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; bxe_tpa_stop(sc, fp, tpa_info, queue, pages, &cqe->end_agg_cqe, comp_ring_cons); bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe); goto next_cqe; } /* non TPA */ /* is this an error packet? */ if (__predict_false(cqe_fp_flags & ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); fp->eth_q_stats.rx_soft_errors++; goto next_rx; } len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); pad = cqe_fp->placement_offset; m = rx_buf->m; if (__predict_false(m == NULL)) { BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", bd_cons, fp->index); goto next_rx; } /* XXX double copy if packet length under a threshold */ /* * If all the buffer descriptors are filled with mbufs then fill in * the current consumer index with a new BD. Else if a maximum Rx * buffer limit is imposed then fill in the next producer index. */ rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, (sc->max_rx_bufs != RX_BD_USABLE) ? bd_prod : bd_cons); if (rc != 0) { BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", fp->index, rc); fp->eth_q_stats.rx_soft_errors++; if (sc->max_rx_bufs != RX_BD_USABLE) { /* copy this consumer index to the producer index */ memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, sizeof(struct bxe_sw_rx_bd)); memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); } goto next_rx; } /* current mbuf was detached from the bd */ fp->eth_q_stats.mbuf_alloc_rx--; /* we allocated a replacement mbuf, fixup the current one */ m_adj(m, pad); m->m_pkthdr.len = m->m_len = len; /* assign packet to this interface interface */ if_setrcvif(m, ifp); /* assume no hardware checksum has complated */ m->m_pkthdr.csum_flags = 0; /* validate checksum if offload enabled */ if (if_getcapenable(ifp) & IFCAP_RXCSUM) { /* check for a valid IP frame */ if (!(cqe->fast_path_cqe.status_flags & ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if (__predict_false(cqe_fp_flags & ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { fp->eth_q_stats.rx_hw_csum_errors++; } else { fp->eth_q_stats.rx_ofld_frames_csum_ip++; m->m_pkthdr.csum_flags |= CSUM_IP_VALID; } } /* check for a valid TCP/UDP frame */ if (!(cqe->fast_path_cqe.status_flags & ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { if (__predict_false(cqe_fp_flags & ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { fp->eth_q_stats.rx_hw_csum_errors++; } else { fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; m->m_pkthdr.csum_data = 0xFFFF; m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); } } } /* if there is a VLAN tag then flag that info */ if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) { m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; m->m_flags |= M_VLANTAG; } #if __FreeBSD_version >= 800000 /* specify what RSS queue was used for this flow */ m->m_pkthdr.flowid = fp->index; m->m_flags |= M_FLOWID; #endif next_rx: bd_cons = RX_BD_NEXT(bd_cons); bd_prod = RX_BD_NEXT(bd_prod); bd_prod_fw = RX_BD_NEXT(bd_prod_fw); /* pass the frame to the stack */ if (__predict_true(m != NULL)) { if_incipackets(ifp, 1); rx_pkts++; if_input(ifp, m); } next_cqe: sw_cq_prod = RCQ_NEXT(sw_cq_prod); sw_cq_cons = RCQ_NEXT(sw_cq_cons); /* limit spinning on the queue */ if (rx_pkts == sc->rx_budget) { fp->eth_q_stats.rx_budget_reached++; break; } } /* while work to do */ fp->rx_bd_cons = bd_cons; fp->rx_bd_prod = bd_prod_fw; fp->rx_cq_cons = sw_cq_cons; fp->rx_cq_prod = sw_cq_prod; /* Update producers */ bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); fp->eth_q_stats.rx_pkts += rx_pkts; fp->eth_q_stats.rx_calls++; BXE_FP_RX_UNLOCK(fp); return (sw_cq_cons != hw_cq_cons); } static uint16_t bxe_free_tx_pkt(struct bxe_softc *sc, struct bxe_fastpath *fp, uint16_t idx) { struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; struct eth_tx_start_bd *tx_start_bd; uint16_t bd_idx = TX_BD(tx_buf->first_bd); uint16_t new_cons; int nbd; /* unmap the mbuf from non-paged memory */ bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); tx_start_bd = &fp->tx_chain[bd_idx].start_bd; nbd = le16toh(tx_start_bd->nbd) - 1; #if 0 if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) { bxe_panic(sc, ("BAD nbd!\n")); } #endif new_cons = (tx_buf->first_bd + nbd); #if 0 struct eth_tx_bd *tx_data_bd; /* * The following code doesn't do anything but is left here * for clarity on what the new value of new_cons skipped. */ /* get the next bd */ bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); /* skip the parse bd */ --nbd; bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); /* skip the TSO split header bd since they have no mapping */ if (tx_buf->flags & BXE_TSO_SPLIT_BD) { --nbd; bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); } /* now free frags */ while (nbd > 0) { tx_data_bd = &fp->tx_chain[bd_idx].reg_bd; if (--nbd) { bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); } } #endif /* free the mbuf */ if (__predict_true(tx_buf->m != NULL)) { m_freem(tx_buf->m); fp->eth_q_stats.mbuf_alloc_tx--; } else { fp->eth_q_stats.tx_chain_lost_mbuf++; } tx_buf->m = NULL; tx_buf->first_bd = 0; return (new_cons); } /* transmit timeout watchdog */ static int bxe_watchdog(struct bxe_softc *sc, struct bxe_fastpath *fp) { BXE_FP_TX_LOCK(fp); if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { BXE_FP_TX_UNLOCK(fp); return (0); } BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); BXE_FP_TX_UNLOCK(fp); atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); return (-1); } /* processes transmit completions */ static uint8_t bxe_txeof(struct bxe_softc *sc, struct bxe_fastpath *fp) { if_t ifp = sc->ifp; uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; uint16_t tx_bd_avail; BXE_FP_TX_LOCK_ASSERT(fp); bd_cons = fp->tx_bd_cons; hw_cons = le16toh(*fp->tx_cons_sb); sw_cons = fp->tx_pkt_cons; while (sw_cons != hw_cons) { pkt_cons = TX_BD(sw_cons); BLOGD(sc, DBG_TX, "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", fp->index, hw_cons, sw_cons, pkt_cons); bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); sw_cons++; } fp->tx_pkt_cons = sw_cons; fp->tx_bd_cons = bd_cons; BLOGD(sc, DBG_TX, "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); mb(); tx_bd_avail = bxe_tx_avail(sc, fp); if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); } else { if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); } if (fp->tx_pkt_prod != fp->tx_pkt_cons) { /* reset the watchdog timer if there are pending transmits */ fp->watchdog_timer = BXE_TX_TIMEOUT; return (TRUE); } else { /* clear watchdog when there are no pending transmits */ fp->watchdog_timer = 0; return (FALSE); } } static void bxe_drain_tx_queues(struct bxe_softc *sc) { struct bxe_fastpath *fp; int i, count; /* wait until all TX fastpath tasks have completed */ for (i = 0; i < sc->num_queues; i++) { fp = &sc->fp[i]; count = 1000; while (bxe_has_tx_work(fp)) { BXE_FP_TX_LOCK(fp); bxe_txeof(sc, fp); BXE_FP_TX_UNLOCK(fp); if (count == 0) { BLOGE(sc, "Timeout waiting for fp[%d] " "transmits to complete!\n", i); bxe_panic(sc, ("tx drain failure\n")); return; } count--; DELAY(1000); rmb(); } } return; } static int bxe_del_all_macs(struct bxe_softc *sc, struct ecore_vlan_mac_obj *mac_obj, int mac_type, uint8_t wait_for_comp) { unsigned long ramrod_flags = 0, vlan_mac_flags = 0; int rc; /* wait for completion of requested */ if (wait_for_comp) { bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); } /* Set the mac type of addresses we want to clear */ bxe_set_bit(mac_type, &vlan_mac_flags); rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); if (rc < 0) { BLOGE(sc, "Failed to delete MACs (%d)\n", rc); } return (rc); } static int bxe_fill_accept_flags(struct bxe_softc *sc, uint32_t rx_mode, unsigned long *rx_accept_flags, unsigned long *tx_accept_flags) { /* Clear the flags first */ *rx_accept_flags = 0; *tx_accept_flags = 0; switch (rx_mode) { case BXE_RX_MODE_NONE: /* * 'drop all' supersedes any accept flags that may have been * passed to the function. */ break; case BXE_RX_MODE_NORMAL: bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); /* internal switching mode */ bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); break; case BXE_RX_MODE_ALLMULTI: bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); /* internal switching mode */ bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); break; case BXE_RX_MODE_PROMISC: /* * According to deffinition of SI mode, iface in promisc mode * should receive matched and unmatched (in resolution of port) * unicast packets. */ bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); /* internal switching mode */ bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); if (IS_MF_SI(sc)) { bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); } else { bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); } break; default: BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode); return (-1); } /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ if (rx_mode != BXE_RX_MODE_NONE) { bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); } return (0); } static int bxe_set_q_rx_mode(struct bxe_softc *sc, uint8_t cl_id, unsigned long rx_mode_flags, unsigned long rx_accept_flags, unsigned long tx_accept_flags, unsigned long ramrod_flags) { struct ecore_rx_mode_ramrod_params ramrod_param; int rc; memset(&ramrod_param, 0, sizeof(ramrod_param)); /* Prepare ramrod parameters */ ramrod_param.cid = 0; ramrod_param.cl_id = cl_id; ramrod_param.rx_mode_obj = &sc->rx_mode_obj; ramrod_param.func_id = SC_FUNC(sc); ramrod_param.pstate = &sc->sp_state; ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); ramrod_param.ramrod_flags = ramrod_flags; ramrod_param.rx_mode_flags = rx_mode_flags; ramrod_param.rx_accept_flags = rx_accept_flags; ramrod_param.tx_accept_flags = tx_accept_flags; rc = ecore_config_rx_mode(sc, &ramrod_param); if (rc < 0) { BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode); return (rc); } return (0); } static int bxe_set_storm_rx_mode(struct bxe_softc *sc) { unsigned long rx_mode_flags = 0, ramrod_flags = 0; unsigned long rx_accept_flags = 0, tx_accept_flags = 0; int rc; rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, &tx_accept_flags); if (rc) { return (rc); } bxe_set_bit(RAMROD_RX, &ramrod_flags); bxe_set_bit(RAMROD_TX, &ramrod_flags); /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, rx_accept_flags, tx_accept_flags, ramrod_flags)); } /* returns the "mcp load_code" according to global load_count array */ static int bxe_nic_load_no_mcp(struct bxe_softc *sc) { int path = SC_PATH(sc); int port = SC_PORT(sc); BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", path, load_count[path][0], load_count[path][1], load_count[path][2]); load_count[path][0]++; load_count[path][1 + port]++; BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", path, load_count[path][0], load_count[path][1], load_count[path][2]); if (load_count[path][0] == 1) { return (FW_MSG_CODE_DRV_LOAD_COMMON); } else if (load_count[path][1 + port] == 1) { return (FW_MSG_CODE_DRV_LOAD_PORT); } else { return (FW_MSG_CODE_DRV_LOAD_FUNCTION); } } /* returns the "mcp load_code" according to global load_count array */ static int bxe_nic_unload_no_mcp(struct bxe_softc *sc) { int port = SC_PORT(sc); int path = SC_PATH(sc); BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", path, load_count[path][0], load_count[path][1], load_count[path][2]); load_count[path][0]--; load_count[path][1 + port]--; BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", path, load_count[path][0], load_count[path][1], load_count[path][2]); if (load_count[path][0] == 0) { return (FW_MSG_CODE_DRV_UNLOAD_COMMON); } else if (load_count[path][1 + port] == 0) { return (FW_MSG_CODE_DRV_UNLOAD_PORT); } else { return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); } } /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ static uint32_t bxe_send_unload_req(struct bxe_softc *sc, int unload_mode) { uint32_t reset_code = 0; #if 0 int port = SC_PORT(sc); int path = SC_PATH(sc); #endif /* Select the UNLOAD request mode */ if (unload_mode == UNLOAD_NORMAL) { reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; } #if 0 else if (sc->flags & BXE_NO_WOL_FLAG) { reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; } else if (sc->wol) { uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; uint8_t *mac_addr = sc->dev->dev_addr; uint32_t val; uint16_t pmc; /* * The mac address is written to entries 1-4 to * preserve entry 0 which is used by the PMF */ uint8_t entry = (SC_VN(sc) + 1)*8; val = (mac_addr[0] << 8) | mac_addr[1]; EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val); val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | (mac_addr[4] << 8) | mac_addr[5]; EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); /* Enable the PME and clear the status */ pmc = pci_read_config(sc->dev, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 2); pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME; pci_write_config(sc->dev, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), pmc, 4); reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; } #endif else { reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; } /* Send the request to the MCP */ if (!BXE_NOMCP(sc)) { reset_code = bxe_fw_command(sc, reset_code, 0); } else { reset_code = bxe_nic_unload_no_mcp(sc); } return (reset_code); } /* send UNLOAD_DONE command to the MCP */ static void bxe_send_unload_done(struct bxe_softc *sc, uint8_t keep_link) { uint32_t reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; /* Report UNLOAD_DONE to MCP */ if (!BXE_NOMCP(sc)) { bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); } } static int bxe_func_wait_started(struct bxe_softc *sc) { int tout = 50; if (!sc->port.pmf) { return (0); } /* * (assumption: No Attention from MCP at this stage) * PMF probably in the middle of TX disable/enable transaction * 1. Sync IRS for default SB * 2. Sync SP queue - this guarantees us that attention handling started * 3. Wait, that TX disable/enable transaction completes * * 1+2 guarantee that if DCBX attention was scheduled it already changed * pending bit of transaction from STARTED-->TX_STOPPED, if we already * received completion for the transaction the state is TX_STOPPED. * State will return to STARTED after completion of TX_STOPPED-->STARTED * transaction. */ /* XXX make sure default SB ISR is done */ /* need a way to synchronize an irq (intr_mtx?) */ /* XXX flush any work queues */ while (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED && tout--) { DELAY(20000); } if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { /* * Failed to complete the transaction in a "good way" * Force both transactions with CLR bit. */ struct ecore_func_state_params func_params = { NULL }; BLOGE(sc, "Unexpected function state! " "Forcing STARTED-->TX_STOPPED-->STARTED\n"); func_params.f_obj = &sc->func_obj; bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); /* STARTED-->TX_STOPPED */ func_params.cmd = ECORE_F_CMD_TX_STOP; ecore_func_state_change(sc, &func_params); /* TX_STOPPED-->STARTED */ func_params.cmd = ECORE_F_CMD_TX_START; return (ecore_func_state_change(sc, &func_params)); } return (0); } static int bxe_stop_queue(struct bxe_softc *sc, int index) { struct bxe_fastpath *fp = &sc->fp[index]; struct ecore_queue_state_params q_params = { NULL }; int rc; BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); q_params.q_obj = &sc->sp_objs[fp->index].q_obj; /* We want to wait for completion in this context */ bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); /* Stop the primary connection: */ /* ...halt the connection */ q_params.cmd = ECORE_Q_CMD_HALT; rc = ecore_queue_state_change(sc, &q_params); if (rc) { return (rc); } /* ...terminate the connection */ q_params.cmd = ECORE_Q_CMD_TERMINATE; memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; rc = ecore_queue_state_change(sc, &q_params); if (rc) { return (rc); } /* ...delete cfc entry */ q_params.cmd = ECORE_Q_CMD_CFC_DEL; memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; return (ecore_queue_state_change(sc, &q_params)); } /* wait for the outstanding SP commands */ static inline uint8_t bxe_wait_sp_comp(struct bxe_softc *sc, unsigned long mask) { unsigned long tmp; int tout = 5000; /* wait for 5 secs tops */ while (tout--) { mb(); if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { return (TRUE); } DELAY(1000); } mb(); tmp = atomic_load_acq_long(&sc->sp_state); if (tmp & mask) { BLOGE(sc, "Filtering completion timed out: " "sp_state 0x%lx, mask 0x%lx\n", tmp, mask); return (FALSE); } return (FALSE); } static int bxe_func_stop(struct bxe_softc *sc) { struct ecore_func_state_params func_params = { NULL }; int rc; /* prepare parameters for function state transitions */ bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); func_params.f_obj = &sc->func_obj; func_params.cmd = ECORE_F_CMD_STOP; /* * Try to stop the function the 'good way'. If it fails (in case * of a parity error during bxe_chip_cleanup()) and we are * not in a debug mode, perform a state transaction in order to * enable further HW_RESET transaction. */ rc = ecore_func_state_change(sc, &func_params); if (rc) { BLOGE(sc, "FUNC_STOP ramrod failed. " "Running a dry transaction\n"); bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); return (ecore_func_state_change(sc, &func_params)); } return (0); } static int bxe_reset_hw(struct bxe_softc *sc, uint32_t load_code) { struct ecore_func_state_params func_params = { NULL }; /* Prepare parameters for function state transitions */ bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); func_params.f_obj = &sc->func_obj; func_params.cmd = ECORE_F_CMD_HW_RESET; func_params.params.hw_init.load_phase = load_code; return (ecore_func_state_change(sc, &func_params)); } static void bxe_int_disable_sync(struct bxe_softc *sc, int disable_hw) { if (disable_hw) { /* prevent the HW from sending interrupts */ bxe_int_disable(sc); } /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ /* make sure all ISRs are done */ /* XXX make sure sp_task is not running */ /* cancel and flush work queues */ } static void bxe_chip_cleanup(struct bxe_softc *sc, uint32_t unload_mode, uint8_t keep_link) { int port = SC_PORT(sc); struct ecore_mcast_ramrod_params rparam = { NULL }; uint32_t reset_code; int i, rc = 0; bxe_drain_tx_queues(sc); /* give HW time to discard old tx messages */ DELAY(1000); /* Clean all ETH MACs */ rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); if (rc < 0) { BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); } /* Clean up UC list */ rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); if (rc < 0) { BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); } /* Disable LLH */ if (!CHIP_IS_E1(sc)) { REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); } /* Set "drop all" to stop Rx */ /* * We need to take the BXE_MCAST_LOCK() here in order to prevent * a race between the completion code and this code. */ BXE_MCAST_LOCK(sc); if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); } else { bxe_set_storm_rx_mode(sc); } /* Clean up multicast configuration */ rparam.mcast_obj = &sc->mcast_obj; rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); if (rc < 0) { BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); } BXE_MCAST_UNLOCK(sc); // XXX bxe_iov_chip_cleanup(sc); /* * Send the UNLOAD_REQUEST to the MCP. This will return if * this function should perform FUNCTION, PORT, or COMMON HW * reset. */ reset_code = bxe_send_unload_req(sc, unload_mode); /* * (assumption: No Attention from MCP at this stage) * PMF probably in the middle of TX disable/enable transaction */ rc = bxe_func_wait_started(sc); if (rc) { BLOGE(sc, "bxe_func_wait_started failed\n"); } /* * Close multi and leading connections * Completions for ramrods are collected in a synchronous way */ for (i = 0; i < sc->num_queues; i++) { if (bxe_stop_queue(sc, i)) { goto unload_error; } } /* * If SP settings didn't get completed so far - something * very wrong has happen. */ if (!bxe_wait_sp_comp(sc, ~0x0UL)) { BLOGE(sc, "Common slow path ramrods got stuck!\n"); } unload_error: rc = bxe_func_stop(sc); if (rc) { BLOGE(sc, "Function stop failed!\n"); } /* disable HW interrupts */ bxe_int_disable_sync(sc, TRUE); /* detach interrupts */ bxe_interrupt_detach(sc); /* Reset the chip */ rc = bxe_reset_hw(sc, reset_code); if (rc) { BLOGE(sc, "Hardware reset failed\n"); } /* Report UNLOAD_DONE to MCP */ bxe_send_unload_done(sc, keep_link); } static void bxe_disable_close_the_gate(struct bxe_softc *sc) { uint32_t val; int port = SC_PORT(sc); BLOGD(sc, DBG_LOAD, "Disabling 'close the gates'\n"); if (CHIP_IS_E1(sc)) { uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : MISC_REG_AEU_MASK_ATTN_FUNC_0; val = REG_RD(sc, addr); val &= ~(0x300); REG_WR(sc, addr, val); } else { val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); } } /* * Cleans the object that have internal lists without sending * ramrods. Should be run when interrutps are disabled. */ static void bxe_squeeze_objects(struct bxe_softc *sc) { unsigned long ramrod_flags = 0, vlan_mac_flags = 0; struct ecore_mcast_ramrod_params rparam = { NULL }; struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; int rc; /* Cleanup MACs' object first... */ /* Wait for completion of requested */ bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); /* Perform a dry cleanup */ bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); /* Clean ETH primary MAC */ bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, &ramrod_flags); if (rc != 0) { BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); } /* Cleanup UC list */ vlan_mac_flags = 0; bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); if (rc != 0) { BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); } /* Now clean mcast object... */ rparam.mcast_obj = &sc->mcast_obj; bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); /* Add a DEL command... */ rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); if (rc < 0) { BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); } /* now wait until all pending commands are cleared */ rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); while (rc != 0) { if (rc < 0) { BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); return; } rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); } } /* stop the controller */ static __noinline int bxe_nic_unload(struct bxe_softc *sc, uint32_t unload_mode, uint8_t keep_link) { uint8_t global = FALSE; uint32_t val; BXE_CORE_LOCK_ASSERT(sc); BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); /* mark driver as unloaded in shmem2 */ if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); } if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { /* * We can get here if the driver has been unloaded * during parity error recovery and is either waiting for a * leader to complete or for other functions to unload and * then ifconfig down has been issued. In this case we want to * unload and let other functions to complete a recovery * process. */ sc->recovery_state = BXE_RECOVERY_DONE; sc->is_leader = 0; bxe_release_leader_lock(sc); mb(); BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); BLOGE(sc, "Can't unload in closed or error state\n"); return (-1); } /* * Nothing to do during unload if previous bxe_nic_load() * did not completed succesfully - all resourses are released. */ if ((sc->state == BXE_STATE_CLOSED) || (sc->state == BXE_STATE_ERROR)) { return (0); } sc->state = BXE_STATE_CLOSING_WAITING_HALT; mb(); /* stop tx */ bxe_tx_disable(sc); sc->rx_mode = BXE_RX_MODE_NONE; /* XXX set rx mode ??? */ if (IS_PF(sc)) { /* set ALWAYS_ALIVE bit in shmem */ sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; bxe_drv_pulse(sc); bxe_stats_handle(sc, STATS_EVENT_STOP); bxe_save_statistics(sc); } /* wait till consumers catch up with producers in all queues */ bxe_drain_tx_queues(sc); /* if VF indicate to PF this function is going down (PF will delete sp * elements and clear initializations */ if (IS_VF(sc)) { ; /* bxe_vfpf_close_vf(sc); */ } else if (unload_mode != UNLOAD_RECOVERY) { /* if this is a normal/close unload need to clean up chip */ bxe_chip_cleanup(sc, unload_mode, keep_link); } else { /* Send the UNLOAD_REQUEST to the MCP */ bxe_send_unload_req(sc, unload_mode); /* * Prevent transactions to host from the functions on the * engine that doesn't reset global blocks in case of global * attention once gloabl blocks are reset and gates are opened * (the engine which leader will perform the recovery * last). */ if (!CHIP_IS_E1x(sc)) { bxe_pf_disable(sc); } /* disable HW interrupts */ bxe_int_disable_sync(sc, TRUE); /* detach interrupts */ bxe_interrupt_detach(sc); /* Report UNLOAD_DONE to MCP */ bxe_send_unload_done(sc, FALSE); } /* * At this stage no more interrupts will arrive so we may safely clean * the queue'able objects here in case they failed to get cleaned so far. */ if (IS_PF(sc)) { bxe_squeeze_objects(sc); } /* There should be no more pending SP commands at this stage */ sc->sp_state = 0; sc->port.pmf = 0; bxe_free_fp_buffers(sc); if (IS_PF(sc)) { bxe_free_mem(sc); } bxe_free_fw_stats_mem(sc); sc->state = BXE_STATE_CLOSED; /* * Check if there are pending parity attentions. If there are - set * RECOVERY_IN_PROGRESS. */ if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { bxe_set_reset_in_progress(sc); /* Set RESET_IS_GLOBAL if needed */ if (global) { bxe_set_reset_global(sc); } } /* * The last driver must disable a "close the gate" if there is no * parity attention or "process kill" pending. */ if (IS_PF(sc) && !bxe_clear_pf_load(sc) && bxe_reset_is_done(sc, SC_PATH(sc))) { bxe_disable_close_the_gate(sc); } BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); return (0); } /* * Called by the OS to set various media options (i.e. link, speed, etc.) when * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". */ static int bxe_ifmedia_update(struct ifnet *ifp) { struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); struct ifmedia *ifm; ifm = &sc->ifmedia; /* We only support Ethernet media type. */ if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { return (EINVAL); } switch (IFM_SUBTYPE(ifm->ifm_media)) { case IFM_AUTO: break; case IFM_10G_CX4: case IFM_10G_SR: case IFM_10G_T: case IFM_10G_TWINAX: default: /* We don't support changing the media type. */ BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", IFM_SUBTYPE(ifm->ifm_media)); return (EINVAL); } return (0); } /* * Called by the OS to get the current media status (i.e. link, speed, etc.). */ static void bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) { struct bxe_softc *sc = if_getsoftc(ifp); /* Report link down if the driver isn't running. */ if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { ifmr->ifm_active |= IFM_NONE; return; } /* Setup the default interface info. */ ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (sc->link_vars.link_up) { ifmr->ifm_status |= IFM_ACTIVE; } else { ifmr->ifm_active |= IFM_NONE; return; } ifmr->ifm_active |= sc->media; if (sc->link_vars.duplex == DUPLEX_FULL) { ifmr->ifm_active |= IFM_FDX; } else { ifmr->ifm_active |= IFM_HDX; } } static int bxe_ioctl_nvram(struct bxe_softc *sc, uint32_t priv_op, struct ifreq *ifr) { struct bxe_nvram_data nvdata_base; struct bxe_nvram_data *nvdata; int len; int error = 0; copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base)); len = (sizeof(struct bxe_nvram_data) + nvdata_base.len - sizeof(uint32_t)); if (len > sizeof(struct bxe_nvram_data)) { if ((nvdata = (struct bxe_nvram_data *) malloc(len, M_DEVBUF, (M_NOWAIT | M_ZERO))) == NULL) { BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n"); return (1); } memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data)); } else { nvdata = &nvdata_base; } if (priv_op == BXE_IOC_RD_NVRAM) { BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n", nvdata->offset, nvdata->len); error = bxe_nvram_read(sc, nvdata->offset, (uint8_t *)nvdata->value, nvdata->len); copyout(nvdata, ifr->ifr_data, len); } else { /* BXE_IOC_WR_NVRAM */ BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n", nvdata->offset, nvdata->len); copyin(ifr->ifr_data, nvdata, len); error = bxe_nvram_write(sc, nvdata->offset, (uint8_t *)nvdata->value, nvdata->len); } if (len > sizeof(struct bxe_nvram_data)) { free(nvdata, M_DEVBUF); } return (error); } static int bxe_ioctl_stats_show(struct bxe_softc *sc, uint32_t priv_op, struct ifreq *ifr) { const size_t str_size = (BXE_NUM_ETH_STATS * STAT_NAME_LEN); const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t)); caddr_t p_tmp; uint32_t *offset; int i; switch (priv_op) { case BXE_IOC_STATS_SHOW_NUM: memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data)); ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num = BXE_NUM_ETH_STATS; ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len = STAT_NAME_LEN; return (0); case BXE_IOC_STATS_SHOW_STR: memset(ifr->ifr_data, 0, str_size); p_tmp = ifr->ifr_data; for (i = 0; i < BXE_NUM_ETH_STATS; i++) { strcpy(p_tmp, bxe_eth_stats_arr[i].string); p_tmp += STAT_NAME_LEN; } return (0); case BXE_IOC_STATS_SHOW_CNT: memset(ifr->ifr_data, 0, stats_size); p_tmp = ifr->ifr_data; for (i = 0; i < BXE_NUM_ETH_STATS; i++) { offset = ((uint32_t *)&sc->eth_stats + bxe_eth_stats_arr[i].offset); switch (bxe_eth_stats_arr[i].size) { case 4: *((uint64_t *)p_tmp) = (uint64_t)*offset; break; case 8: *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1)); break; default: *((uint64_t *)p_tmp) = 0; } p_tmp += sizeof(uint64_t); } return (0); default: return (-1); } } static void bxe_handle_chip_tq(void *context, int pending) { struct bxe_softc *sc = (struct bxe_softc *)context; long work = atomic_load_acq_long(&sc->chip_tq_flags); switch (work) { case CHIP_TQ_START: if ((if_getflags(sc->ifp) & IFF_UP) && !(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { /* start the interface */ BLOGD(sc, DBG_LOAD, "Starting the interface...\n"); BXE_CORE_LOCK(sc); bxe_init_locked(sc); BXE_CORE_UNLOCK(sc); } break; case CHIP_TQ_STOP: if (!(if_getflags(sc->ifp) & IFF_UP) && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { /* bring down the interface */ BLOGD(sc, DBG_LOAD, "Stopping the interface...\n"); bxe_periodic_stop(sc); BXE_CORE_LOCK(sc); bxe_stop_locked(sc); BXE_CORE_UNLOCK(sc); } break; case CHIP_TQ_REINIT: if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { /* restart the interface */ BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); bxe_periodic_stop(sc); BXE_CORE_LOCK(sc); bxe_stop_locked(sc); bxe_init_locked(sc); BXE_CORE_UNLOCK(sc); } break; default: break; } } /* * Handles any IOCTL calls from the operating system. * * Returns: * 0 = Success, >0 Failure */ static int bxe_ioctl(if_t ifp, u_long command, caddr_t data) { struct bxe_softc *sc = if_getsoftc(ifp); struct ifreq *ifr = (struct ifreq *)data; struct bxe_nvram_data *nvdata; uint32_t priv_op; int mask = 0; int reinit = 0; int error = 0; int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); switch (command) { case SIOCSIFMTU: BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", ifr->ifr_mtu); if (sc->mtu == ifr->ifr_mtu) { /* nothing to change */ break; } if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", ifr->ifr_mtu, mtu_min, mtu_max); error = EINVAL; break; } atomic_store_rel_int((volatile unsigned int *)&sc->mtu, (unsigned long)ifr->ifr_mtu); /* atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), (unsigned long)ifr->ifr_mtu); XXX - Not sure why it needs to be atomic */ if_setmtu(ifp, ifr->ifr_mtu); reinit = 1; break; case SIOCSIFFLAGS: /* toggle the interface state up or down */ BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); /* check if the interface is up */ if (if_getflags(ifp) & IFF_UP) { if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { /* set the receive mode flags */ bxe_set_rx_mode(sc); } else { atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START); taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); } } else { if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP); taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); } } break; case SIOCADDMULTI: case SIOCDELMULTI: /* add/delete multicast addresses */ BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); /* check if the interface is up */ if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { /* set the receive mode flags */ bxe_set_rx_mode(sc); } break; case SIOCSIFCAP: /* find out which capabilities have changed */ mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", mask); /* toggle the LRO capabilites enable flag */ if (mask & IFCAP_LRO) { if_togglecapenable(ifp, IFCAP_LRO); BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); reinit = 1; } /* toggle the TXCSUM checksum capabilites enable flag */ if (mask & IFCAP_TXCSUM) { if_togglecapenable(ifp, IFCAP_TXCSUM); BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); if (if_getcapenable(ifp) & IFCAP_TXCSUM) { if_sethwassistbits(ifp, (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_TSO | CSUM_TCP_IPV6 | CSUM_UDP_IPV6), 0); } else { if_clearhwassist(ifp); /* XXX */ } } /* toggle the RXCSUM checksum capabilities enable flag */ if (mask & IFCAP_RXCSUM) { if_togglecapenable(ifp, IFCAP_RXCSUM); BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); if (if_getcapenable(ifp) & IFCAP_RXCSUM) { if_sethwassistbits(ifp, (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_TSO | CSUM_TCP_IPV6 | CSUM_UDP_IPV6), 0); } else { if_clearhwassist(ifp); /* XXX */ } } /* toggle TSO4 capabilities enabled flag */ if (mask & IFCAP_TSO4) { if_togglecapenable(ifp, IFCAP_TSO4); BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); } /* toggle TSO6 capabilities enabled flag */ if (mask & IFCAP_TSO6) { if_togglecapenable(ifp, IFCAP_TSO6); BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); } /* toggle VLAN_HWTSO capabilities enabled flag */ if (mask & IFCAP_VLAN_HWTSO) { if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); } /* toggle VLAN_HWCSUM capabilities enabled flag */ if (mask & IFCAP_VLAN_HWCSUM) { /* XXX investigate this... */ BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); error = EINVAL; } /* toggle VLAN_MTU capabilities enable flag */ if (mask & IFCAP_VLAN_MTU) { /* XXX investigate this... */ BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); error = EINVAL; } /* toggle VLAN_HWTAGGING capabilities enabled flag */ if (mask & IFCAP_VLAN_HWTAGGING) { /* XXX investigate this... */ BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); error = EINVAL; } /* toggle VLAN_HWFILTER capabilities enabled flag */ if (mask & IFCAP_VLAN_HWFILTER) { /* XXX investigate this... */ BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); error = EINVAL; } /* XXX not yet... * IFCAP_WOL_MAGIC */ break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: /* set/get interface media */ BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", (command & 0xff)); error = ifmedia_ioctl_drv(ifp, ifr, &sc->ifmedia, command); break; case SIOCGPRIVATE_0: copyin(ifr->ifr_data, &priv_op, sizeof(priv_op)); switch (priv_op) { case BXE_IOC_RD_NVRAM: case BXE_IOC_WR_NVRAM: nvdata = (struct bxe_nvram_data *)ifr->ifr_data; BLOGD(sc, DBG_IOCTL, "Received Private NVRAM ioctl addr=0x%x size=%u\n", nvdata->offset, nvdata->len); error = bxe_ioctl_nvram(sc, priv_op, ifr); break; case BXE_IOC_STATS_SHOW_NUM: case BXE_IOC_STATS_SHOW_STR: case BXE_IOC_STATS_SHOW_CNT: BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n", priv_op); error = bxe_ioctl_stats_show(sc, priv_op, ifr); break; default: BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op); error = EINVAL; break; } break; default: BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", (command & 0xff)); error = ether_ioctl_drv(ifp, command, data); break; } if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { BLOGD(sc, DBG_LOAD | DBG_IOCTL, "Re-initializing hardware from IOCTL change\n"); atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); } return (error); } static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, struct mbuf *m, uint8_t contents) { char * type; int i = 0; if (!(sc->debug & DBG_MBUF)) { return; } if (m == NULL) { BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); return; } while (m) { BLOGD(sc, DBG_MBUF, "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); if (m->m_flags & M_PKTHDR) { BLOGD(sc, DBG_MBUF, "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, (int)m->m_pkthdr.csum_flags, CSUM_BITS); } if (m->m_flags & M_EXT) { switch (m->m_ext.ext_type) { case EXT_CLUSTER: type = "EXT_CLUSTER"; break; case EXT_SFBUF: type = "EXT_SFBUF"; break; case EXT_JUMBOP: type = "EXT_JUMBOP"; break; case EXT_JUMBO9: type = "EXT_JUMBO9"; break; case EXT_JUMBO16: type = "EXT_JUMBO16"; break; case EXT_PACKET: type = "EXT_PACKET"; break; case EXT_MBUF: type = "EXT_MBUF"; break; case EXT_NET_DRV: type = "EXT_NET_DRV"; break; case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; case EXT_EXTREF: type = "EXT_EXTREF"; break; default: type = "UNKNOWN"; break; } BLOGD(sc, DBG_MBUF, "%02d: - m_ext: %p ext_size=%d type=%s\n", i, m->m_ext.ext_buf, m->m_ext.ext_size, type); } if (contents) { bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); } m = m->m_next; i++; } } /* * Checks to ensure the 13 bd sliding window is >= MSS for TSO. * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD * The headers comes in a seperate bd in FreeBSD so 13-3=10. * Returns: 0 if OK to send, 1 if packet needs further defragmentation */ static int bxe_chktso_window(struct bxe_softc *sc, int nsegs, bus_dma_segment_t *segs, struct mbuf *m) { uint32_t num_wnds, wnd_size, wnd_sum; int32_t frag_idx, wnd_idx; unsigned short lso_mss; int defrag; defrag = 0; wnd_sum = 0; wnd_size = 10; num_wnds = nsegs - wnd_size; lso_mss = htole16(m->m_pkthdr.tso_segsz); /* * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the * first window sum of data while skipping the first assuming it is the * header in FreeBSD. */ for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { wnd_sum += htole16(segs[frag_idx].ds_len); } /* check the first 10 bd window size */ if (wnd_sum < lso_mss) { return (1); } /* run through the windows */ for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { /* subtract the first mbuf->m_len of the last wndw(-header) */ wnd_sum -= htole16(segs[wnd_idx+1].ds_len); /* add the next mbuf len to the len of our new window */ wnd_sum += htole16(segs[frag_idx].ds_len); if (wnd_sum < lso_mss) { return (1); } } return (0); } static uint8_t bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, struct mbuf *m, uint32_t *parsing_data) { struct ether_vlan_header *eh = NULL; struct ip *ip4 = NULL; struct ip6_hdr *ip6 = NULL; caddr_t ip = NULL; struct tcphdr *th = NULL; int e_hlen, ip_hlen, l4_off; uint16_t proto; if (m->m_pkthdr.csum_flags == CSUM_IP) { /* no L4 checksum offload needed */ return (0); } /* get the Ethernet header */ eh = mtod(m, struct ether_vlan_header *); /* handle VLAN encapsulation if present */ if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); proto = ntohs(eh->evl_proto); } else { e_hlen = ETHER_HDR_LEN; proto = ntohs(eh->evl_encap_proto); } switch (proto) { case ETHERTYPE_IP: /* get the IP header, if mbuf len < 20 then header in next mbuf */ ip4 = (m->m_len < sizeof(struct ip)) ? (struct ip *)m->m_next->m_data : (struct ip *)(m->m_data + e_hlen); /* ip_hl is number of 32-bit words */ ip_hlen = (ip4->ip_hl << 2); ip = (caddr_t)ip4; break; case ETHERTYPE_IPV6: /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? (struct ip6_hdr *)m->m_next->m_data : (struct ip6_hdr *)(m->m_data + e_hlen); /* XXX cannot support offload with IPv6 extensions */ ip_hlen = sizeof(struct ip6_hdr); ip = (caddr_t)ip6; break; default: /* We can't offload in this case... */ /* XXX error stat ??? */ return (0); } /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ l4_off = (e_hlen + ip_hlen); *parsing_data |= (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_TSO | CSUM_TCP_IPV6)) { fp->eth_q_stats.tx_ofld_frames_csum_tcp++; th = (struct tcphdr *)(ip + ip_hlen); /* th_off is number of 32-bit words */ *parsing_data |= ((th->th_off << ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); return (l4_off + (th->th_off << 2)); /* entire header length */ } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_UDP_IPV6)) { fp->eth_q_stats.tx_ofld_frames_csum_udp++; return (l4_off + sizeof(struct udphdr)); /* entire header length */ } else { /* XXX error stat ??? */ return (0); } } static uint8_t bxe_set_pbd_csum(struct bxe_fastpath *fp, struct mbuf *m, struct eth_tx_parse_bd_e1x *pbd) { struct ether_vlan_header *eh = NULL; struct ip *ip4 = NULL; struct ip6_hdr *ip6 = NULL; caddr_t ip = NULL; struct tcphdr *th = NULL; struct udphdr *uh = NULL; int e_hlen, ip_hlen; uint16_t proto; uint8_t hlen; uint16_t tmp_csum; uint32_t *tmp_uh; /* get the Ethernet header */ eh = mtod(m, struct ether_vlan_header *); /* handle VLAN encapsulation if present */ if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); proto = ntohs(eh->evl_proto); } else { e_hlen = ETHER_HDR_LEN; proto = ntohs(eh->evl_encap_proto); } switch (proto) { case ETHERTYPE_IP: /* get the IP header, if mbuf len < 20 then header in next mbuf */ ip4 = (m->m_len < sizeof(struct ip)) ? (struct ip *)m->m_next->m_data : (struct ip *)(m->m_data + e_hlen); /* ip_hl is number of 32-bit words */ ip_hlen = (ip4->ip_hl << 1); ip = (caddr_t)ip4; break; case ETHERTYPE_IPV6: /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? (struct ip6_hdr *)m->m_next->m_data : (struct ip6_hdr *)(m->m_data + e_hlen); /* XXX cannot support offload with IPv6 extensions */ ip_hlen = (sizeof(struct ip6_hdr) >> 1); ip = (caddr_t)ip6; break; default: /* We can't offload in this case... */ /* XXX error stat ??? */ return (0); } hlen = (e_hlen >> 1); /* note that rest of global_data is indirectly zeroed here */ if (m->m_flags & M_VLANTAG) { pbd->global_data = htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); } else { pbd->global_data = htole16(hlen); } pbd->ip_hlen_w = ip_hlen; hlen += pbd->ip_hlen_w; /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_TSO | CSUM_TCP_IPV6)) { th = (struct tcphdr *)(ip + (ip_hlen << 1)); /* th_off is number of 32-bit words */ hlen += (uint16_t)(th->th_off << 1); } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_UDP_IPV6)) { uh = (struct udphdr *)(ip + (ip_hlen << 1)); hlen += (sizeof(struct udphdr) / 2); } else { /* valid case as only CSUM_IP was set */ return (0); } pbd->total_hlen_w = htole16(hlen); if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_TSO | CSUM_TCP_IPV6)) { fp->eth_q_stats.tx_ofld_frames_csum_tcp++; pbd->tcp_pseudo_csum = ntohs(th->th_sum); } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_UDP_IPV6)) { fp->eth_q_stats.tx_ofld_frames_csum_udp++; /* * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP * checksums and does not know anything about the UDP header and where * the checksum field is located. It only knows about TCP. Therefore * we "lie" to the hardware for outgoing UDP packets w/ checksum * offload. Since the checksum field offset for TCP is 16 bytes and * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 * bytes less than the start of the UDP header. This allows the * hardware to write the checksum in the correct spot. But the * hardware will compute a checksum which includes the last 10 bytes * of the IP header. To correct this we tweak the stack computed * pseudo checksum by folding in the calculation of the inverse * checksum for those final 10 bytes of the IP header. This allows * the correct checksum to be computed by the hardware. */ /* set pointer 10 bytes before UDP header */ tmp_uh = (uint32_t *)((uint8_t *)uh - 10); /* calculate a pseudo header checksum over the first 10 bytes */ tmp_csum = in_pseudo(*tmp_uh, *(tmp_uh + 1), *(uint16_t *)(tmp_uh + 2)); pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); } return (hlen * 2); /* entire header length, number of bytes */ } static void bxe_set_pbd_lso_e2(struct mbuf *m, uint32_t *parsing_data) { *parsing_data |= ((m->m_pkthdr.tso_segsz << ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & ETH_TX_PARSE_BD_E2_LSO_MSS); /* XXX test for IPv6 with extension header... */ #if 0 struct ip6_hdr *ip6; if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header') *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; #endif } static void bxe_set_pbd_lso(struct mbuf *m, struct eth_tx_parse_bd_e1x *pbd) { struct ether_vlan_header *eh = NULL; struct ip *ip = NULL; struct tcphdr *th = NULL; int e_hlen; /* get the Ethernet header */ eh = mtod(m, struct ether_vlan_header *); /* handle VLAN encapsulation if present */ e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; /* get the IP and TCP header, with LSO entire header in first mbuf */ /* XXX assuming IPv4 */ ip = (struct ip *)(m->m_data + e_hlen); th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); pbd->tcp_send_seq = ntohl(th->th_seq); pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); #if 1 /* XXX IPv4 */ pbd->ip_id = ntohs(ip->ip_id); pbd->tcp_pseudo_csum = ntohs(in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(IPPROTO_TCP))); #else /* XXX IPv6 */ pbd->tcp_pseudo_csum = ntohs(in_pseudo(&ip6->ip6_src, &ip6->ip6_dst, htons(IPPROTO_TCP))); #endif pbd->global_data |= htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); } /* * Encapsulte an mbuf cluster into the tx bd chain and makes the memory * visible to the controller. * * If an mbuf is submitted to this routine and cannot be given to the * controller (e.g. it has too many fragments) then the function may free * the mbuf and return to the caller. * * Returns: * 0 = Success, !0 = Failure * Note the side effect that an mbuf may be freed if it causes a problem. */ static int bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) { bus_dma_segment_t segs[32]; struct mbuf *m0; struct bxe_sw_tx_bd *tx_buf; struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ struct eth_tx_bd *tx_data_bd; struct eth_tx_bd *tx_total_pkt_size_bd; struct eth_tx_start_bd *tx_start_bd; uint16_t bd_prod, pkt_prod, total_pkt_size; uint8_t mac_type; int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; struct bxe_softc *sc; uint16_t tx_bd_avail; struct ether_vlan_header *eh; uint32_t pbd_e2_parsing_data = 0; uint8_t hlen = 0; int tmp_bd; int i; sc = fp->sc; M_ASSERTPKTHDR(*m_head); m0 = *m_head; rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; tx_start_bd = NULL; tx_data_bd = NULL; tx_total_pkt_size_bd = NULL; /* get the H/W pointer for packets and BDs */ pkt_prod = fp->tx_pkt_prod; bd_prod = fp->tx_bd_prod; mac_type = UNICAST_ADDRESS; /* map the mbuf into the next open DMAable memory */ tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, tx_buf->m_map, m0, segs, &nsegs, BUS_DMA_NOWAIT); /* mapping errors */ if(__predict_false(error != 0)) { fp->eth_q_stats.tx_dma_mapping_failure++; if (error == ENOMEM) { /* resource issue, try again later */ rc = ENOMEM; } else if (error == EFBIG) { /* possibly recoverable with defragmentation */ fp->eth_q_stats.mbuf_defrag_attempts++; m0 = m_defrag(*m_head, M_NOWAIT); if (m0 == NULL) { fp->eth_q_stats.mbuf_defrag_failures++; rc = ENOBUFS; } else { /* defrag successful, try mapping again */ *m_head = m0; error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, tx_buf->m_map, m0, segs, &nsegs, BUS_DMA_NOWAIT); if (error) { fp->eth_q_stats.tx_dma_mapping_failure++; rc = error; } } } else { /* unknown, unrecoverable mapping error */ BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); bxe_dump_mbuf(sc, m0, FALSE); rc = error; } goto bxe_tx_encap_continue; } tx_bd_avail = bxe_tx_avail(sc, fp); /* make sure there is enough room in the send queue */ if (__predict_false(tx_bd_avail < (nsegs + 2))) { /* Recoverable, try again later. */ fp->eth_q_stats.tx_hw_queue_full++; bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); rc = ENOMEM; goto bxe_tx_encap_continue; } /* capture the current H/W TX chain high watermark */ if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < (TX_BD_USABLE - tx_bd_avail))) { fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); } /* make sure it fits in the packet window */ if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { /* * The mbuf may be to big for the controller to handle. If the frame * is a TSO frame we'll need to do an additional check. */ if (m0->m_pkthdr.csum_flags & CSUM_TSO) { if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { goto bxe_tx_encap_continue; /* OK to send */ } else { fp->eth_q_stats.tx_window_violation_tso++; } } else { fp->eth_q_stats.tx_window_violation_std++; } /* lets try to defragment this mbuf and remap it */ fp->eth_q_stats.mbuf_defrag_attempts++; bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); m0 = m_defrag(*m_head, M_NOWAIT); if (m0 == NULL) { fp->eth_q_stats.mbuf_defrag_failures++; /* Ugh, just drop the frame... :( */ rc = ENOBUFS; } else { /* defrag successful, try mapping again */ *m_head = m0; error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, tx_buf->m_map, m0, segs, &nsegs, BUS_DMA_NOWAIT); if (error) { fp->eth_q_stats.tx_dma_mapping_failure++; /* No sense in trying to defrag/copy chain, drop it. :( */ rc = error; } else { /* if the chain is still too long then drop it */ if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); rc = ENODEV; } } } } bxe_tx_encap_continue: /* Check for errors */ if (rc) { if (rc == ENOMEM) { /* recoverable try again later */ } else { fp->eth_q_stats.tx_soft_errors++; fp->eth_q_stats.mbuf_alloc_tx--; m_freem(*m_head); *m_head = NULL; } return (rc); } /* set flag according to packet type (UNICAST_ADDRESS is default) */ if (m0->m_flags & M_BCAST) { mac_type = BROADCAST_ADDRESS; } else if (m0->m_flags & M_MCAST) { mac_type = MULTICAST_ADDRESS; } /* store the mbuf into the mbuf ring */ tx_buf->m = m0; tx_buf->first_bd = fp->tx_bd_prod; tx_buf->flags = 0; /* prepare the first transmit (start) BD for the mbuf */ tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; BLOGD(sc, DBG_TX, "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); tx_start_bd->nbytes = htole16(segs[0].ds_len); total_pkt_size += tx_start_bd->nbytes; tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); /* all frames have at least Start BD + Parsing BD */ nbds = nsegs + 1; tx_start_bd->nbd = htole16(nbds); if (m0->m_flags & M_VLANTAG) { tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); tx_start_bd->bd_flags.as_bitfield |= (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); } else { /* vf tx, start bd must hold the ethertype for fw to enforce it */ if (IS_VF(sc)) { /* map ethernet header to find type and header length */ eh = mtod(m0, struct ether_vlan_header *); tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; } else { /* used by FW for packet accounting */ tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); #if 0 /* * If NPAR-SD is active then FW should do the tagging regardless * of value of priority. Otherwise, if priority indicates this is * a control packet we need to indicate to FW to avoid tagging. */ if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) { SET_FLAG(tx_start_bd->general_data, ETH_TX_START_BD_FORCE_VLAN_MODE, 1); } #endif } } /* * add a parsing BD from the chain. The parsing BD is always added * though it is only used for TSO and chksum */ bd_prod = TX_BD_NEXT(bd_prod); if (m0->m_pkthdr.csum_flags) { if (m0->m_pkthdr.csum_flags & CSUM_IP) { fp->eth_q_stats.tx_ofld_frames_csum_ip++; tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; } if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | ETH_TX_BD_FLAGS_L4_CSUM); } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | ETH_TX_BD_FLAGS_IS_UDP | ETH_TX_BD_FLAGS_L4_CSUM); } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | ETH_TX_BD_FLAGS_IS_UDP); } } if (!CHIP_IS_E1x(sc)) { pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); if (m0->m_pkthdr.csum_flags) { hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); } #if 0 /* * Add the MACs to the parsing BD if the module param was * explicitly set, if this is a vf, or in switch independent * mode. */ if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) { eh = mtod(m0, struct ether_vlan_header *); bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, &pbd_e2->data.mac_addr.src_mid, &pbd_e2->data.mac_addr.src_lo, eh->evl_shost); bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, &pbd_e2->data.mac_addr.dst_mid, &pbd_e2->data.mac_addr.dst_lo, eh->evl_dhost); } #endif SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type); } else { uint16_t global_data = 0; pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); if (m0->m_pkthdr.csum_flags) { hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); } SET_FLAG(global_data, ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); pbd_e1x->global_data |= htole16(global_data); } /* setup the parsing BD with TSO specific info */ if (m0->m_pkthdr.csum_flags & CSUM_TSO) { fp->eth_q_stats.tx_ofld_frames_lso++; tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; if (__predict_false(tx_start_bd->nbytes > hlen)) { fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; /* split the first BD into header/data making the fw job easy */ nbds++; tx_start_bd->nbd = htole16(nbds); tx_start_bd->nbytes = htole16(hlen); bd_prod = TX_BD_NEXT(bd_prod); /* new transmit BD after the tx_parse_bd */ tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); if (tx_total_pkt_size_bd == NULL) { tx_total_pkt_size_bd = tx_data_bd; } BLOGD(sc, DBG_TX, "TSO split header size is %d (%x:%x) nbds %d\n", le16toh(tx_start_bd->nbytes), le32toh(tx_start_bd->addr_hi), le32toh(tx_start_bd->addr_lo), nbds); } if (!CHIP_IS_E1x(sc)) { bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); } else { bxe_set_pbd_lso(m0, pbd_e1x); } } if (pbd_e2_parsing_data) { pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); } /* prepare remaining BDs, start tx bd contains first seg/frag */ for (i = 1; i < nsegs ; i++) { bd_prod = TX_BD_NEXT(bd_prod); tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); tx_data_bd->nbytes = htole16(segs[i].ds_len); if (tx_total_pkt_size_bd == NULL) { tx_total_pkt_size_bd = tx_data_bd; } total_pkt_size += tx_data_bd->nbytes; } BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); if (tx_total_pkt_size_bd != NULL) { tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; } if (__predict_false(sc->debug & DBG_TX)) { tmp_bd = tx_buf->first_bd; for (i = 0; i < nbds; i++) { if (i == 0) { BLOGD(sc, DBG_TX, "TX Strt: %p bd=%d nbd=%d vlan=0x%x " "bd_flags=0x%x hdr_nbds=%d\n", tx_start_bd, tmp_bd, le16toh(tx_start_bd->nbd), le16toh(tx_start_bd->vlan_or_ethertype), tx_start_bd->bd_flags.as_bitfield, (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); } else if (i == 1) { if (pbd_e1x) { BLOGD(sc, DBG_TX, "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " "tcp_seq=%u total_hlen_w=%u\n", pbd_e1x, tmp_bd, pbd_e1x->global_data, pbd_e1x->ip_hlen_w, pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags, pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq, le16toh(pbd_e1x->total_hlen_w)); } else { /* if (pbd_e2) */ BLOGD(sc, DBG_TX, "-> Parse: %p bd=%d dst=%02x:%02x:%02x " "src=%02x:%02x:%02x parsing_data=0x%x\n", pbd_e2, tmp_bd, pbd_e2->data.mac_addr.dst_hi, pbd_e2->data.mac_addr.dst_mid, pbd_e2->data.mac_addr.dst_lo, pbd_e2->data.mac_addr.src_hi, pbd_e2->data.mac_addr.src_mid, pbd_e2->data.mac_addr.src_lo, pbd_e2->parsing_data); } } if (i != 1) { /* skip parse db as it doesn't hold data */ tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; BLOGD(sc, DBG_TX, "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", tx_data_bd, tmp_bd, le16toh(tx_data_bd->nbytes), le32toh(tx_data_bd->addr_hi), le32toh(tx_data_bd->addr_lo)); } tmp_bd = TX_BD_NEXT(tmp_bd); } } BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); /* update TX BD producer index value for next TX */ bd_prod = TX_BD_NEXT(bd_prod); /* * If the chain of tx_bd's describing this frame is adjacent to or spans * an eth_tx_next_bd element then we need to increment the nbds value. */ if (TX_BD_IDX(bd_prod) < nbds) { nbds++; } /* don't allow reordering of writes for nbd and packets */ mb(); fp->tx_db.data.prod += nbds; /* producer points to the next free tx_bd at this point */ fp->tx_pkt_prod++; fp->tx_bd_prod = bd_prod; DOORBELL(sc, fp->index, fp->tx_db.raw); fp->eth_q_stats.tx_pkts++; /* Prevent speculative reads from getting ahead of the status block. */ bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, BUS_SPACE_BARRIER_READ); /* Prevent speculative reads from getting ahead of the doorbell. */ bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 0, 0, BUS_SPACE_BARRIER_READ); return (0); } static void bxe_tx_start_locked(struct bxe_softc *sc, if_t ifp, struct bxe_fastpath *fp) { struct mbuf *m = NULL; int tx_count = 0; uint16_t tx_bd_avail; BXE_FP_TX_LOCK_ASSERT(fp); /* keep adding entries while there are frames to send */ while (!if_sendq_empty(ifp)) { /* * check for any frames to send * dequeue can still be NULL even if queue is not empty */ m = if_dequeue(ifp); if (__predict_false(m == NULL)) { break; } /* the mbuf now belongs to us */ fp->eth_q_stats.mbuf_alloc_tx++; /* * Put the frame into the transmit ring. If we don't have room, * place the mbuf back at the head of the TX queue, set the * OACTIVE flag, and wait for the NIC to drain the chain. */ if (__predict_false(bxe_tx_encap(fp, &m))) { fp->eth_q_stats.tx_encap_failures++; if (m != NULL) { /* mark the TX queue as full and return the frame */ if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); if_sendq_prepend(ifp, m); fp->eth_q_stats.mbuf_alloc_tx--; fp->eth_q_stats.tx_queue_xoff++; } /* stop looking for more work */ break; } /* the frame was enqueued successfully */ tx_count++; /* send a copy of the frame to any BPF listeners. */ if_etherbpfmtap(ifp, m); tx_bd_avail = bxe_tx_avail(sc, fp); /* handle any completions if we're running low */ if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ bxe_txeof(sc, fp); if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { break; } } } /* all TX packets were dequeued and/or the tx ring is full */ if (tx_count > 0) { /* reset the TX watchdog timeout timer */ fp->watchdog_timer = BXE_TX_TIMEOUT; } } /* Legacy (non-RSS) dispatch routine */ static void bxe_tx_start(if_t ifp) { struct bxe_softc *sc; struct bxe_fastpath *fp; sc = if_getsoftc(ifp); if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { BLOGW(sc, "Interface not running, ignoring transmit request\n"); return; } if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); return; } if (!sc->link_vars.link_up) { BLOGW(sc, "Interface link is down, ignoring transmit request\n"); return; } fp = &sc->fp[0]; BXE_FP_TX_LOCK(fp); bxe_tx_start_locked(sc, ifp, fp); BXE_FP_TX_UNLOCK(fp); } #if __FreeBSD_version >= 800000 static int bxe_tx_mq_start_locked(struct bxe_softc *sc, if_t ifp, struct bxe_fastpath *fp, struct mbuf *m) { struct buf_ring *tx_br = fp->tx_br; struct mbuf *next; int depth, rc, tx_count; uint16_t tx_bd_avail; rc = tx_count = 0; if (!tx_br) { BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); return (EINVAL); } /* fetch the depth of the driver queue */ depth = drbr_inuse_drv(ifp, tx_br); if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { fp->eth_q_stats.tx_max_drbr_queue_depth = depth; } BXE_FP_TX_LOCK_ASSERT(fp); if (m == NULL) { /* no new work, check for pending frames */ next = drbr_dequeue_drv(ifp, tx_br); } else if (drbr_needs_enqueue_drv(ifp, tx_br)) { /* have both new and pending work, maintain packet order */ rc = drbr_enqueue_drv(ifp, tx_br, m); if (rc != 0) { fp->eth_q_stats.tx_soft_errors++; goto bxe_tx_mq_start_locked_exit; } next = drbr_dequeue_drv(ifp, tx_br); } else { /* new work only and nothing pending */ next = m; } /* keep adding entries while there are frames to send */ while (next != NULL) { /* the mbuf now belongs to us */ fp->eth_q_stats.mbuf_alloc_tx++; /* * Put the frame into the transmit ring. If we don't have room, * place the mbuf back at the head of the TX queue, set the * OACTIVE flag, and wait for the NIC to drain the chain. */ rc = bxe_tx_encap(fp, &next); if (__predict_false(rc != 0)) { fp->eth_q_stats.tx_encap_failures++; if (next != NULL) { /* mark the TX queue as full and save the frame */ if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); /* XXX this may reorder the frame */ rc = drbr_enqueue_drv(ifp, tx_br, next); fp->eth_q_stats.mbuf_alloc_tx--; fp->eth_q_stats.tx_frames_deferred++; } /* stop looking for more work */ break; } /* the transmit frame was enqueued successfully */ tx_count++; /* send a copy of the frame to any BPF listeners */ if_etherbpfmtap(ifp, next); tx_bd_avail = bxe_tx_avail(sc, fp); /* handle any completions if we're running low */ if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ bxe_txeof(sc, fp); if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { break; } } next = drbr_dequeue_drv(ifp, tx_br); } /* all TX packets were dequeued and/or the tx ring is full */ if (tx_count > 0) { /* reset the TX watchdog timeout timer */ fp->watchdog_timer = BXE_TX_TIMEOUT; } bxe_tx_mq_start_locked_exit: return (rc); } /* Multiqueue (TSS) dispatch routine. */ static int bxe_tx_mq_start(struct ifnet *ifp, struct mbuf *m) { struct bxe_softc *sc = if_getsoftc(ifp); struct bxe_fastpath *fp; int fp_index, rc; fp_index = 0; /* default is the first queue */ /* change the queue if using flow ID */ if ((m->m_flags & M_FLOWID) != 0) { fp_index = (m->m_pkthdr.flowid % sc->num_queues); } fp = &sc->fp[fp_index]; if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { BLOGW(sc, "Interface not running, ignoring transmit request\n"); return (ENETDOWN); } if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); return (EBUSY); } if (!sc->link_vars.link_up) { BLOGW(sc, "Interface link is down, ignoring transmit request\n"); return (ENETDOWN); } /* XXX change to TRYLOCK here and if failed then schedule taskqueue */ BXE_FP_TX_LOCK(fp); rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); BXE_FP_TX_UNLOCK(fp); return (rc); } static void bxe_mq_flush(struct ifnet *ifp) { struct bxe_softc *sc = if_getsoftc(ifp); struct bxe_fastpath *fp; struct mbuf *m; int i; for (i = 0; i < sc->num_queues; i++) { fp = &sc->fp[i]; if (fp->state != BXE_FP_STATE_OPEN) { BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", fp->index, fp->state); continue; } if (fp->tx_br != NULL) { BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); BXE_FP_TX_LOCK(fp); while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { m_freem(m); } BXE_FP_TX_UNLOCK(fp); } } if_qflush_drv(ifp); } #endif /* FreeBSD_version >= 800000 */ static uint16_t bxe_cid_ilt_lines(struct bxe_softc *sc) { if (IS_SRIOV(sc)) { return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); } return (L2_ILT_LINES(sc)); } static void bxe_ilt_set_info(struct bxe_softc *sc) { struct ilt_client_info *ilt_client; struct ecore_ilt *ilt = sc->ilt; uint16_t line = 0; ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); /* CDU */ ilt_client = &ilt->clients[ILT_CLIENT_CDU]; ilt_client->client_num = ILT_CLIENT_CDU; ilt_client->page_size = CDU_ILT_PAGE_SZ; ilt_client->flags = ILT_CLIENT_SKIP_MEM; ilt_client->start = line; line += bxe_cid_ilt_lines(sc); if (CNIC_SUPPORT(sc)) { line += CNIC_ILT_LINES; } ilt_client->end = (line - 1); BLOGD(sc, DBG_LOAD, "ilt client[CDU]: start %d, end %d, " "psz 0x%x, flags 0x%x, hw psz %d\n", ilt_client->start, ilt_client->end, ilt_client->page_size, ilt_client->flags, ilog2(ilt_client->page_size >> 12)); /* QM */ if (QM_INIT(sc->qm_cid_count)) { ilt_client = &ilt->clients[ILT_CLIENT_QM]; ilt_client->client_num = ILT_CLIENT_QM; ilt_client->page_size = QM_ILT_PAGE_SZ; ilt_client->flags = 0; ilt_client->start = line; /* 4 bytes for each cid */ line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, QM_ILT_PAGE_SZ); ilt_client->end = (line - 1); BLOGD(sc, DBG_LOAD, "ilt client[QM]: start %d, end %d, " "psz 0x%x, flags 0x%x, hw psz %d\n", ilt_client->start, ilt_client->end, ilt_client->page_size, ilt_client->flags, ilog2(ilt_client->page_size >> 12)); } if (CNIC_SUPPORT(sc)) { /* SRC */ ilt_client = &ilt->clients[ILT_CLIENT_SRC]; ilt_client->client_num = ILT_CLIENT_SRC; ilt_client->page_size = SRC_ILT_PAGE_SZ; ilt_client->flags = 0; ilt_client->start = line; line += SRC_ILT_LINES; ilt_client->end = (line - 1); BLOGD(sc, DBG_LOAD, "ilt client[SRC]: start %d, end %d, " "psz 0x%x, flags 0x%x, hw psz %d\n", ilt_client->start, ilt_client->end, ilt_client->page_size, ilt_client->flags, ilog2(ilt_client->page_size >> 12)); /* TM */ ilt_client = &ilt->clients[ILT_CLIENT_TM]; ilt_client->client_num = ILT_CLIENT_TM; ilt_client->page_size = TM_ILT_PAGE_SZ; ilt_client->flags = 0; ilt_client->start = line; line += TM_ILT_LINES; ilt_client->end = (line - 1); BLOGD(sc, DBG_LOAD, "ilt client[TM]: start %d, end %d, " "psz 0x%x, flags 0x%x, hw psz %d\n", ilt_client->start, ilt_client->end, ilt_client->page_size, ilt_client->flags, ilog2(ilt_client->page_size >> 12)); } KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); } static void bxe_set_fp_rx_buf_size(struct bxe_softc *sc) { int i; BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu); for (i = 0; i < sc->num_queues; i++) { /* get the Rx buffer size for RX frames */ sc->fp[i].rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu); BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n", i, sc->fp[i].rx_buf_size); /* get the mbuf allocation size for RX frames */ if (sc->fp[i].rx_buf_size <= MCLBYTES) { sc->fp[i].mbuf_alloc_size = MCLBYTES; } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) { sc->fp[i].mbuf_alloc_size = PAGE_SIZE; } else { sc->fp[i].mbuf_alloc_size = MJUM9BYTES; } BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n", i, sc->fp[i].mbuf_alloc_size); } } static int bxe_alloc_ilt_mem(struct bxe_softc *sc) { int rc = 0; if ((sc->ilt = (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), M_BXE_ILT, (M_NOWAIT | M_ZERO))) == NULL) { rc = 1; } return (rc); } static int bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) { int rc = 0; if ((sc->ilt->lines = (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), M_BXE_ILT, (M_NOWAIT | M_ZERO))) == NULL) { rc = 1; } return (rc); } static void bxe_free_ilt_mem(struct bxe_softc *sc) { if (sc->ilt != NULL) { free(sc->ilt, M_BXE_ILT); sc->ilt = NULL; } } static void bxe_free_ilt_lines_mem(struct bxe_softc *sc) { if (sc->ilt->lines != NULL) { free(sc->ilt->lines, M_BXE_ILT); sc->ilt->lines = NULL; } } static void bxe_free_mem(struct bxe_softc *sc) { int i; #if 0 if (!CONFIGURE_NIC_MODE(sc)) { /* free searcher T2 table */ bxe_dma_free(sc, &sc->t2); } #endif for (i = 0; i < L2_ILT_LINES(sc); i++) { bxe_dma_free(sc, &sc->context[i].vcxt_dma); sc->context[i].vcxt = NULL; sc->context[i].size = 0; } ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); bxe_free_ilt_lines_mem(sc); #if 0 bxe_iov_free_mem(sc); #endif } static int bxe_alloc_mem(struct bxe_softc *sc) { int context_size; int allocated; int i; #if 0 if (!CONFIGURE_NIC_MODE(sc)) { /* allocate searcher T2 table */ if (bxe_dma_alloc(sc, SRC_T2_SZ, &sc->t2, "searcher t2 table") != 0) { return (-1); } } #endif /* * Allocate memory for CDU context: * This memory is allocated separately and not in the generic ILT * functions because CDU differs in few aspects: * 1. There can be multiple entities allocating memory for context - * regular L2, CNIC, and SRIOV drivers. Each separately controls * its own ILT lines. * 2. Since CDU page-size is not a single 4KB page (which is the case * for the other ILT clients), to be efficient we want to support * allocation of sub-page-size in the last entry. * 3. Context pointers are used by the driver to pass to FW / update * the context (for the other ILT clients the pointers are used just to * free the memory during unload). */ context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); for (i = 0, allocated = 0; allocated < context_size; i++) { sc->context[i].size = min(CDU_ILT_PAGE_SZ, (context_size - allocated)); if (bxe_dma_alloc(sc, sc->context[i].size, &sc->context[i].vcxt_dma, "cdu context") != 0) { bxe_free_mem(sc); return (-1); } sc->context[i].vcxt = (union cdu_context *)sc->context[i].vcxt_dma.vaddr; allocated += sc->context[i].size; } bxe_alloc_ilt_lines_mem(sc); BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", sc->ilt, sc->ilt->start_line, sc->ilt->lines); { for (i = 0; i < 4; i++) { BLOGD(sc, DBG_LOAD, "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", i, sc->ilt->clients[i].page_size, sc->ilt->clients[i].start, sc->ilt->clients[i].end, sc->ilt->clients[i].client_num, sc->ilt->clients[i].flags); } } if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); bxe_free_mem(sc); return (-1); } #if 0 if (bxe_iov_alloc_mem(sc)) { BLOGE(sc, "Failed to allocate memory for SRIOV\n"); bxe_free_mem(sc); return (-1); } #endif return (0); } static void bxe_free_rx_bd_chain(struct bxe_fastpath *fp) { struct bxe_softc *sc; int i; sc = fp->sc; if (fp->rx_mbuf_tag == NULL) { return; } /* free all mbufs and unload all maps */ for (i = 0; i < RX_BD_TOTAL; i++) { if (fp->rx_mbuf_chain[i].m_map != NULL) { bus_dmamap_sync(fp->rx_mbuf_tag, fp->rx_mbuf_chain[i].m_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_chain[i].m_map); } if (fp->rx_mbuf_chain[i].m != NULL) { m_freem(fp->rx_mbuf_chain[i].m); fp->rx_mbuf_chain[i].m = NULL; fp->eth_q_stats.mbuf_alloc_rx--; } } } static void bxe_free_tpa_pool(struct bxe_fastpath *fp) { struct bxe_softc *sc; int i, max_agg_queues; sc = fp->sc; if (fp->rx_mbuf_tag == NULL) { return; } max_agg_queues = MAX_AGG_QS(sc); /* release all mbufs and unload all DMA maps in the TPA pool */ for (i = 0; i < max_agg_queues; i++) { if (fp->rx_tpa_info[i].bd.m_map != NULL) { bus_dmamap_sync(fp->rx_mbuf_tag, fp->rx_tpa_info[i].bd.m_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_tpa_info[i].bd.m_map); } if (fp->rx_tpa_info[i].bd.m != NULL) { m_freem(fp->rx_tpa_info[i].bd.m); fp->rx_tpa_info[i].bd.m = NULL; fp->eth_q_stats.mbuf_alloc_tpa--; } } } static void bxe_free_sge_chain(struct bxe_fastpath *fp) { struct bxe_softc *sc; int i; sc = fp->sc; if (fp->rx_sge_mbuf_tag == NULL) { return; } /* rree all mbufs and unload all maps */ for (i = 0; i < RX_SGE_TOTAL; i++) { if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { bus_dmamap_sync(fp->rx_sge_mbuf_tag, fp->rx_sge_mbuf_chain[i].m_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(fp->rx_sge_mbuf_tag, fp->rx_sge_mbuf_chain[i].m_map); } if (fp->rx_sge_mbuf_chain[i].m != NULL) { m_freem(fp->rx_sge_mbuf_chain[i].m); fp->rx_sge_mbuf_chain[i].m = NULL; fp->eth_q_stats.mbuf_alloc_sge--; } } } static void bxe_free_fp_buffers(struct bxe_softc *sc) { struct bxe_fastpath *fp; int i; for (i = 0; i < sc->num_queues; i++) { fp = &sc->fp[i]; #if __FreeBSD_version >= 800000 if (fp->tx_br != NULL) { struct mbuf *m; /* just in case bxe_mq_flush() wasn't called */ while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { m_freem(m); } buf_ring_free(fp->tx_br, M_DEVBUF); fp->tx_br = NULL; } #endif /* free all RX buffers */ bxe_free_rx_bd_chain(fp); bxe_free_tpa_pool(fp); bxe_free_sge_chain(fp); if (fp->eth_q_stats.mbuf_alloc_rx != 0) { BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", fp->eth_q_stats.mbuf_alloc_rx); } if (fp->eth_q_stats.mbuf_alloc_sge != 0) { BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", fp->eth_q_stats.mbuf_alloc_sge); } if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", fp->eth_q_stats.mbuf_alloc_tpa); } if (fp->eth_q_stats.mbuf_alloc_tx != 0) { BLOGE(sc, "failed to release tx mbufs (%d left)\n", fp->eth_q_stats.mbuf_alloc_tx); } /* XXX verify all mbufs were reclaimed */ if (mtx_initialized(&fp->tx_mtx)) { mtx_destroy(&fp->tx_mtx); } if (mtx_initialized(&fp->rx_mtx)) { mtx_destroy(&fp->rx_mtx); } } } static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, uint16_t prev_index, uint16_t index) { struct bxe_sw_rx_bd *rx_buf; struct eth_rx_bd *rx_bd; bus_dma_segment_t segs[1]; bus_dmamap_t map; struct mbuf *m; int nsegs, rc; rc = 0; /* allocate the new RX BD mbuf */ m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); if (__predict_false(m == NULL)) { fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; return (ENOBUFS); } fp->eth_q_stats.mbuf_alloc_rx++; /* initialize the mbuf buffer length */ m->m_pkthdr.len = m->m_len = fp->rx_buf_size; /* map the mbuf into non-paged pool */ rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT); if (__predict_false(rc != 0)) { fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; m_freem(m); fp->eth_q_stats.mbuf_alloc_rx--; return (rc); } /* all mbufs must map to a single segment */ KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); /* release any existing RX BD mbuf mappings */ if (prev_index != index) { rx_buf = &fp->rx_mbuf_chain[prev_index]; if (rx_buf->m_map != NULL) { bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); } /* * We only get here from bxe_rxeof() when the maximum number * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already * holds the mbuf in the prev_index so it's OK to NULL it out * here without concern of a memory leak. */ fp->rx_mbuf_chain[prev_index].m = NULL; } rx_buf = &fp->rx_mbuf_chain[index]; if (rx_buf->m_map != NULL) { bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); } /* save the mbuf and mapping info for a future packet */ map = (prev_index != index) ? fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; rx_buf->m_map = fp->rx_mbuf_spare_map; fp->rx_mbuf_spare_map = map; bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, BUS_DMASYNC_PREREAD); rx_buf->m = m; rx_bd = &fp->rx_chain[index]; rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); return (rc); } static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, int queue) { struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; bus_dma_segment_t segs[1]; bus_dmamap_t map; struct mbuf *m; int nsegs; int rc = 0; /* allocate the new TPA mbuf */ m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); if (__predict_false(m == NULL)) { fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; return (ENOBUFS); } fp->eth_q_stats.mbuf_alloc_tpa++; /* initialize the mbuf buffer length */ m->m_pkthdr.len = m->m_len = fp->rx_buf_size; /* map the mbuf into non-paged pool */ rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, fp->rx_tpa_info_mbuf_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT); if (__predict_false(rc != 0)) { fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; m_free(m); fp->eth_q_stats.mbuf_alloc_tpa--; return (rc); } /* all mbufs must map to a single segment */ KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); /* release any existing TPA mbuf mapping */ if (tpa_info->bd.m_map != NULL) { bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); } /* save the mbuf and mapping info for the TPA mbuf */ map = tpa_info->bd.m_map; tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; fp->rx_tpa_info_mbuf_spare_map = map; bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, BUS_DMASYNC_PREREAD); tpa_info->bd.m = m; tpa_info->seg = segs[0]; return (rc); } /* * Allocate an mbuf and assign it to the receive scatter gather chain. The * caller must take care to save a copy of the existing mbuf in the SG mbuf * chain. */ static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, uint16_t index) { struct bxe_sw_rx_bd *sge_buf; struct eth_rx_sge *sge; bus_dma_segment_t segs[1]; bus_dmamap_t map; struct mbuf *m; int nsegs; int rc = 0; /* allocate a new SGE mbuf */ m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); if (__predict_false(m == NULL)) { fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; return (ENOMEM); } fp->eth_q_stats.mbuf_alloc_sge++; /* initialize the mbuf buffer length */ m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; /* map the SGE mbuf into non-paged pool */ rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, fp->rx_sge_mbuf_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT); if (__predict_false(rc != 0)) { fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; m_freem(m); fp->eth_q_stats.mbuf_alloc_sge--; return (rc); } /* all mbufs must map to a single segment */ KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); sge_buf = &fp->rx_sge_mbuf_chain[index]; /* release any existing SGE mbuf mapping */ if (sge_buf->m_map != NULL) { bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); } /* save the mbuf and mapping info for a future packet */ map = sge_buf->m_map; sge_buf->m_map = fp->rx_sge_mbuf_spare_map; fp->rx_sge_mbuf_spare_map = map; bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, BUS_DMASYNC_PREREAD); sge_buf->m = m; sge = &fp->rx_sge_chain[index]; sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); return (rc); } static __noinline int bxe_alloc_fp_buffers(struct bxe_softc *sc) { struct bxe_fastpath *fp; int i, j, rc = 0; int ring_prod, cqe_ring_prod; int max_agg_queues; for (i = 0; i < sc->num_queues; i++) { fp = &sc->fp[i]; #if __FreeBSD_version >= 800000 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, M_NOWAIT, &fp->tx_mtx); if (fp->tx_br == NULL) { BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i); goto bxe_alloc_fp_buffers_error; } #endif ring_prod = cqe_ring_prod = 0; fp->rx_bd_cons = 0; fp->rx_cq_cons = 0; /* allocate buffers for the RX BDs in RX BD chain */ for (j = 0; j < sc->max_rx_bufs; j++) { rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); if (rc != 0) { BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", i, rc); goto bxe_alloc_fp_buffers_error; } ring_prod = RX_BD_NEXT(ring_prod); cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); } fp->rx_bd_prod = ring_prod; fp->rx_cq_prod = cqe_ring_prod; fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; if (if_getcapenable(sc->ifp) & IFCAP_LRO) { max_agg_queues = MAX_AGG_QS(sc); fp->tpa_enable = TRUE; /* fill the TPA pool */ for (j = 0; j < max_agg_queues; j++) { rc = bxe_alloc_rx_tpa_mbuf(fp, j); if (rc != 0) { BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", i, j); fp->tpa_enable = FALSE; goto bxe_alloc_fp_buffers_error; } fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; } if (fp->tpa_enable) { /* fill the RX SGE chain */ ring_prod = 0; for (j = 0; j < RX_SGE_USABLE; j++) { rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); if (rc != 0) { BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", i, ring_prod); fp->tpa_enable = FALSE; ring_prod = 0; goto bxe_alloc_fp_buffers_error; } ring_prod = RX_SGE_NEXT(ring_prod); } fp->rx_sge_prod = ring_prod; } } } return (0); bxe_alloc_fp_buffers_error: /* unwind what was already allocated */ bxe_free_rx_bd_chain(fp); bxe_free_tpa_pool(fp); bxe_free_sge_chain(fp); return (ENOBUFS); } static void bxe_free_fw_stats_mem(struct bxe_softc *sc) { bxe_dma_free(sc, &sc->fw_stats_dma); sc->fw_stats_num = 0; sc->fw_stats_req_size = 0; sc->fw_stats_req = NULL; sc->fw_stats_req_mapping = 0; sc->fw_stats_data_size = 0; sc->fw_stats_data = NULL; sc->fw_stats_data_mapping = 0; } static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc) { uint8_t num_queue_stats; int num_groups; /* number of queues for statistics is number of eth queues */ num_queue_stats = BXE_NUM_ETH_QUEUES(sc); /* * Total number of FW statistics requests = * 1 for port stats + 1 for PF stats + num of queues */ sc->fw_stats_num = (2 + num_queue_stats); /* * Request is built from stats_query_header and an array of * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT * rules. The real number or requests is configured in the * stats_query_header. */ num_groups = ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", sc->fw_stats_num, num_groups); sc->fw_stats_req_size = (sizeof(struct stats_query_header) + (num_groups * sizeof(struct stats_query_cmd_group))); /* * Data for statistics requests + stats_counter. * stats_counter holds per-STORM counters that are incremented when * STORM has finished with the current request. Memory for FCoE * offloaded statistics are counted anyway, even if they will not be sent. * VF stats are not accounted for here as the data of VF stats is stored * in memory allocated by the VF, not here. */ sc->fw_stats_data_size = (sizeof(struct stats_counter) + sizeof(struct per_port_stats) + sizeof(struct per_pf_stats) + /* sizeof(struct fcoe_statistics_params) + */ (sizeof(struct per_queue_stats) * num_queue_stats)); if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), &sc->fw_stats_dma, "fw stats") != 0) { bxe_free_fw_stats_mem(sc); return (-1); } /* set up the shortcuts */ sc->fw_stats_req = (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; sc->fw_stats_data = (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + sc->fw_stats_req_size); sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + sc->fw_stats_req_size); BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", (uintmax_t)sc->fw_stats_req_mapping); BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", (uintmax_t)sc->fw_stats_data_mapping); return (0); } /* * Bits map: * 0-7 - Engine0 load counter. * 8-15 - Engine1 load counter. * 16 - Engine0 RESET_IN_PROGRESS bit. * 17 - Engine1 RESET_IN_PROGRESS bit. * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active * function on the engine * 19 - Engine1 ONE_IS_LOADED. * 20 - Chip reset flow bit. When set none-leader must wait for both engines * leader to complete (check for both RESET_IN_PROGRESS bits and not * for just the one belonging to its engine). */ #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff #define BXE_PATH0_LOAD_CNT_SHIFT 0 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 #define BXE_PATH1_LOAD_CNT_SHIFT 8 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 #define BXE_GLOBAL_RESET_BIT 0x00040000 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ static void bxe_set_reset_global(struct bxe_softc *sc) { uint32_t val; bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); } /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ static void bxe_clear_reset_global(struct bxe_softc *sc) { uint32_t val; bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); } /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ static uint8_t bxe_reset_is_global(struct bxe_softc *sc) { uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; } /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ static void bxe_set_reset_done(struct bxe_softc *sc) { uint32_t val; uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : BXE_PATH0_RST_IN_PROG_BIT; bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); /* Clear the bit */ val &= ~bit; REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); } /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ static void bxe_set_reset_in_progress(struct bxe_softc *sc) { uint32_t val; uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : BXE_PATH0_RST_IN_PROG_BIT; bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); /* Set the bit */ val |= bit; REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); } /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ static uint8_t bxe_reset_is_done(struct bxe_softc *sc, int engine) { uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : BXE_PATH0_RST_IN_PROG_BIT; /* return false if bit is set */ return (val & bit) ? FALSE : TRUE; } /* get the load status for an engine, should be run under rtnl lock */ static uint8_t bxe_get_load_status(struct bxe_softc *sc, int engine) { uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : BXE_PATH0_LOAD_CNT_MASK; uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : BXE_PATH0_LOAD_CNT_SHIFT; uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); val = ((val & mask) >> shift); BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); return (val != 0); } /* set pf load mark */ /* XXX needs to be under rtnl lock */ static void bxe_set_pf_load(struct bxe_softc *sc) { uint32_t val; uint32_t val1; uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : BXE_PATH0_LOAD_CNT_MASK; uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : BXE_PATH0_LOAD_CNT_SHIFT; bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); /* get the current counter value */ val1 = ((val & mask) >> shift); /* set bit of this PF */ val1 |= (1 << SC_ABS_FUNC(sc)); /* clear the old value */ val &= ~mask; /* set the new one */ val |= ((val1 << shift) & mask); REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); } /* clear pf load mark */ /* XXX needs to be under rtnl lock */ static uint8_t bxe_clear_pf_load(struct bxe_softc *sc) { uint32_t val1, val; uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : BXE_PATH0_LOAD_CNT_MASK; uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : BXE_PATH0_LOAD_CNT_SHIFT; bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); /* get the current counter value */ val1 = (val & mask) >> shift; /* clear bit of that PF */ val1 &= ~(1 << SC_ABS_FUNC(sc)); /* clear the old value */ val &= ~mask; /* set the new one */ val |= ((val1 << shift) & mask); REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); return (val1 != 0); } /* send load requrest to mcp and analyze response */ static int bxe_nic_load_request(struct bxe_softc *sc, uint32_t *load_code) { /* init fw_seq */ sc->fw_seq = (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & DRV_MSG_SEQ_NUMBER_MASK); BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); /* get the current FW pulse sequence */ sc->fw_drv_pulse_wr_seq = (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & DRV_PULSE_SEQ_MASK); BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", sc->fw_drv_pulse_wr_seq); /* load request */ (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, DRV_MSG_CODE_LOAD_REQ_WITH_LFA); /* if the MCP fails to respond we must abort */ if (!(*load_code)) { BLOGE(sc, "MCP response failure!\n"); return (-1); } /* if MCP refused then must abort */ if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { BLOGE(sc, "MCP refused load request\n"); return (-1); } return (0); } /* * Check whether another PF has already loaded FW to chip. In virtualized * environments a pf from anoth VM may have already initialized the device * including loading FW. */ static int bxe_nic_load_analyze_req(struct bxe_softc *sc, uint32_t load_code) { uint32_t my_fw, loaded_fw; /* is another pf loaded on this engine? */ if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { /* build my FW version dword */ my_fw = (BCM_5710_FW_MAJOR_VERSION + (BCM_5710_FW_MINOR_VERSION << 8 ) + (BCM_5710_FW_REVISION_VERSION << 16) + (BCM_5710_FW_ENGINEERING_VERSION << 24)); /* read loaded FW from chip */ loaded_fw = REG_RD(sc, XSEM_REG_PRAM); BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", loaded_fw, my_fw); /* abort nic load if version mismatch */ if (my_fw != loaded_fw) { BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", loaded_fw, my_fw); return (-1); } } return (0); } /* mark PMF if applicable */ static void bxe_nic_load_pmf(struct bxe_softc *sc, uint32_t load_code) { uint32_t ncsi_oem_data_addr; if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { /* * Barrier here for ordering between the writing to sc->port.pmf here * and reading it from the periodic task. */ sc->port.pmf = 1; mb(); } else { sc->port.pmf = 0; } BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); /* XXX needed? */ if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); if (ncsi_oem_data_addr) { REG_WR(sc, (ncsi_oem_data_addr + offsetof(struct glob_ncsi_oem_data, driver_version)), 0); } } } } static void bxe_read_mf_cfg(struct bxe_softc *sc) { int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); int abs_func; int vn; if (BXE_NOMCP(sc)) { return; /* what should be the default bvalue in this case */ } /* * The formula for computing the absolute function number is... * For 2 port configuration (4 functions per port): * abs_func = 2 * vn + SC_PORT + SC_PATH * For 4 port configuration (2 functions per port): * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH */ for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); if (abs_func >= E1H_FUNC_MAX) { break; } sc->devinfo.mf_info.mf_config[vn] = MFCFG_RD(sc, func_mf_config[abs_func].config); } if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); sc->flags |= BXE_MF_FUNC_DIS; } else { BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); sc->flags &= ~BXE_MF_FUNC_DIS; } } /* acquire split MCP access lock register */ static int bxe_acquire_alr(struct bxe_softc *sc) { uint32_t j, val; for (j = 0; j < 1000; j++) { val = (1UL << 31); REG_WR(sc, GRCBASE_MCP + 0x9c, val); val = REG_RD(sc, GRCBASE_MCP + 0x9c); if (val & (1L << 31)) break; DELAY(5000); } if (!(val & (1L << 31))) { BLOGE(sc, "Cannot acquire MCP access lock register\n"); return (-1); } return (0); } /* release split MCP access lock register */ static void bxe_release_alr(struct bxe_softc *sc) { REG_WR(sc, GRCBASE_MCP + 0x9c, 0); } static void bxe_fan_failure(struct bxe_softc *sc) { int port = SC_PORT(sc); uint32_t ext_phy_config; /* mark the failure */ ext_phy_config = SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, ext_phy_config); /* log the failure */ BLOGW(sc, "Fan Failure has caused the driver to shutdown " "the card to prevent permanent damage. " "Please contact OEM Support for assistance\n"); /* XXX */ #if 1 bxe_panic(sc, ("Schedule task to handle fan failure\n")); #else /* * Schedule device reset (unload) * This is due to some boards consuming sufficient power when driver is * up to overheat if fan fails. */ bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); schedule_delayed_work(&sc->sp_rtnl_task, 0); #endif } /* this function is called upon a link interrupt */ static void bxe_link_attn(struct bxe_softc *sc) { uint32_t pause_enabled = 0; struct host_port_stats *pstats; int cmng_fns; /* Make sure that we are synced with the current statistics */ bxe_stats_handle(sc, STATS_EVENT_STOP); elink_link_update(&sc->link_params, &sc->link_vars); if (sc->link_vars.link_up) { /* dropless flow control */ if (!CHIP_IS_E1(sc) && sc->dropless_fc) { pause_enabled = 0; if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { pause_enabled = 1; } REG_WR(sc, (BAR_USTRORM_INTMEM + USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), pause_enabled); } if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { pstats = BXE_SP(sc, port_stats); /* reset old mac stats */ memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); } if (sc->state == BXE_STATE_OPEN) { bxe_stats_handle(sc, STATS_EVENT_LINK_UP); } } if (sc->link_vars.link_up && sc->link_vars.line_speed) { cmng_fns = bxe_get_cmng_fns_mode(sc); if (cmng_fns != CMNG_FNS_NONE) { bxe_cmng_fns_init(sc, FALSE, cmng_fns); storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); } else { /* rate shaping and fairness are disabled */ BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); } } bxe_link_report_locked(sc); if (IS_MF(sc)) { ; // XXX bxe_link_sync_notify(sc); } } static void bxe_attn_int_asserted(struct bxe_softc *sc, uint32_t asserted) { int port = SC_PORT(sc); uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : MISC_REG_AEU_MASK_ATTN_FUNC_0; uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : NIG_REG_MASK_INTERRUPT_PORT0; uint32_t aeu_mask; uint32_t nig_mask = 0; uint32_t reg_addr; uint32_t igu_acked; uint32_t cnt; if (sc->attn_state & asserted) { BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); } bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); aeu_mask = REG_RD(sc, aeu_addr); BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", aeu_mask, asserted); aeu_mask &= ~(asserted & 0x3ff); BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); REG_WR(sc, aeu_addr, aeu_mask); bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); sc->attn_state |= asserted; BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); if (asserted & ATTN_HARD_WIRED_MASK) { if (asserted & ATTN_NIG_FOR_FUNC) { BXE_PHY_LOCK(sc); /* save nig interrupt mask */ nig_mask = REG_RD(sc, nig_int_mask_addr); /* If nig_mask is not set, no need to call the update function */ if (nig_mask) { REG_WR(sc, nig_int_mask_addr, 0); bxe_link_attn(sc); } /* handle unicore attn? */ } if (asserted & ATTN_SW_TIMER_4_FUNC) { BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); } if (asserted & GPIO_2_FUNC) { BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); } if (asserted & GPIO_3_FUNC) { BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); } if (asserted & GPIO_4_FUNC) { BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); } if (port == 0) { if (asserted & ATTN_GENERAL_ATTN_1) { BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); } if (asserted & ATTN_GENERAL_ATTN_2) { BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); } if (asserted & ATTN_GENERAL_ATTN_3) { BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); } } else { if (asserted & ATTN_GENERAL_ATTN_4) { BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); } if (asserted & ATTN_GENERAL_ATTN_5) { BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); } if (asserted & ATTN_GENERAL_ATTN_6) { BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); } } } /* hardwired */ if (sc->devinfo.int_block == INT_BLOCK_HC) { reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); } else { reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); } BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", asserted, (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); REG_WR(sc, reg_addr, asserted); /* now set back the mask */ if (asserted & ATTN_NIG_FOR_FUNC) { /* * Verify that IGU ack through BAR was written before restoring * NIG mask. This loop should exit after 2-3 iterations max. */ if (sc->devinfo.int_block != INT_BLOCK_HC) { cnt = 0; do { igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && (++cnt < MAX_IGU_ATTN_ACK_TO)); if (!igu_acked) { BLOGE(sc, "Failed to verify IGU ack on time\n"); } mb(); } REG_WR(sc, nig_int_mask_addr, nig_mask); BXE_PHY_UNLOCK(sc); } } static void bxe_print_next_block(struct bxe_softc *sc, int idx, const char *blk) { BLOGI(sc, "%s%s", idx ? ", " : "", blk); } static int bxe_check_blocks_with_parity0(struct bxe_softc *sc, uint32_t sig, int par_num, uint8_t print) { uint32_t cur_bit = 0; int i = 0; for (i = 0; sig; i++) { cur_bit = ((uint32_t)0x1 << i); if (sig & cur_bit) { switch (cur_bit) { case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "BRB"); break; case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "PARSER"); break; case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "TSDM"); break; case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "SEARCHER"); break; case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "TCM"); break; case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "TSEMI"); break; case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "XPB"); break; } /* Clear the bit */ sig &= ~cur_bit; } } return (par_num); } static int bxe_check_blocks_with_parity1(struct bxe_softc *sc, uint32_t sig, int par_num, uint8_t *global, uint8_t print) { int i = 0; uint32_t cur_bit = 0; for (i = 0; sig; i++) { cur_bit = ((uint32_t)0x1 << i); if (sig & cur_bit) { switch (cur_bit) { case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "PBF"); break; case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "QM"); break; case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "TM"); break; case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "XSDM"); break; case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "XCM"); break; case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "XSEMI"); break; case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "DOORBELLQ"); break; case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "NIG"); break; case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); *global = TRUE; break; case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "DEBUG"); break; case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "USDM"); break; case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "UCM"); break; case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "USEMI"); break; case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "UPB"); break; case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "CSDM"); break; case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "CCM"); break; } /* Clear the bit */ sig &= ~cur_bit; } } return (par_num); } static int bxe_check_blocks_with_parity2(struct bxe_softc *sc, uint32_t sig, int par_num, uint8_t print) { uint32_t cur_bit = 0; int i = 0; for (i = 0; sig; i++) { cur_bit = ((uint32_t)0x1 << i); if (sig & cur_bit) { switch (cur_bit) { case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "CSEMI"); break; case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "PXP"); break; case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); break; case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "CFC"); break; case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "CDU"); break; case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "DMAE"); break; case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "IGU"); break; case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "MISC"); break; } /* Clear the bit */ sig &= ~cur_bit; } } return (par_num); } static int bxe_check_blocks_with_parity3(struct bxe_softc *sc, uint32_t sig, int par_num, uint8_t *global, uint8_t print) { uint32_t cur_bit = 0; int i = 0; for (i = 0; sig; i++) { cur_bit = ((uint32_t)0x1 << i); if (sig & cur_bit) { switch (cur_bit) { case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: if (print) bxe_print_next_block(sc, par_num++, "MCP ROM"); *global = TRUE; break; case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: if (print) bxe_print_next_block(sc, par_num++, "MCP UMP RX"); *global = TRUE; break; case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: if (print) bxe_print_next_block(sc, par_num++, "MCP UMP TX"); *global = TRUE; break; case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: if (print) bxe_print_next_block(sc, par_num++, "MCP SCPAD"); *global = TRUE; break; } /* Clear the bit */ sig &= ~cur_bit; } } return (par_num); } static int bxe_check_blocks_with_parity4(struct bxe_softc *sc, uint32_t sig, int par_num, uint8_t print) { uint32_t cur_bit = 0; int i = 0; for (i = 0; sig; i++) { cur_bit = ((uint32_t)0x1 << i); if (sig & cur_bit) { switch (cur_bit) { case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "PGLUE_B"); break; case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: if (print) bxe_print_next_block(sc, par_num++, "ATC"); break; } /* Clear the bit */ sig &= ~cur_bit; } } return (par_num); } static uint8_t bxe_parity_attn(struct bxe_softc *sc, uint8_t *global, uint8_t print, uint32_t *sig) { int par_num = 0; if ((sig[0] & HW_PRTY_ASSERT_SET_0) || (sig[1] & HW_PRTY_ASSERT_SET_1) || (sig[2] & HW_PRTY_ASSERT_SET_2) || (sig[3] & HW_PRTY_ASSERT_SET_3) || (sig[4] & HW_PRTY_ASSERT_SET_4)) { BLOGE(sc, "Parity error: HW block parity attention:\n" "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); if (print) BLOGI(sc, "Parity errors detected in blocks: "); par_num = bxe_check_blocks_with_parity0(sc, sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print); par_num = bxe_check_blocks_with_parity1(sc, sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print); par_num = bxe_check_blocks_with_parity2(sc, sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print); par_num = bxe_check_blocks_with_parity3(sc, sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print); par_num = bxe_check_blocks_with_parity4(sc, sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print); if (print) BLOGI(sc, "\n"); return (TRUE); } return (FALSE); } static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, uint8_t *global, uint8_t print) { struct attn_route attn = { {0} }; int port = SC_PORT(sc); attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); if (!CHIP_IS_E1x(sc)) attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); return (bxe_parity_attn(sc, global, print, attn.sig)); } static void bxe_attn_int_deasserted4(struct bxe_softc *sc, uint32_t attn) { uint32_t val; if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); } if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); BLOGE(sc, "ATC hw attention 0x%08x\n", val); if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); } if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { BLOGE(sc, "FATAL parity attention set4 0x%08x\n", (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); } } static void bxe_e1h_disable(struct bxe_softc *sc) { int port = SC_PORT(sc); bxe_tx_disable(sc); REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); } static void bxe_e1h_enable(struct bxe_softc *sc) { int port = SC_PORT(sc); REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); // XXX bxe_tx_enable(sc); } /* * called due to MCP event (on pmf): * reread new bandwidth configuration * configure FW * notify others function about the change */ static void bxe_config_mf_bw(struct bxe_softc *sc) { if (sc->link_vars.link_up) { bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); // XXX bxe_link_sync_notify(sc); } storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); } static void bxe_set_mf_bw(struct bxe_softc *sc) { bxe_config_mf_bw(sc); bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); } static void bxe_handle_eee_event(struct bxe_softc *sc) { BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); } #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 static void bxe_drv_info_ether_stat(struct bxe_softc *sc) { struct eth_stats_info *ether_stat = &sc->sp->drv_info_to_mcp.ether_stat; strlcpy(ether_stat->version, BXE_DRIVER_VERSION, ETH_STAT_INFO_VERSION_LEN); /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, ether_stat->mac_local + MAC_PAD, MAC_PAD, ETH_ALEN); ether_stat->mtu_size = sc->mtu; ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; } // XXX ether_stat->feature_flags |= ???; ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; ether_stat->txq_size = sc->tx_ring_size; ether_stat->rxq_size = sc->rx_ring_size; } static void bxe_handle_drv_info_req(struct bxe_softc *sc) { enum drv_info_opcode op_code; uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); /* if drv_info version supported by MFW doesn't match - send NACK */ if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); return; } op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> DRV_INFO_CONTROL_OP_CODE_SHIFT); memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); switch (op_code) { case ETH_STATS_OPCODE: bxe_drv_info_ether_stat(sc); break; case FCOE_STATS_OPCODE: case ISCSI_STATS_OPCODE: default: /* if op code isn't supported - send NACK */ bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); return; } /* * If we got drv_info attn from MFW then these fields are defined in * shmem2 for sure */ SHMEM2_WR(sc, drv_info_host_addr_lo, U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); SHMEM2_WR(sc, drv_info_host_addr_hi, U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); } static void bxe_dcc_event(struct bxe_softc *sc, uint32_t dcc_event) { BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { /* * This is the only place besides the function initialization * where the sc->flags can change so it is done without any * locks */ if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); sc->flags |= BXE_MF_FUNC_DIS; bxe_e1h_disable(sc); } else { BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); sc->flags &= ~BXE_MF_FUNC_DIS; bxe_e1h_enable(sc); } dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; } if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { bxe_config_mf_bw(sc); dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; } /* Report results to MCP */ if (dcc_event) bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); else bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); } static void bxe_pmf_update(struct bxe_softc *sc) { int port = SC_PORT(sc); uint32_t val; sc->port.pmf = 1; BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); /* * We need the mb() to ensure the ordering between the writing to * sc->port.pmf here and reading it from the bxe_periodic_task(). */ mb(); /* queue a periodic task */ // XXX schedule task... // XXX bxe_dcbx_pmf_update(sc); /* enable nig attention */ val = (0xff0f | (1 << (SC_VN(sc) + 4))); if (sc->devinfo.int_block == INT_BLOCK_HC) { REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); } else if (!CHIP_IS_E1x(sc)) { REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); } bxe_stats_handle(sc, STATS_EVENT_PMF); } static int bxe_mc_assert(struct bxe_softc *sc) { char last_idx; int i, rc = 0; uint32_t row0, row1, row2, row3; /* XSTORM */ last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); if (last_idx) BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); /* print the asserts */ for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", i, row3, row2, row1, row0); rc++; } else { break; } } /* TSTORM */ last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); if (last_idx) { BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); } /* print the asserts */ for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", i, row3, row2, row1, row0); rc++; } else { break; } } /* CSTORM */ last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); if (last_idx) { BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); } /* print the asserts */ for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", i, row3, row2, row1, row0); rc++; } else { break; } } /* USTORM */ last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); if (last_idx) { BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); } /* print the asserts */ for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", i, row3, row2, row1, row0); rc++; } else { break; } } return (rc); } static void bxe_attn_int_deasserted3(struct bxe_softc *sc, uint32_t attn) { int func = SC_FUNC(sc); uint32_t val; if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { if (attn & BXE_PMF_LINK_ASSERT(sc)) { REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); bxe_read_mf_cfg(sc); sc->devinfo.mf_info.mf_config[SC_VN(sc)] = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); if (val & DRV_STATUS_DCC_EVENT_MASK) bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); if (val & DRV_STATUS_SET_MF_BW) bxe_set_mf_bw(sc); if (val & DRV_STATUS_DRV_INFO_REQ) bxe_handle_drv_info_req(sc); #if 0 if (val & DRV_STATUS_VF_DISABLED) bxe_vf_handle_flr_event(sc); #endif if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) bxe_pmf_update(sc); #if 0 if (sc->port.pmf && (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && (sc->dcbx_enabled > 0)) /* start dcbx state machine */ bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED); #endif #if 0 if (val & DRV_STATUS_AFEX_EVENT_MASK) bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK); #endif if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) bxe_handle_eee_event(sc); if (sc->link_vars.periodic_flags & ELINK_PERIODIC_FLAGS_LINK_EVENT) { /* sync with link */ BXE_PHY_LOCK(sc); sc->link_vars.periodic_flags &= ~ELINK_PERIODIC_FLAGS_LINK_EVENT; BXE_PHY_UNLOCK(sc); if (IS_MF(sc)) ; // XXX bxe_link_sync_notify(sc); bxe_link_report(sc); } /* * Always call it here: bxe_link_report() will * prevent the link indication duplication. */ bxe_link_status_update(sc); } else if (attn & BXE_MC_ASSERT_BITS) { BLOGE(sc, "MC assert!\n"); bxe_mc_assert(sc); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); bxe_panic(sc, ("MC assert!\n")); } else if (attn & BXE_MCP_ASSERT) { BLOGE(sc, "MCP assert!\n"); REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); // XXX bxe_fw_dump(sc); } else { BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); } } if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); if (attn & BXE_GRC_TIMEOUT) { val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); BLOGE(sc, "GRC time-out 0x%08x\n", val); } if (attn & BXE_GRC_RSV) { val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); BLOGE(sc, "GRC reserved 0x%08x\n", val); } REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); } } static void bxe_attn_int_deasserted2(struct bxe_softc *sc, uint32_t attn) { int port = SC_PORT(sc); int reg_offset; uint32_t val0, mask0, val1, mask1; uint32_t val; if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); BLOGE(sc, "CFC hw attention 0x%08x\n", val); /* CFC error attention */ if (val & 0x2) { BLOGE(sc, "FATAL error from CFC\n"); } } if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); /* RQ_USDMDP_FIFO_OVERFLOW */ if (val & 0x18000) { BLOGE(sc, "FATAL error from PXP\n"); } if (!CHIP_IS_E1x(sc)) { val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); } } #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT if (attn & AEU_PXP2_HW_INT_BIT) { /* CQ47854 workaround do not panic on * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR */ if (!CHIP_IS_E1x(sc)) { mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); /* * If the olny PXP2_EOP_ERROR_BIT is set in * STS0 and STS1 - clear it * * probably we lose additional attentions between * STS0 and STS_CLR0, in this case user will not * be notified about them */ if (val0 & mask0 & PXP2_EOP_ERROR_BIT && !(val1 & mask1)) val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); /* print the register, since no one can restore it */ BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); /* * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR * then notify */ if (val0 & PXP2_EOP_ERROR_BIT) { BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); /* * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is * set then clear attention from PXP2 block without panic */ if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && ((val1 & mask1) == 0)) attn &= ~AEU_PXP2_HW_INT_BIT; } } } if (attn & HW_INTERRUT_ASSERT_SET_2) { reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); val = REG_RD(sc, reg_offset); val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); REG_WR(sc, reg_offset, val); BLOGE(sc, "FATAL HW block attention set2 0x%x\n", (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); bxe_panic(sc, ("HW block attention set2\n")); } } static void bxe_attn_int_deasserted1(struct bxe_softc *sc, uint32_t attn) { int port = SC_PORT(sc); int reg_offset; uint32_t val; if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); BLOGE(sc, "DB hw attention 0x%08x\n", val); /* DORQ discard attention */ if (val & 0x2) { BLOGE(sc, "FATAL error from DORQ\n"); } } if (attn & HW_INTERRUT_ASSERT_SET_1) { reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); val = REG_RD(sc, reg_offset); val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); REG_WR(sc, reg_offset, val); BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); bxe_panic(sc, ("HW block attention set1\n")); } } static void bxe_attn_int_deasserted0(struct bxe_softc *sc, uint32_t attn) { int port = SC_PORT(sc); int reg_offset; uint32_t val; reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { val = REG_RD(sc, reg_offset); val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; REG_WR(sc, reg_offset, val); BLOGW(sc, "SPIO5 hw attention\n"); /* Fan failure attention */ elink_hw_reset_phy(&sc->link_params); bxe_fan_failure(sc); } if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { BXE_PHY_LOCK(sc); elink_handle_module_detect_int(&sc->link_params); BXE_PHY_UNLOCK(sc); } if (attn & HW_INTERRUT_ASSERT_SET_0) { val = REG_RD(sc, reg_offset); val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); REG_WR(sc, reg_offset, val); bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", (attn & HW_INTERRUT_ASSERT_SET_0))); } } static void bxe_attn_int_deasserted(struct bxe_softc *sc, uint32_t deasserted) { struct attn_route attn; struct attn_route *group_mask; int port = SC_PORT(sc); int index; uint32_t reg_addr; uint32_t val; uint32_t aeu_mask; uint8_t global = FALSE; /* * Need to take HW lock because MCP or other port might also * try to handle this event. */ bxe_acquire_alr(sc); if (bxe_chk_parity_attn(sc, &global, TRUE)) { /* XXX * In case of parity errors don't handle attentions so that * other function would "see" parity errors. */ sc->recovery_state = BXE_RECOVERY_INIT; // XXX schedule a recovery task... /* disable HW interrupts */ bxe_int_disable(sc); bxe_release_alr(sc); return; } attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); if (!CHIP_IS_E1x(sc)) { attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); } else { attn.sig[4] = 0; } BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { if (deasserted & (1 << index)) { group_mask = &sc->attn_group[index]; BLOGD(sc, DBG_INTR, "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, group_mask->sig[0], group_mask->sig[1], group_mask->sig[2], group_mask->sig[3], group_mask->sig[4]); bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); } } bxe_release_alr(sc); if (sc->devinfo.int_block == INT_BLOCK_HC) { reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_CLR); } else { reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); } val = ~deasserted; BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", val, (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); REG_WR(sc, reg_addr, val); if (~sc->attn_state & deasserted) { BLOGE(sc, "IGU error\n"); } reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : MISC_REG_AEU_MASK_ATTN_FUNC_0; bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); aeu_mask = REG_RD(sc, reg_addr); BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", aeu_mask, deasserted); aeu_mask |= (deasserted & 0x3ff); BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); REG_WR(sc, reg_addr, aeu_mask); bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); sc->attn_state &= ~deasserted; BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); } static void bxe_attn_int(struct bxe_softc *sc) { /* read local copy of bits */ uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); uint32_t attn_state = sc->attn_state; /* look for changed bits */ uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; uint32_t deasserted = ~attn_bits & attn_ack & attn_state; BLOGD(sc, DBG_INTR, "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", attn_bits, attn_ack, asserted, deasserted); if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { BLOGE(sc, "BAD attention state\n"); } /* handle bits that were raised */ if (asserted) { bxe_attn_int_asserted(sc, asserted); } if (deasserted) { bxe_attn_int_deasserted(sc, deasserted); } } static uint16_t bxe_update_dsb_idx(struct bxe_softc *sc) { struct host_sp_status_block *def_sb = sc->def_sb; uint16_t rc = 0; mb(); /* status block is written to by the chip */ if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; rc |= BXE_DEF_SB_ATT_IDX; } if (sc->def_idx != def_sb->sp_sb.running_index) { sc->def_idx = def_sb->sp_sb.running_index; rc |= BXE_DEF_SB_IDX; } mb(); return (rc); } static inline struct ecore_queue_sp_obj * bxe_cid_to_q_obj(struct bxe_softc *sc, uint32_t cid) { BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); } static void bxe_handle_mcast_eqe(struct bxe_softc *sc) { struct ecore_mcast_ramrod_params rparam; int rc; memset(&rparam, 0, sizeof(rparam)); rparam.mcast_obj = &sc->mcast_obj; BXE_MCAST_LOCK(sc); /* clear pending state for the last command */ sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); /* if there are pending mcast commands - send them */ if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); if (rc < 0) { BLOGD(sc, DBG_SP, "ERROR: Failed to send pending mcast commands (%d)\n", rc); } } BXE_MCAST_UNLOCK(sc); } static void bxe_handle_classification_eqe(struct bxe_softc *sc, union event_ring_elem *elem) { unsigned long ramrod_flags = 0; int rc = 0; uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; struct ecore_vlan_mac_obj *vlan_mac_obj; /* always push next commands out, don't wait here */ bit_set(&ramrod_flags, RAMROD_CONT); switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { case ECORE_FILTER_MAC_PENDING: BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); vlan_mac_obj = &sc->sp_objs[cid].mac_obj; break; case ECORE_FILTER_MCAST_PENDING: BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); /* * This is only relevant for 57710 where multicast MACs are * configured as unicast MACs using the same ramrod. */ bxe_handle_mcast_eqe(sc); return; default: BLOGE(sc, "Unsupported classification command: %d\n", elem->message.data.eth_event.echo); return; } rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); if (rc < 0) { BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); } else if (rc > 0) { BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); } } static void bxe_handle_rx_mode_eqe(struct bxe_softc *sc, union event_ring_elem *elem) { bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); /* send rx_mode command again if was requested */ if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state)) { bxe_set_storm_rx_mode(sc); } #if 0 else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED, &sc->sp_state)) { bxe_set_iscsi_eth_rx_mode(sc, TRUE); } else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED, &sc->sp_state)) { bxe_set_iscsi_eth_rx_mode(sc, FALSE); } #endif } static void bxe_update_eq_prod(struct bxe_softc *sc, uint16_t prod) { storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); wmb(); /* keep prod updates ordered */ } static void bxe_eq_int(struct bxe_softc *sc) { uint16_t hw_cons, sw_cons, sw_prod; union event_ring_elem *elem; uint8_t echo; uint32_t cid; uint8_t opcode; int spqe_cnt = 0; struct ecore_queue_sp_obj *q_obj; struct ecore_func_sp_obj *f_obj = &sc->func_obj; struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; hw_cons = le16toh(*sc->eq_cons_sb); /* * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. * when we get to the next-page we need to adjust so the loop * condition below will be met. The next element is the size of a * regular element and hence incrementing by 1 */ if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { hw_cons++; } /* * This function may never run in parallel with itself for a * specific sc and no need for a read memory barrier here. */ sw_cons = sc->eq_cons; sw_prod = sc->eq_prod; BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); for (; sw_cons != hw_cons; sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { elem = &sc->eq[EQ_DESC(sw_cons)]; #if 0 int rc; rc = bxe_iov_eq_sp_event(sc, elem); if (!rc) { BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc); goto next_spqe; } #endif /* elem CID originates from FW, actually LE */ cid = SW_CID(elem->message.data.cfc_del_event.cid); opcode = elem->message.opcode; /* handle eq element */ switch (opcode) { #if 0 case EVENT_RING_OPCODE_VF_PF_CHANNEL: BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n"); bxe_vf_mbx(sc, &elem->message.data.vf_pf_event); continue; #endif case EVENT_RING_OPCODE_STAT_QUERY: BLOGD(sc, DBG_SP, "got statistics completion event %d\n", sc->stats_comp++); /* nothing to do with stats comp */ goto next_spqe; case EVENT_RING_OPCODE_CFC_DEL: /* handle according to cid range */ /* we may want to verify here that the sc state is HALTING */ BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); q_obj = bxe_cid_to_q_obj(sc, cid); if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { break; } goto next_spqe; case EVENT_RING_OPCODE_STOP_TRAFFIC: BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { break; } // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); goto next_spqe; case EVENT_RING_OPCODE_START_TRAFFIC: BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { break; } // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); goto next_spqe; case EVENT_RING_OPCODE_FUNCTION_UPDATE: echo = elem->message.data.function_update_event.echo; if (echo == SWITCH_UPDATE) { BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_SWITCH_UPDATE)) { break; } } else { BLOGD(sc, DBG_SP, "AFEX: ramrod completed FUNCTION_UPDATE\n"); #if 0 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE); /* * We will perform the queues update from the sp_core_task as * all queue SP operations should run with CORE_LOCK. */ bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state); taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); #endif } goto next_spqe; #if 0 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS); bxe_after_afex_vif_lists(sc, elem); goto next_spqe; #endif case EVENT_RING_OPCODE_FORWARD_SETUP: q_obj = &bxe_fwd_sp_obj(sc, q_obj); if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_SETUP_TX_ONLY)) { break; } goto next_spqe; case EVENT_RING_OPCODE_FUNCTION_START: BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { break; } goto next_spqe; case EVENT_RING_OPCODE_FUNCTION_STOP: BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { break; } goto next_spqe; } switch (opcode | sc->state) { case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); rss_raw->clear_pending(rss_raw); break; case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); bxe_handle_classification_eqe(sc, elem); break; case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): BLOGD(sc, DBG_SP, "got mcast ramrod\n"); bxe_handle_mcast_eqe(sc); break; case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); bxe_handle_rx_mode_eqe(sc, elem); break; default: /* unknown event log error and continue */ BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", elem->message.opcode, sc->state); } next_spqe: spqe_cnt++; } /* for */ mb(); atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); sc->eq_cons = sw_cons; sc->eq_prod = sw_prod; /* make sure that above mem writes were issued towards the memory */ wmb(); /* update producer */ bxe_update_eq_prod(sc, sc->eq_prod); } static void bxe_handle_sp_tq(void *context, int pending) { struct bxe_softc *sc = (struct bxe_softc *)context; uint16_t status; BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); /* what work needs to be performed? */ status = bxe_update_dsb_idx(sc); BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); /* HW attentions */ if (status & BXE_DEF_SB_ATT_IDX) { BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); bxe_attn_int(sc); status &= ~BXE_DEF_SB_ATT_IDX; } /* SP events: STAT_QUERY and others */ if (status & BXE_DEF_SB_IDX) { /* handle EQ completions */ BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); bxe_eq_int(sc); bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, le16toh(sc->def_idx), IGU_INT_NOP, 1); status &= ~BXE_DEF_SB_IDX; } /* if status is non zero then something went wrong */ if (__predict_false(status)) { BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); } /* ack status block only if something was actually handled */ bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); /* * Must be called after the EQ processing (since eq leads to sriov * ramrod completion flows). * This flow may have been scheduled by the arrival of a ramrod * completion, or by the sriov code rescheduling itself. */ // XXX bxe_iov_sp_task(sc); #if 0 /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */ if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state)) { bxe_link_report(sc); bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); } #endif } static void bxe_handle_fp_tq(void *context, int pending) { struct bxe_fastpath *fp = (struct bxe_fastpath *)context; struct bxe_softc *sc = fp->sc; uint8_t more_tx = FALSE; uint8_t more_rx = FALSE; BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); /* XXX * IFF_DRV_RUNNING state can't be checked here since we process * slowpath events on a client queue during setup. Instead * we need to add a "process/continue" flag here that the driver * can use to tell the task here not to do anything. */ #if 0 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { return; } #endif /* update the fastpath index */ bxe_update_fp_sb_idx(fp); /* XXX add loop here if ever support multiple tx CoS */ /* fp->txdata[cos] */ if (bxe_has_tx_work(fp)) { BXE_FP_TX_LOCK(fp); more_tx = bxe_txeof(sc, fp); BXE_FP_TX_UNLOCK(fp); } if (bxe_has_rx_work(fp)) { more_rx = bxe_rxeof(sc, fp); } if (more_rx /*|| more_tx*/) { /* still more work to do */ taskqueue_enqueue_fast(fp->tq, &fp->tq_task); return; } bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); } static void bxe_task_fp(struct bxe_fastpath *fp) { struct bxe_softc *sc = fp->sc; uint8_t more_tx = FALSE; uint8_t more_rx = FALSE; BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); /* update the fastpath index */ bxe_update_fp_sb_idx(fp); /* XXX add loop here if ever support multiple tx CoS */ /* fp->txdata[cos] */ if (bxe_has_tx_work(fp)) { BXE_FP_TX_LOCK(fp); more_tx = bxe_txeof(sc, fp); BXE_FP_TX_UNLOCK(fp); } if (bxe_has_rx_work(fp)) { more_rx = bxe_rxeof(sc, fp); } if (more_rx /*|| more_tx*/) { /* still more work to do, bail out if this ISR and process later */ taskqueue_enqueue_fast(fp->tq, &fp->tq_task); return; } /* * Here we write the fastpath index taken before doing any tx or rx work. * It is very well possible other hw events occurred up to this point and * they were actually processed accordingly above. Since we're going to * write an older fastpath index, an interrupt is coming which we might * not do any work in. */ bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); } /* * Legacy interrupt entry point. * * Verifies that the controller generated the interrupt and * then calls a separate routine to handle the various * interrupt causes: link, RX, and TX. */ static void bxe_intr_legacy(void *xsc) { struct bxe_softc *sc = (struct bxe_softc *)xsc; struct bxe_fastpath *fp; uint16_t status, mask; int i; BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); #if 0 /* Don't handle any interrupts if we're not ready. */ if (__predict_false(sc->intr_sem != 0)) { return; } #endif /* * 0 for ustorm, 1 for cstorm * the bits returned from ack_int() are 0-15 * bit 0 = attention status block * bit 1 = fast path status block * a mask of 0x2 or more = tx/rx event * a mask of 1 = slow path event */ status = bxe_ack_int(sc); /* the interrupt is not for us */ if (__predict_false(status == 0)) { BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); return; } BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); FOR_EACH_ETH_QUEUE(sc, i) { fp = &sc->fp[i]; mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); if (status & mask) { /* acknowledge and disable further fastpath interrupts */ bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); bxe_task_fp(fp); status &= ~mask; } } #if 0 if (CNIC_SUPPORT(sc)) { mask = 0x2; if (status & (mask | 0x1)) { ... status &= ~mask; } } #endif if (__predict_false(status & 0x1)) { /* acknowledge and disable further slowpath interrupts */ bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); /* schedule slowpath handler */ taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); status &= ~0x1; } if (__predict_false(status)) { BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); } } /* slowpath interrupt entry point */ static void bxe_intr_sp(void *xsc) { struct bxe_softc *sc = (struct bxe_softc *)xsc; BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); /* acknowledge and disable further slowpath interrupts */ bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); /* schedule slowpath handler */ taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); } /* fastpath interrupt entry point */ static void bxe_intr_fp(void *xfp) { struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; struct bxe_softc *sc = fp->sc; BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); BLOGD(sc, DBG_INTR, "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); #if 0 /* Don't handle any interrupts if we're not ready. */ if (__predict_false(sc->intr_sem != 0)) { return; } #endif /* acknowledge and disable further fastpath interrupts */ bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); bxe_task_fp(fp); } /* Release all interrupts allocated by the driver. */ static void bxe_interrupt_free(struct bxe_softc *sc) { int i; switch (sc->interrupt_mode) { case INTR_MODE_INTX: BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); if (sc->intr[0].resource != NULL) { bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr[0].rid, sc->intr[0].resource); } break; case INTR_MODE_MSI: for (i = 0; i < sc->intr_count; i++) { BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); if (sc->intr[i].resource && sc->intr[i].rid) { bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr[i].rid, sc->intr[i].resource); } } pci_release_msi(sc->dev); break; case INTR_MODE_MSIX: for (i = 0; i < sc->intr_count; i++) { BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); if (sc->intr[i].resource && sc->intr[i].rid) { bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr[i].rid, sc->intr[i].resource); } } pci_release_msi(sc->dev); break; default: /* nothing to do as initial allocation failed */ break; } } /* * This function determines and allocates the appropriate * interrupt based on system capabilites and user request. * * The user may force a particular interrupt mode, specify * the number of receive queues, specify the method for * distribuitng received frames to receive queues, or use * the default settings which will automatically select the * best supported combination. In addition, the OS may or * may not support certain combinations of these settings. * This routine attempts to reconcile the settings requested * by the user with the capabilites available from the system * to select the optimal combination of features. * * Returns: * 0 = Success, !0 = Failure. */ static int bxe_interrupt_alloc(struct bxe_softc *sc) { int msix_count = 0; int msi_count = 0; int num_requested = 0; int num_allocated = 0; int rid, i, j; int rc; /* get the number of available MSI/MSI-X interrupts from the OS */ if (sc->interrupt_mode > 0) { if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { msix_count = pci_msix_count(sc->dev); } if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { msi_count = pci_msi_count(sc->dev); } BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", msi_count, msix_count); } do { /* try allocating MSI-X interrupt resources (at least 2) */ if (sc->interrupt_mode != INTR_MODE_MSIX) { break; } if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || (msix_count < 2)) { sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ break; } /* ask for the necessary number of MSI-X vectors */ num_requested = min((sc->num_queues + 1), msix_count); BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); num_allocated = num_requested; if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ break; } if (num_allocated < 2) { /* possible? */ BLOGE(sc, "MSI-X allocation less than 2!\n"); sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ pci_release_msi(sc->dev); break; } BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", num_requested, num_allocated); /* best effort so use the number of vectors allocated to us */ sc->intr_count = num_allocated; sc->num_queues = num_allocated - 1; rid = 1; /* initial resource identifier */ /* allocate the MSI-X vectors */ for (i = 0; i < num_allocated; i++) { sc->intr[i].rid = (rid + i); if ((sc->intr[i].resource = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &sc->intr[i].rid, RF_ACTIVE)) == NULL) { BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", i, (rid + i)); for (j = (i - 1); j >= 0; j--) { bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr[j].rid, sc->intr[j].resource); } sc->intr_count = 0; sc->num_queues = 0; sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ pci_release_msi(sc->dev); break; } BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); } } while (0); do { /* try allocating MSI vector resources (at least 2) */ if (sc->interrupt_mode != INTR_MODE_MSI) { break; } if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || (msi_count < 1)) { sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ break; } /* ask for a single MSI vector */ num_requested = 1; BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); num_allocated = num_requested; if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { BLOGE(sc, "MSI alloc failed (%d)!\n", rc); sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ break; } if (num_allocated != 1) { /* possible? */ BLOGE(sc, "MSI allocation is not 1!\n"); sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ pci_release_msi(sc->dev); break; } BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", num_requested, num_allocated); /* best effort so use the number of vectors allocated to us */ sc->intr_count = num_allocated; sc->num_queues = num_allocated; rid = 1; /* initial resource identifier */ sc->intr[0].rid = rid; if ((sc->intr[0].resource = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &sc->intr[0].rid, RF_ACTIVE)) == NULL) { BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); sc->intr_count = 0; sc->num_queues = 0; sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ pci_release_msi(sc->dev); break; } BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); } while (0); do { /* try allocating INTx vector resources */ if (sc->interrupt_mode != INTR_MODE_INTX) { break; } BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); /* only one vector for INTx */ sc->intr_count = 1; sc->num_queues = 1; rid = 0; /* initial resource identifier */ sc->intr[0].rid = rid; if ((sc->intr[0].resource = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &sc->intr[0].rid, (RF_ACTIVE | RF_SHAREABLE))) == NULL) { BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); sc->intr_count = 0; sc->num_queues = 0; sc->interrupt_mode = -1; /* Failed! */ break; } BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); } while (0); if (sc->interrupt_mode == -1) { BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); rc = 1; } else { BLOGD(sc, DBG_LOAD, "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", sc->interrupt_mode, sc->num_queues); rc = 0; } return (rc); } static void bxe_interrupt_detach(struct bxe_softc *sc) { struct bxe_fastpath *fp; int i; /* release interrupt resources */ for (i = 0; i < sc->intr_count; i++) { if (sc->intr[i].resource && sc->intr[i].tag) { BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); } } for (i = 0; i < sc->num_queues; i++) { fp = &sc->fp[i]; if (fp->tq) { taskqueue_drain(fp->tq, &fp->tq_task); taskqueue_free(fp->tq); fp->tq = NULL; } } if (sc->rx_mode_tq) { taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task); taskqueue_free(sc->rx_mode_tq); sc->rx_mode_tq = NULL; } if (sc->sp_tq) { taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); taskqueue_free(sc->sp_tq); sc->sp_tq = NULL; } } /* * Enables interrupts and attach to the ISR. * * When using multiple MSI/MSI-X vectors the first vector * is used for slowpath operations while all remaining * vectors are used for fastpath operations. If only a * single MSI/MSI-X vector is used (SINGLE_ISR) then the * ISR must look for both slowpath and fastpath completions. */ static int bxe_interrupt_attach(struct bxe_softc *sc) { struct bxe_fastpath *fp; int rc = 0; int i; snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), "bxe%d_sp_tq", sc->unit); TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT, taskqueue_thread_enqueue, &sc->sp_tq); taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ "%s", sc->sp_tq_name); snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name), "bxe%d_rx_mode_tq", sc->unit); TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc); sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT, taskqueue_thread_enqueue, &sc->rx_mode_tq); taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */ "%s", sc->rx_mode_tq_name); for (i = 0; i < sc->num_queues; i++) { fp = &sc->fp[i]; snprintf(fp->tq_name, sizeof(fp->tq_name), "bxe%d_fp%d_tq", sc->unit, i); TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT, taskqueue_thread_enqueue, &fp->tq); taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ "%s", fp->tq_name); } /* setup interrupt handlers */ if (sc->interrupt_mode == INTR_MODE_MSIX) { BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); /* * Setup the interrupt handler. Note that we pass the driver instance * to the interrupt handler for the slowpath. */ if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, (INTR_TYPE_NET | INTR_MPSAFE), NULL, bxe_intr_sp, sc, &sc->intr[0].tag)) != 0) { BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); goto bxe_interrupt_attach_exit; } bus_describe_intr(sc->dev, sc->intr[0].resource, sc->intr[0].tag, "sp"); /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ /* initialize the fastpath vectors (note the first was used for sp) */ for (i = 0; i < sc->num_queues; i++) { fp = &sc->fp[i]; BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); /* * Setup the interrupt handler. Note that we pass the * fastpath context to the interrupt handler in this * case. */ if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, (INTR_TYPE_NET | INTR_MPSAFE), NULL, bxe_intr_fp, fp, &sc->intr[i + 1].tag)) != 0) { BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", (i + 1), rc); goto bxe_interrupt_attach_exit; } bus_describe_intr(sc->dev, sc->intr[i + 1].resource, sc->intr[i + 1].tag, "fp%02d", i); /* bind the fastpath instance to a cpu */ if (sc->num_queues > 1) { bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); } fp->state = BXE_FP_STATE_IRQ; } } else if (sc->interrupt_mode == INTR_MODE_MSI) { BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); /* * Setup the interrupt handler. Note that we pass the * driver instance to the interrupt handler which * will handle both the slowpath and fastpath. */ if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, (INTR_TYPE_NET | INTR_MPSAFE), NULL, bxe_intr_legacy, sc, &sc->intr[0].tag)) != 0) { BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); goto bxe_interrupt_attach_exit; } } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); /* * Setup the interrupt handler. Note that we pass the * driver instance to the interrupt handler which * will handle both the slowpath and fastpath. */ if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, (INTR_TYPE_NET | INTR_MPSAFE), NULL, bxe_intr_legacy, sc, &sc->intr[0].tag)) != 0) { BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); goto bxe_interrupt_attach_exit; } } bxe_interrupt_attach_exit: return (rc); } static int bxe_init_hw_common_chip(struct bxe_softc *sc); static int bxe_init_hw_common(struct bxe_softc *sc); static int bxe_init_hw_port(struct bxe_softc *sc); static int bxe_init_hw_func(struct bxe_softc *sc); static void bxe_reset_common(struct bxe_softc *sc); static void bxe_reset_port(struct bxe_softc *sc); static void bxe_reset_func(struct bxe_softc *sc); static int bxe_gunzip_init(struct bxe_softc *sc); static void bxe_gunzip_end(struct bxe_softc *sc); static int bxe_init_firmware(struct bxe_softc *sc); static void bxe_release_firmware(struct bxe_softc *sc); static struct ecore_func_sp_drv_ops bxe_func_sp_drv = { .init_hw_cmn_chip = bxe_init_hw_common_chip, .init_hw_cmn = bxe_init_hw_common, .init_hw_port = bxe_init_hw_port, .init_hw_func = bxe_init_hw_func, .reset_hw_cmn = bxe_reset_common, .reset_hw_port = bxe_reset_port, .reset_hw_func = bxe_reset_func, .gunzip_init = bxe_gunzip_init, .gunzip_end = bxe_gunzip_end, .init_fw = bxe_init_firmware, .release_fw = bxe_release_firmware, }; static void bxe_init_func_obj(struct bxe_softc *sc) { sc->dmae_ready = 0; ecore_init_func_obj(sc, &sc->func_obj, BXE_SP(sc, func_rdata), BXE_SP_MAPPING(sc, func_rdata), BXE_SP(sc, func_afex_rdata), BXE_SP_MAPPING(sc, func_afex_rdata), &bxe_func_sp_drv); } static int bxe_init_hw(struct bxe_softc *sc, uint32_t load_code) { struct ecore_func_state_params func_params = { NULL }; int rc; /* prepare the parameters for function state transitions */ bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); func_params.f_obj = &sc->func_obj; func_params.cmd = ECORE_F_CMD_HW_INIT; func_params.params.hw_init.load_phase = load_code; /* * Via a plethora of function pointers, we will eventually reach * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). */ rc = ecore_func_state_change(sc, &func_params); return (rc); } static void bxe_fill(struct bxe_softc *sc, uint32_t addr, int fill, uint32_t len) { uint32_t i; if (!(len % 4) && !(addr % 4)) { for (i = 0; i < len; i += 4) { REG_WR(sc, (addr + i), fill); } } else { for (i = 0; i < len; i++) { REG_WR8(sc, (addr + i), fill); } } } /* writes FP SP data to FW - data_size in dwords */ static void bxe_wr_fp_sb_data(struct bxe_softc *sc, int fw_sb_id, uint32_t *sb_data_p, uint32_t data_size) { int index; for (index = 0; index < data_size; index++) { REG_WR(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + (sizeof(uint32_t) * index)), *(sb_data_p + index)); } } static void bxe_zero_fp_sb(struct bxe_softc *sc, int fw_sb_id) { struct hc_status_block_data_e2 sb_data_e2; struct hc_status_block_data_e1x sb_data_e1x; uint32_t *sb_data_p; uint32_t data_size = 0; if (!CHIP_IS_E1x(sc)) { memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); sb_data_e2.common.state = SB_DISABLED; sb_data_e2.common.p_func.vf_valid = FALSE; sb_data_p = (uint32_t *)&sb_data_e2; data_size = (sizeof(struct hc_status_block_data_e2) / sizeof(uint32_t)); } else { memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); sb_data_e1x.common.state = SB_DISABLED; sb_data_e1x.common.p_func.vf_valid = FALSE; sb_data_p = (uint32_t *)&sb_data_e1x; data_size = (sizeof(struct hc_status_block_data_e1x) / sizeof(uint32_t)); } bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 0, CSTORM_STATUS_BLOCK_SIZE); bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 0, CSTORM_SYNC_BLOCK_SIZE); } static void bxe_wr_sp_sb_data(struct bxe_softc *sc, struct hc_sp_status_block_data *sp_sb_data) { int i; for (i = 0; i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); i++) { REG_WR(sc, (BAR_CSTRORM_INTMEM + CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + (i * sizeof(uint32_t))), *((uint32_t *)sp_sb_data + i)); } } static void bxe_zero_sp_sb(struct bxe_softc *sc) { struct hc_sp_status_block_data sp_sb_data; memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); sp_sb_data.state = SB_DISABLED; sp_sb_data.p_func.vf_valid = FALSE; bxe_wr_sp_sb_data(sc, &sp_sb_data); bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 0, CSTORM_SP_STATUS_BLOCK_SIZE); bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 0, CSTORM_SP_SYNC_BLOCK_SIZE); } static void bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, int igu_sb_id, int igu_seg_id) { hc_sm->igu_sb_id = igu_sb_id; hc_sm->igu_seg_id = igu_seg_id; hc_sm->timer_value = 0xFF; hc_sm->time_to_expire = 0xFFFFFFFF; } static void bxe_map_sb_state_machines(struct hc_index_data *index_data) { /* zero out state machine indices */ /* rx indices */ index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; /* tx indices */ index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; /* map indices */ /* rx indices */ index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); /* tx indices */ index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); } static void bxe_init_sb(struct bxe_softc *sc, bus_addr_t busaddr, int vfid, uint8_t vf_valid, int fw_sb_id, int igu_sb_id) { struct hc_status_block_data_e2 sb_data_e2; struct hc_status_block_data_e1x sb_data_e1x; struct hc_status_block_sm *hc_sm_p; uint32_t *sb_data_p; int igu_seg_id; int data_size; if (CHIP_INT_MODE_IS_BC(sc)) { igu_seg_id = HC_SEG_ACCESS_NORM; } else { igu_seg_id = IGU_SEG_ACCESS_NORM; } bxe_zero_fp_sb(sc, fw_sb_id); if (!CHIP_IS_E1x(sc)) { memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); sb_data_e2.common.state = SB_ENABLED; sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); sb_data_e2.common.p_func.vf_id = vfid; sb_data_e2.common.p_func.vf_valid = vf_valid; sb_data_e2.common.p_func.vnic_id = SC_VN(sc); sb_data_e2.common.same_igu_sb_1b = TRUE; sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); hc_sm_p = sb_data_e2.common.state_machine; sb_data_p = (uint32_t *)&sb_data_e2; data_size = (sizeof(struct hc_status_block_data_e2) / sizeof(uint32_t)); bxe_map_sb_state_machines(sb_data_e2.index_data); } else { memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); sb_data_e1x.common.state = SB_ENABLED; sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); sb_data_e1x.common.p_func.vf_id = 0xff; sb_data_e1x.common.p_func.vf_valid = FALSE; sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); sb_data_e1x.common.same_igu_sb_1b = TRUE; sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); hc_sm_p = sb_data_e1x.common.state_machine; sb_data_p = (uint32_t *)&sb_data_e1x; data_size = (sizeof(struct hc_status_block_data_e1x) / sizeof(uint32_t)); bxe_map_sb_state_machines(sb_data_e1x.index_data); } bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); /* write indices to HW - PCI guarantees endianity of regpairs */ bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); } static inline uint8_t bxe_fp_qzone_id(struct bxe_fastpath *fp) { if (CHIP_IS_E1x(fp->sc)) { return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); } else { return (fp->cl_id); } } static inline uint32_t bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, struct bxe_fastpath *fp) { uint32_t offset = BAR_USTRORM_INTMEM; #if 0 if (IS_VF(sc)) { return (PXP_VF_ADDR_USDM_QUEUES_START + (sc->acquire_resp.resc.hw_qid[fp->index] * sizeof(struct ustorm_queue_zone_data))); } else #endif if (!CHIP_IS_E1x(sc)) { offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); } else { offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); } return (offset); } static void bxe_init_eth_fp(struct bxe_softc *sc, int idx) { struct bxe_fastpath *fp = &sc->fp[idx]; uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; unsigned long q_type = 0; int cos; fp->sc = sc; fp->index = idx; snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), "bxe%d_fp%d_tx_lock", sc->unit, idx); mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), "bxe%d_fp%d_rx_lock", sc->unit, idx); mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); fp->cl_id = (CHIP_IS_E1x(sc)) ? (SC_L_ID(sc) + idx) : /* want client ID same as IGU SB ID for non-E1 */ fp->igu_sb_id; fp->cl_qzone_id = bxe_fp_qzone_id(fp); /* setup sb indices */ if (!CHIP_IS_E1x(sc)) { fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; } else { fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; } /* init shortcut */ fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; /* * XXX If multiple CoS is ever supported then each fastpath structure * will need to maintain tx producer/consumer/dma/etc values *per* CoS. */ for (cos = 0; cos < sc->max_cos; cos++) { cids[cos] = idx; } fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; /* nothing more for a VF to do */ if (IS_VF(sc)) { return; } bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, fp->fw_sb_id, fp->igu_sb_id); bxe_update_fp_sb_idx(fp); /* Configure Queue State object */ bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); ecore_init_queue_obj(sc, &sc->sp_objs[idx].q_obj, fp->cl_id, cids, sc->max_cos, SC_FUNC(sc), BXE_SP(sc, q_rdata), BXE_SP_MAPPING(sc, q_rdata), q_type); /* configure classification DBs */ ecore_init_mac_obj(sc, &sc->sp_objs[idx].mac_obj, fp->cl_id, idx, SC_FUNC(sc), BXE_SP(sc, mac_rdata), BXE_SP_MAPPING(sc, mac_rdata), ECORE_FILTER_MAC_PENDING, &sc->sp_state, ECORE_OBJ_TYPE_RX_TX, &sc->macs_pool); BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); } static inline void bxe_update_rx_prod(struct bxe_softc *sc, struct bxe_fastpath *fp, uint16_t rx_bd_prod, uint16_t rx_cq_prod, uint16_t rx_sge_prod) { struct ustorm_eth_rx_producers rx_prods = { 0 }; uint32_t i; /* update producers */ rx_prods.bd_prod = rx_bd_prod; rx_prods.cqe_prod = rx_cq_prod; rx_prods.sge_prod = rx_sge_prod; /* * Make sure that the BD and SGE data is updated before updating the * producers since FW might read the BD/SGE right after the producer * is updated. * This is only applicable for weak-ordered memory model archs such * as IA-64. The following barrier is also mandatory since FW will * assumes BDs must have buffers. */ wmb(); for (i = 0; i < (sizeof(rx_prods) / 4); i++) { REG_WR(sc, (fp->ustorm_rx_prods_offset + (i * 4)), ((uint32_t *)&rx_prods)[i]); } wmb(); /* keep prod updates ordered */ BLOGD(sc, DBG_RX, "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); } static void bxe_init_rx_rings(struct bxe_softc *sc) { struct bxe_fastpath *fp; int i; for (i = 0; i < sc->num_queues; i++) { fp = &sc->fp[i]; fp->rx_bd_cons = 0; /* * Activate the BD ring... * Warning, this will generate an interrupt (to the TSTORM) * so this can only be done after the chip is initialized */ bxe_update_rx_prod(sc, fp, fp->rx_bd_prod, fp->rx_cq_prod, fp->rx_sge_prod); if (i != 0) { continue; } if (CHIP_IS_E1(sc)) { REG_WR(sc, (BAR_USTRORM_INTMEM + USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), U64_LO(fp->rcq_dma.paddr)); REG_WR(sc, (BAR_USTRORM_INTMEM + USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), U64_HI(fp->rcq_dma.paddr)); } } } static void bxe_init_tx_ring_one(struct bxe_fastpath *fp) { SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); fp->tx_db.data.zero_fill1 = 0; fp->tx_db.data.prod = 0; fp->tx_pkt_prod = 0; fp->tx_pkt_cons = 0; fp->tx_bd_prod = 0; fp->tx_bd_cons = 0; fp->eth_q_stats.tx_pkts = 0; } static inline void bxe_init_tx_rings(struct bxe_softc *sc) { int i; for (i = 0; i < sc->num_queues; i++) { #if 0 uint8_t cos; for (cos = 0; cos < sc->max_cos; cos++) { bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]); } #else bxe_init_tx_ring_one(&sc->fp[i]); #endif } } static void bxe_init_def_sb(struct bxe_softc *sc) { struct host_sp_status_block *def_sb = sc->def_sb; bus_addr_t mapping = sc->def_sb_dma.paddr; int igu_sp_sb_index; int igu_seg_id; int port = SC_PORT(sc); int func = SC_FUNC(sc); int reg_offset, reg_offset_en5; uint64_t section; int index, sindex; struct hc_sp_status_block_data sp_sb_data; memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); if (CHIP_INT_MODE_IS_BC(sc)) { igu_sp_sb_index = DEF_SB_IGU_ID; igu_seg_id = HC_SEG_ACCESS_DEF; } else { igu_sp_sb_index = sc->igu_dsb_id; igu_seg_id = IGU_SEG_ACCESS_DEF; } /* attentions */ section = ((uint64_t)mapping + offsetof(struct host_sp_status_block, atten_status_block)); def_sb->atten_status_block.status_block_id = igu_sp_sb_index; sc->attn_state = 0; reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; reg_offset_en5 = (port) ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { /* take care of sig[0]..sig[4] */ for (sindex = 0; sindex < 4; sindex++) { sc->attn_group[index].sig[sindex] = REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); } if (!CHIP_IS_E1x(sc)) { /* * enable5 is separate from the rest of the registers, * and the address skip is 4 and not 16 between the * different groups */ sc->attn_group[index].sig[4] = REG_RD(sc, (reg_offset_en5 + (0x4 * index))); } else { sc->attn_group[index].sig[4] = 0; } } if (sc->devinfo.int_block == INT_BLOCK_HC) { reg_offset = (port) ? HC_REG_ATTN_MSG1_ADDR_L : HC_REG_ATTN_MSG0_ADDR_L; REG_WR(sc, reg_offset, U64_LO(section)); REG_WR(sc, (reg_offset + 4), U64_HI(section)); } else if (!CHIP_IS_E1x(sc)) { REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); } section = ((uint64_t)mapping + offsetof(struct host_sp_status_block, sp_sb)); bxe_zero_sp_sb(sc); /* PCI guarantees endianity of regpair */ sp_sb_data.state = SB_ENABLED; sp_sb_data.host_sb_addr.lo = U64_LO(section); sp_sb_data.host_sb_addr.hi = U64_HI(section); sp_sb_data.igu_sb_id = igu_sp_sb_index; sp_sb_data.igu_seg_id = igu_seg_id; sp_sb_data.p_func.pf_id = func; sp_sb_data.p_func.vnic_id = SC_VN(sc); sp_sb_data.p_func.vf_id = 0xff; bxe_wr_sp_sb_data(sc, &sp_sb_data); bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); } static void bxe_init_sp_ring(struct bxe_softc *sc) { atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); sc->spq_prod_idx = 0; sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; sc->spq_prod_bd = sc->spq; sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); } static void bxe_init_eq_ring(struct bxe_softc *sc) { union event_ring_elem *elem; int i; for (i = 1; i <= NUM_EQ_PAGES; i++) { elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + BCM_PAGE_SIZE * (i % NUM_EQ_PAGES))); elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + BCM_PAGE_SIZE * (i % NUM_EQ_PAGES))); } sc->eq_cons = 0; sc->eq_prod = NUM_EQ_DESC; sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; atomic_store_rel_long(&sc->eq_spq_left, (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), NUM_EQ_DESC) - 1)); } static void bxe_init_internal_common(struct bxe_softc *sc) { int i; if (IS_MF_SI(sc)) { /* * In switch independent mode, the TSTORM needs to accept * packets that failed classification, since approximate match * mac addresses aren't written to NIG LLH. */ REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 2); } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */ REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 0); } /* * Zero this manually as its initialization is currently missing * in the initTool. */ for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { REG_WR(sc, (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 0); } if (!CHIP_IS_E1x(sc)) { REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); } } static void bxe_init_internal(struct bxe_softc *sc, uint32_t load_code) { switch (load_code) { case FW_MSG_CODE_DRV_LOAD_COMMON: case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: bxe_init_internal_common(sc); /* no break */ case FW_MSG_CODE_DRV_LOAD_PORT: /* nothing to do */ /* no break */ case FW_MSG_CODE_DRV_LOAD_FUNCTION: /* internal memory per function is initialized inside bxe_pf_init */ break; default: BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); break; } } static void storm_memset_func_cfg(struct bxe_softc *sc, struct tstorm_eth_function_common_config *tcfg, uint16_t abs_fid) { uint32_t addr; size_t size; addr = (BAR_TSTRORM_INTMEM + TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); size = sizeof(struct tstorm_eth_function_common_config); ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); } static void bxe_func_init(struct bxe_softc *sc, struct bxe_func_init_params *p) { struct tstorm_eth_function_common_config tcfg = { 0 }; if (CHIP_IS_E1x(sc)) { storm_memset_func_cfg(sc, &tcfg, p->func_id); } /* Enable the function in the FW */ storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); storm_memset_func_en(sc, p->func_id, 1); /* spq */ if (p->func_flgs & FUNC_FLG_SPQ) { storm_memset_spq_addr(sc, p->spq_map, p->func_id); REG_WR(sc, (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), p->spq_prod); } } /* * Calculates the sum of vn_min_rates. * It's needed for further normalizing of the min_rates. * Returns: * sum of vn_min_rates. * or * 0 - if all the min_rates are 0. * In the later case fainess algorithm should be deactivated. * If all min rates are not zero then those that are zeroes will be set to 1. */ static void bxe_calc_vn_min(struct bxe_softc *sc, struct cmng_init_input *input) { uint32_t vn_cfg; uint32_t vn_min_rate; int all_zero = 1; int vn; for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { vn_cfg = sc->devinfo.mf_info.mf_config[vn]; vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT) * 100); if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { /* skip hidden VNs */ vn_min_rate = 0; } else if (!vn_min_rate) { /* If min rate is zero - set it to 100 */ vn_min_rate = DEF_MIN_RATE; } else { all_zero = 0; } input->vnic_min_rate[vn] = vn_min_rate; } /* if ETS or all min rates are zeros - disable fairness */ if (BXE_IS_ETS_ENABLED(sc)) { input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); } else if (all_zero) { input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; BLOGD(sc, DBG_LOAD, "Fariness disabled (all MIN values are zeroes)\n"); } else { input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; } } static inline uint16_t bxe_extract_max_cfg(struct bxe_softc *sc, uint32_t mf_cfg) { uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); if (!max_cfg) { BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); max_cfg = 100; } return (max_cfg); } static void bxe_calc_vn_max(struct bxe_softc *sc, int vn, struct cmng_init_input *input) { uint16_t vn_max_rate; uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; uint32_t max_cfg; if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { vn_max_rate = 0; } else { max_cfg = bxe_extract_max_cfg(sc, vn_cfg); if (IS_MF_SI(sc)) { /* max_cfg in percents of linkspeed */ vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); } else { /* SD modes */ /* max_cfg is absolute in 100Mb units */ vn_max_rate = (max_cfg * 100); } } BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); input->vnic_max_rate[vn] = vn_max_rate; } static void bxe_cmng_fns_init(struct bxe_softc *sc, uint8_t read_cfg, uint8_t cmng_type) { struct cmng_init_input input; int vn; memset(&input, 0, sizeof(struct cmng_init_input)); input.port_rate = sc->link_vars.line_speed; if (cmng_type == CMNG_FNS_MINMAX) { /* read mf conf from shmem */ if (read_cfg) { bxe_read_mf_cfg(sc); } /* get VN min rate and enable fairness if not 0 */ bxe_calc_vn_min(sc, &input); /* get VN max rate */ if (sc->port.pmf) { for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { bxe_calc_vn_max(sc, vn, &input); } } /* always enable rate shaping and fairness */ input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; ecore_init_cmng(&input, &sc->cmng); return; } /* rate shaping and fairness are disabled */ BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); } static int bxe_get_cmng_fns_mode(struct bxe_softc *sc) { if (CHIP_REV_IS_SLOW(sc)) { return (CMNG_FNS_NONE); } if (IS_MF(sc)) { return (CMNG_FNS_MINMAX); } return (CMNG_FNS_NONE); } static void storm_memset_cmng(struct bxe_softc *sc, struct cmng_init *cmng, uint8_t port) { int vn; int func; uint32_t addr; size_t size; addr = (BAR_XSTRORM_INTMEM + XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); size = sizeof(struct cmng_struct_per_port); ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { func = func_by_vn(sc, vn); addr = (BAR_XSTRORM_INTMEM + XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); size = sizeof(struct rate_shaping_vars_per_vn); ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); addr = (BAR_XSTRORM_INTMEM + XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); size = sizeof(struct fairness_vars_per_vn); ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); } } static void bxe_pf_init(struct bxe_softc *sc) { struct bxe_func_init_params func_init = { 0 }; struct event_ring_data eq_data = { { 0 } }; uint16_t flags; if (!CHIP_IS_E1x(sc)) { /* reset IGU PF statistics: MSIX + ATTN */ /* PF */ REG_WR(sc, (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + (BXE_IGU_STAS_MSG_VF_CNT * 4) + ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 0); /* ATTN */ REG_WR(sc, (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + (BXE_IGU_STAS_MSG_VF_CNT * 4) + (BXE_IGU_STAS_MSG_PF_CNT * 4) + ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 0); } /* function setup flags */ flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); /* * This flag is relevant for E1x only. * E2 doesn't have a TPA configuration in a function level. */ flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; func_init.func_flgs = flags; func_init.pf_id = SC_FUNC(sc); func_init.func_id = SC_FUNC(sc); func_init.spq_map = sc->spq_dma.paddr; func_init.spq_prod = sc->spq_prod_idx; bxe_func_init(sc, &func_init); memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); /* * Congestion management values depend on the link rate. * There is no active link so initial link rate is set to 10Gbps. * When the link comes up the congestion management values are * re-calculated according to the actual link rate. */ sc->link_vars.line_speed = SPEED_10000; bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); /* Only the PMF sets the HW */ if (sc->port.pmf) { storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); } /* init Event Queue - PCI bus guarantees correct endainity */ eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); eq_data.producer = sc->eq_prod; eq_data.index_id = HC_SP_INDEX_EQ_CONS; eq_data.sb_id = DEF_SB_ID; storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); } static void bxe_hc_int_enable(struct bxe_softc *sc) { int port = SC_PORT(sc); uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; uint32_t val = REG_RD(sc, addr); uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && (sc->intr_count == 1)) ? TRUE : FALSE; uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; if (msix) { val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | HC_CONFIG_0_REG_INT_LINE_EN_0); val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0); if (single_msix) { val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; } } else if (msi) { val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0); } else { val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0); if (!CHIP_IS_E1(sc)) { BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); REG_WR(sc, addr, val); val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; } } if (CHIP_IS_E1(sc)) { REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); } BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); REG_WR(sc, addr, val); /* ensure that HC_CONFIG is written before leading/trailing edge config */ mb(); if (!CHIP_IS_E1(sc)) { /* init leading/trailing edge */ if (IS_MF(sc)) { val = (0xee0f | (1 << (SC_VN(sc) + 4))); if (sc->port.pmf) { /* enable nig and gpio3 attention */ val |= 0x1100; } } else { val = 0xffff; } REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); } /* make sure that interrupts are indeed enabled from here on */ mb(); } static void bxe_igu_int_enable(struct bxe_softc *sc) { uint32_t val; uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && (sc->intr_count == 1)) ? TRUE : FALSE; uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); if (msix) { val &= ~(IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_SINGLE_ISR_EN); val |= (IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_ATTN_BIT_EN); if (single_msix) { val |= IGU_PF_CONF_SINGLE_ISR_EN; } } else if (msi) { val &= ~IGU_PF_CONF_INT_LINE_EN; val |= (IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN); } else { val &= ~IGU_PF_CONF_MSI_MSIX_EN; val |= (IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN); } /* clean previous status - need to configure igu prior to ack*/ if ((!msix) || single_msix) { REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); bxe_ack_int(sc); } val |= IGU_PF_CONF_FUNC_EN; BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); mb(); /* init leading/trailing edge */ if (IS_MF(sc)) { val = (0xee0f | (1 << (SC_VN(sc) + 4))); if (sc->port.pmf) { /* enable nig and gpio3 attention */ val |= 0x1100; } } else { val = 0xffff; } REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); /* make sure that interrupts are indeed enabled from here on */ mb(); } static void bxe_int_enable(struct bxe_softc *sc) { if (sc->devinfo.int_block == INT_BLOCK_HC) { bxe_hc_int_enable(sc); } else { bxe_igu_int_enable(sc); } } static void bxe_hc_int_disable(struct bxe_softc *sc) { int port = SC_PORT(sc); uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; uint32_t val = REG_RD(sc, addr); /* * In E1 we must use only PCI configuration space to disable MSI/MSIX * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC * block */ if (CHIP_IS_E1(sc)) { /* * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register * to prevent from HC sending interrupts after we exit the function */ REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0); } else { val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0); } BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); /* flush all outstanding writes */ mb(); REG_WR(sc, addr, val); if (REG_RD(sc, addr) != val) { BLOGE(sc, "proper val not read from HC IGU!\n"); } } static void bxe_igu_int_disable(struct bxe_softc *sc) { uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); val &= ~(IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_ATTN_BIT_EN); BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); /* flush all outstanding writes */ mb(); REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { BLOGE(sc, "proper val not read from IGU!\n"); } } static void bxe_int_disable(struct bxe_softc *sc) { if (sc->devinfo.int_block == INT_BLOCK_HC) { bxe_hc_int_disable(sc); } else { bxe_igu_int_disable(sc); } } static void bxe_nic_init(struct bxe_softc *sc, int load_code) { int i; for (i = 0; i < sc->num_queues; i++) { bxe_init_eth_fp(sc, i); } rmb(); /* ensure status block indices were read */ bxe_init_rx_rings(sc); bxe_init_tx_rings(sc); if (IS_VF(sc)) { return; } /* initialize MOD_ABS interrupts */ elink_init_mod_abs_int(sc, &sc->link_vars, sc->devinfo.chip_id, sc->devinfo.shmem_base, sc->devinfo.shmem2_base, SC_PORT(sc)); bxe_init_def_sb(sc); bxe_update_dsb_idx(sc); bxe_init_sp_ring(sc); bxe_init_eq_ring(sc); bxe_init_internal(sc, load_code); bxe_pf_init(sc); bxe_stats_init(sc); /* flush all before enabling interrupts */ mb(); bxe_int_enable(sc); /* check for SPIO5 */ bxe_attn_int_deasserted0(sc, REG_RD(sc, (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + SC_PORT(sc)*4)) & AEU_INPUTS_ATTN_BITS_SPIO5); } static inline void bxe_init_objs(struct bxe_softc *sc) { /* mcast rules must be added to tx if tx switching is enabled */ ecore_obj_type o_type = (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : ECORE_OBJ_TYPE_RX; /* RX_MODE controlling object */ ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); /* multicast configuration controlling object */ ecore_init_mcast_obj(sc, &sc->mcast_obj, sc->fp[0].cl_id, sc->fp[0].index, SC_FUNC(sc), SC_FUNC(sc), BXE_SP(sc, mcast_rdata), BXE_SP_MAPPING(sc, mcast_rdata), ECORE_FILTER_MCAST_PENDING, &sc->sp_state, o_type); /* Setup CAM credit pools */ ecore_init_mac_credit_pool(sc, &sc->macs_pool, SC_FUNC(sc), CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : VNICS_PER_PATH(sc)); ecore_init_vlan_credit_pool(sc, &sc->vlans_pool, SC_ABS_FUNC(sc) >> 1, CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : VNICS_PER_PATH(sc)); /* RSS configuration object */ ecore_init_rss_config_obj(sc, &sc->rss_conf_obj, sc->fp[0].cl_id, sc->fp[0].index, SC_FUNC(sc), SC_FUNC(sc), BXE_SP(sc, rss_rdata), BXE_SP_MAPPING(sc, rss_rdata), ECORE_FILTER_RSS_CONF_PENDING, &sc->sp_state, ECORE_OBJ_TYPE_RX); } /* * Initialize the function. This must be called before sending CLIENT_SETUP * for the first client. */ static inline int bxe_func_start(struct bxe_softc *sc) { struct ecore_func_state_params func_params = { NULL }; struct ecore_func_start_params *start_params = &func_params.params.start; /* Prepare parameters for function state transitions */ bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); func_params.f_obj = &sc->func_obj; func_params.cmd = ECORE_F_CMD_START; /* Function parameters */ start_params->mf_mode = sc->devinfo.mf_info.mf_mode; start_params->sd_vlan_tag = OVLAN(sc); if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { start_params->network_cos_mode = STATIC_COS; } else { /* CHIP_IS_E1X */ start_params->network_cos_mode = FW_WRR; } start_params->gre_tunnel_mode = 0; start_params->gre_tunnel_rss = 0; return (ecore_func_state_change(sc, &func_params)); } static int bxe_set_power_state(struct bxe_softc *sc, uint8_t state) { uint16_t pmcsr; /* If there is no power capability, silently succeed */ if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { BLOGW(sc, "No power capability\n"); return (0); } pmcsr = pci_read_config(sc->dev, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 2); switch (state) { case PCI_PM_D0: pci_write_config(sc->dev, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); if (pmcsr & PCIM_PSTAT_DMASK) { /* delay required during transition out of D3hot */ DELAY(20000); } break; case PCI_PM_D3hot: /* XXX if there are other clients above don't shut down the power */ /* don't shut down the power for emulation and FPGA */ if (CHIP_REV_IS_SLOW(sc)) { return (0); } pmcsr &= ~PCIM_PSTAT_DMASK; pmcsr |= PCIM_PSTAT_D3; if (sc->wol) { pmcsr |= PCIM_PSTAT_PMEENABLE; } pci_write_config(sc->dev, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), pmcsr, 4); /* * No more memory access after this point until device is brought back * to D0 state. */ break; default: BLOGE(sc, "Can't support PCI power state = %d\n", state); return (-1); } return (0); } /* return true if succeeded to acquire the lock */ static uint8_t bxe_trylock_hw_lock(struct bxe_softc *sc, uint32_t resource) { uint32_t lock_status; uint32_t resource_bit = (1 << resource); int func = SC_FUNC(sc); uint32_t hw_lock_control_reg; BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); /* Validating that the resource is within range */ if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { BLOGD(sc, DBG_LOAD, "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", resource, HW_LOCK_MAX_RESOURCE_VALUE); return (FALSE); } if (func <= 5) { hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); } else { hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); } /* try to acquire the lock */ REG_WR(sc, hw_lock_control_reg + 4, resource_bit); lock_status = REG_RD(sc, hw_lock_control_reg); if (lock_status & resource_bit) { return (TRUE); } BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource); return (FALSE); } /* * Get the recovery leader resource id according to the engine this function * belongs to. Currently only only 2 engines is supported. */ static int bxe_get_leader_lock_resource(struct bxe_softc *sc) { if (SC_PATH(sc)) { return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); } else { return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); } } /* try to acquire a leader lock for current engine */ static uint8_t bxe_trylock_leader_lock(struct bxe_softc *sc) { return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); } static int bxe_release_leader_lock(struct bxe_softc *sc) { return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); } /* close gates #2, #3 and #4 */ static void bxe_set_234_gates(struct bxe_softc *sc, uint8_t close) { uint32_t val; /* gates #2 and #4a are closed/opened for "not E1" only */ if (!CHIP_IS_E1(sc)) { /* #4 */ REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); /* #2 */ REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); } /* #3 */ if (CHIP_IS_E1x(sc)) { /* prevent interrupts from HC on both ports */ val = REG_RD(sc, HC_REG_CONFIG_1); REG_WR(sc, HC_REG_CONFIG_1, (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); val = REG_RD(sc, HC_REG_CONFIG_0); REG_WR(sc, HC_REG_CONFIG_0, (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); } else { /* Prevent incomming interrupts in IGU */ val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, (!close) ? (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); } BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", close ? "closing" : "opening"); wmb(); } /* poll for pending writes bit, it should get cleared in no more than 1s */ static int bxe_er_poll_igu_vq(struct bxe_softc *sc) { uint32_t cnt = 1000; uint32_t pend_bits = 0; do { pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); if (pend_bits == 0) { break; } DELAY(1000); } while (--cnt > 0); if (cnt == 0) { BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); return (-1); } return (0); } #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ static void bxe_clp_reset_prep(struct bxe_softc *sc, uint32_t *magic_val) { /* Do some magic... */ uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); *magic_val = val & SHARED_MF_CLP_MAGIC; MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); } /* restore the value of the 'magic' bit */ static void bxe_clp_reset_done(struct bxe_softc *sc, uint32_t magic_val) { /* Restore the 'magic' bit value... */ uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); MFCFG_WR(sc, shared_mf_config.clp_mb, (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); } /* prepare for MCP reset, takes care of CLP configurations */ static void bxe_reset_mcp_prep(struct bxe_softc *sc, uint32_t *magic_val) { uint32_t shmem; uint32_t validity_offset; /* set `magic' bit in order to save MF config */ if (!CHIP_IS_E1(sc)) { bxe_clp_reset_prep(sc, magic_val); } /* get shmem offset */ shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); validity_offset = offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); /* Clear validity map flags */ if (shmem > 0) { REG_WR(sc, shmem + validity_offset, 0); } } #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ #define MCP_ONE_TIMEOUT 100 /* 100 ms */ static void bxe_mcp_wait_one(struct bxe_softc *sc) { /* special handling for emulation and FPGA (10 times longer) */ if (CHIP_REV_IS_SLOW(sc)) { DELAY((MCP_ONE_TIMEOUT*10) * 1000); } else { DELAY((MCP_ONE_TIMEOUT) * 1000); } } /* initialize shmem_base and waits for validity signature to appear */ static int bxe_init_shmem(struct bxe_softc *sc) { int cnt = 0; uint32_t val = 0; do { sc->devinfo.shmem_base = sc->link_params.shmem_base = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); if (sc->devinfo.shmem_base) { val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); if (val & SHR_MEM_VALIDITY_MB) return (0); } bxe_mcp_wait_one(sc); } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); BLOGE(sc, "BAD MCP validity signature\n"); return (-1); } static int bxe_reset_mcp_comp(struct bxe_softc *sc, uint32_t magic_val) { int rc = bxe_init_shmem(sc); /* Restore the `magic' bit value */ if (!CHIP_IS_E1(sc)) { bxe_clp_reset_done(sc, magic_val); } return (rc); } static void bxe_pxp_prep(struct bxe_softc *sc) { if (!CHIP_IS_E1(sc)) { REG_WR(sc, PXP2_REG_RD_START_INIT, 0); REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); wmb(); } } /* * Reset the whole chip except for: * - PCIE core * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) * - IGU * - MISC (including AEU) * - GRC * - RBCN, RBCP */ static void bxe_process_kill_chip_reset(struct bxe_softc *sc, uint8_t global) { uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; uint32_t global_bits2, stay_reset2; /* * Bits that have to be set in reset_mask2 if we want to reset 'global' * (per chip) blocks. */ global_bits2 = MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; /* * Don't reset the following blocks. * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be * reset, as in 4 port device they might still be owned * by the MCP (there is only one leader per path). */ not_reset_mask1 = MISC_REGISTERS_RESET_REG_1_RST_HC | MISC_REGISTERS_RESET_REG_1_RST_PXPV | MISC_REGISTERS_RESET_REG_1_RST_PXP; not_reset_mask2 = MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | MISC_REGISTERS_RESET_REG_2_RST_RBCN | MISC_REGISTERS_RESET_REG_2_RST_GRC | MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | MISC_REGISTERS_RESET_REG_2_RST_ATC | MISC_REGISTERS_RESET_REG_2_PGLC | MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | MISC_REGISTERS_RESET_REG_2_UMAC0 | MISC_REGISTERS_RESET_REG_2_UMAC1; /* * Keep the following blocks in reset: * - all xxMACs are handled by the elink code. */ stay_reset2 = MISC_REGISTERS_RESET_REG_2_XMAC | MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; /* Full reset masks according to the chip */ reset_mask1 = 0xffffffff; if (CHIP_IS_E1(sc)) reset_mask2 = 0xffff; else if (CHIP_IS_E1H(sc)) reset_mask2 = 0x1ffff; else if (CHIP_IS_E2(sc)) reset_mask2 = 0xfffff; else /* CHIP_IS_E3 */ reset_mask2 = 0x3ffffff; /* Don't reset global blocks unless we need to */ if (!global) reset_mask2 &= ~global_bits2; /* * In case of attention in the QM, we need to reset PXP * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM * because otherwise QM reset would release 'close the gates' shortly * before resetting the PXP, then the PSWRQ would send a write * request to PGLUE. Then when PXP is reset, PGLUE would try to * read the payload data from PSWWR, but PSWWR would not * respond. The write queue in PGLUE would stuck, dmae commands * would not return. Therefore it's important to reset the second * reset register (containing the * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM * bit). */ REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, reset_mask2 & (~not_reset_mask2)); REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, reset_mask1 & (~not_reset_mask1)); mb(); wmb(); REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, reset_mask2 & (~stay_reset2)); mb(); wmb(); REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); wmb(); } static int bxe_process_kill(struct bxe_softc *sc, uint8_t global) { int cnt = 1000; uint32_t val = 0; uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; uint32_t tags_63_32 = 0; /* Empty the Tetris buffer, wait for 1s */ do { sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); if (CHIP_IS_E3(sc)) { tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); } if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && ((port_is_idle_0 & 0x1) == 0x1) && ((port_is_idle_1 & 0x1) == 0x1) && (pgl_exp_rom2 == 0xffffffff) && (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) break; DELAY(1000); } while (cnt-- > 0); if (cnt <= 0) { BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " "are still outstanding read requests after 1s! " "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2); return (-1); } mb(); /* Close gates #2, #3 and #4 */ bxe_set_234_gates(sc, TRUE); /* Poll for IGU VQs for 57712 and newer chips */ if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { return (-1); } /* XXX indicate that "process kill" is in progress to MCP */ /* clear "unprepared" bit */ REG_WR(sc, MISC_REG_UNPREPARED, 0); mb(); /* Make sure all is written to the chip before the reset */ wmb(); /* * Wait for 1ms to empty GLUE and PCI-E core queues, * PSWHST, GRC and PSWRD Tetris buffer. */ DELAY(1000); /* Prepare to chip reset: */ /* MCP */ if (global) { bxe_reset_mcp_prep(sc, &val); } /* PXP */ bxe_pxp_prep(sc); mb(); /* reset the chip */ bxe_process_kill_chip_reset(sc, global); mb(); /* Recover after reset: */ /* MCP */ if (global && bxe_reset_mcp_comp(sc, val)) { return (-1); } /* XXX add resetting the NO_MCP mode DB here */ /* Open the gates #2, #3 and #4 */ bxe_set_234_gates(sc, FALSE); /* XXX * IGU/AEU preparation bring back the AEU/IGU to a reset state * re-enable attentions */ return (0); } static int bxe_leader_reset(struct bxe_softc *sc) { int rc = 0; uint8_t global = bxe_reset_is_global(sc); uint32_t load_code; /* * If not going to reset MCP, load "fake" driver to reset HW while * driver is owner of the HW. */ if (!global && !BXE_NOMCP(sc)) { load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, DRV_MSG_CODE_LOAD_REQ_WITH_LFA); if (!load_code) { BLOGE(sc, "MCP response failure, aborting\n"); rc = -1; goto exit_leader_reset; } if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { BLOGE(sc, "MCP unexpected response, aborting\n"); rc = -1; goto exit_leader_reset2; } load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); if (!load_code) { BLOGE(sc, "MCP response failure, aborting\n"); rc = -1; goto exit_leader_reset2; } } /* try to recover after the failure */ if (bxe_process_kill(sc, global)) { BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); rc = -1; goto exit_leader_reset2; } /* * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver * state. */ bxe_set_reset_done(sc); if (global) { bxe_clear_reset_global(sc); } exit_leader_reset2: /* unload "fake driver" if it was loaded */ if (!global && !BXE_NOMCP(sc)) { bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); } exit_leader_reset: sc->is_leader = 0; bxe_release_leader_lock(sc); mb(); return (rc); } /* * prepare INIT transition, parameters configured: * - HC configuration * - Queue's CDU context */ static void bxe_pf_q_prep_init(struct bxe_softc *sc, struct bxe_fastpath *fp, struct ecore_queue_init_params *init_params) { uint8_t cos; int cxt_index, cxt_offset; bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); /* HC rate */ init_params->rx.hc_rate = sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; init_params->tx.hc_rate = sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; /* FW SB ID */ init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; /* CQ index among the SB indices */ init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; /* set maximum number of COSs supported by this queue */ init_params->max_cos = sc->max_cos; BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", fp->index, init_params->max_cos); /* set the context pointers queue object */ for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { /* XXX change index/cid here if ever support multiple tx CoS */ /* fp->txdata[cos]->cid */ cxt_index = fp->index / ILT_PAGE_CIDS; cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; } } /* set flags that are common for the Tx-only and not normal connections */ static unsigned long bxe_get_common_flags(struct bxe_softc *sc, struct bxe_fastpath *fp, uint8_t zero_stats) { unsigned long flags = 0; /* PF driver will always initialize the Queue to an ACTIVE state */ bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); /* * tx only connections collect statistics (on the same index as the * parent connection). The statistics are zeroed when the parent * connection is initialized. */ bxe_set_bit(ECORE_Q_FLG_STATS, &flags); if (zero_stats) { bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); } /* * tx only connections can support tx-switching, though their * CoS-ness doesn't survive the loopback */ if (sc->flags & BXE_TX_SWITCHING) { bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); } bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); return (flags); } static unsigned long bxe_get_q_flags(struct bxe_softc *sc, struct bxe_fastpath *fp, uint8_t leading) { unsigned long flags = 0; if (IS_MF_SD(sc)) { bxe_set_bit(ECORE_Q_FLG_OV, &flags); } if (if_getcapenable(sc->ifp) & IFCAP_LRO) { bxe_set_bit(ECORE_Q_FLG_TPA, &flags); bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); #if 0 if (fp->mode == TPA_MODE_GRO) __set_bit(ECORE_Q_FLG_TPA_GRO, &flags); #endif } if (leading) { bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); } bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); #if 0 /* configure silent vlan removal */ if (IS_MF_AFEX(sc)) { bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags); } #endif /* merge with common flags */ return (flags | bxe_get_common_flags(sc, fp, TRUE)); } static void bxe_pf_q_prep_general(struct bxe_softc *sc, struct bxe_fastpath *fp, struct ecore_general_setup_params *gen_init, uint8_t cos) { gen_init->stat_id = bxe_stats_id(fp); gen_init->spcl_id = fp->cl_id; gen_init->mtu = sc->mtu; gen_init->cos = cos; } static void bxe_pf_rx_q_prep(struct bxe_softc *sc, struct bxe_fastpath *fp, struct rxq_pause_params *pause, struct ecore_rxq_setup_params *rxq_init) { uint8_t max_sge = 0; uint16_t sge_sz = 0; uint16_t tpa_agg_size = 0; if (if_getcapenable(sc->ifp) & IFCAP_LRO) { pause->sge_th_lo = SGE_TH_LO(sc); pause->sge_th_hi = SGE_TH_HI(sc); /* validate SGE ring has enough to cross high threshold */ if (sc->dropless_fc && (pause->sge_th_hi + FW_PREFETCH_CNT) > (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { BLOGW(sc, "sge ring threshold limit\n"); } /* minimum max_aggregation_size is 2*MTU (two full buffers) */ tpa_agg_size = (2 * sc->mtu); if (tpa_agg_size < sc->max_aggregation_size) { tpa_agg_size = sc->max_aggregation_size; } max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; max_sge = ((max_sge + PAGES_PER_SGE - 1) & (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); } /* pause - not for e1 */ if (!CHIP_IS_E1(sc)) { pause->bd_th_lo = BD_TH_LO(sc); pause->bd_th_hi = BD_TH_HI(sc); pause->rcq_th_lo = RCQ_TH_LO(sc); pause->rcq_th_hi = RCQ_TH_HI(sc); /* validate rings have enough entries to cross high thresholds */ if (sc->dropless_fc && pause->bd_th_hi + FW_PREFETCH_CNT > sc->rx_ring_size) { BLOGW(sc, "rx bd ring threshold limit\n"); } if (sc->dropless_fc && pause->rcq_th_hi + FW_PREFETCH_CNT > RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { BLOGW(sc, "rcq ring threshold limit\n"); } pause->pri_map = 1; } /* rxq setup */ rxq_init->dscr_map = fp->rx_dma.paddr; rxq_init->sge_map = fp->rx_sge_dma.paddr; rxq_init->rcq_map = fp->rcq_dma.paddr; rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); /* * This should be a maximum number of data bytes that may be * placed on the BD (not including paddings). */ rxq_init->buf_sz = (fp->rx_buf_size - IP_HEADER_ALIGNMENT_PADDING); rxq_init->cl_qzone_id = fp->cl_qzone_id; rxq_init->tpa_agg_sz = tpa_agg_size; rxq_init->sge_buf_sz = sge_sz; rxq_init->max_sges_pkt = max_sge; rxq_init->rss_engine_id = SC_FUNC(sc); rxq_init->mcast_engine_id = SC_FUNC(sc); /* * Maximum number or simultaneous TPA aggregation for this Queue. * For PF Clients it should be the maximum available number. * VF driver(s) may want to define it to a smaller value. */ rxq_init->max_tpa_queues = MAX_AGG_QS(sc); rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; rxq_init->fw_sb_id = fp->fw_sb_id; rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; /* * configure silent vlan removal * if multi function mode is afex, then mask default vlan */ if (IS_MF_AFEX(sc)) { rxq_init->silent_removal_value = sc->devinfo.mf_info.afex_def_vlan_tag; rxq_init->silent_removal_mask = EVL_VLID_MASK; } } static void bxe_pf_tx_q_prep(struct bxe_softc *sc, struct bxe_fastpath *fp, struct ecore_txq_setup_params *txq_init, uint8_t cos) { /* * XXX If multiple CoS is ever supported then each fastpath structure * will need to maintain tx producer/consumer/dma/etc values *per* CoS. * fp->txdata[cos]->tx_dma.paddr; */ txq_init->dscr_map = fp->tx_dma.paddr; txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; txq_init->fw_sb_id = fp->fw_sb_id; /* * set the TSS leading client id for TX classfication to the * leading RSS client id */ txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); } /* * This function performs 2 steps in a queue state machine: * 1) RESET->INIT * 2) INIT->SETUP */ static int bxe_setup_queue(struct bxe_softc *sc, struct bxe_fastpath *fp, uint8_t leading) { struct ecore_queue_state_params q_params = { NULL }; struct ecore_queue_setup_params *setup_params = &q_params.params.setup; #if 0 struct ecore_queue_setup_tx_only_params *tx_only_params = &q_params.params.tx_only; uint8_t tx_index; #endif int rc; BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; /* we want to wait for completion in this context */ bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); /* prepare the INIT parameters */ bxe_pf_q_prep_init(sc, fp, &q_params.params.init); /* Set the command */ q_params.cmd = ECORE_Q_CMD_INIT; /* Change the state to INIT */ rc = ecore_queue_state_change(sc, &q_params); if (rc) { BLOGE(sc, "Queue(%d) INIT failed\n", fp->index); return (rc); } BLOGD(sc, DBG_LOAD, "init complete\n"); /* now move the Queue to the SETUP state */ memset(setup_params, 0, sizeof(*setup_params)); /* set Queue flags */ setup_params->flags = bxe_get_q_flags(sc, fp, leading); /* set general SETUP parameters */ bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, FIRST_TX_COS_INDEX); bxe_pf_rx_q_prep(sc, fp, &setup_params->pause_params, &setup_params->rxq_params); bxe_pf_tx_q_prep(sc, fp, &setup_params->txq_params, FIRST_TX_COS_INDEX); /* Set the command */ q_params.cmd = ECORE_Q_CMD_SETUP; /* change the state to SETUP */ rc = ecore_queue_state_change(sc, &q_params); if (rc) { BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index); return (rc); } #if 0 /* loop through the relevant tx-only indices */ for (tx_index = FIRST_TX_ONLY_COS_INDEX; tx_index < sc->max_cos; tx_index++) { /* prepare and send tx-only ramrod*/ rc = bxe_setup_tx_only(sc, fp, &q_params, tx_only_params, tx_index, leading); if (rc) { BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n", fp->index, tx_index); return (rc); } } #endif return (rc); } static int bxe_setup_leading(struct bxe_softc *sc) { return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); } static int bxe_config_rss_pf(struct bxe_softc *sc, struct ecore_rss_config_obj *rss_obj, uint8_t config_hash) { struct ecore_config_rss_params params = { NULL }; int i; /* * Although RSS is meaningless when there is a single HW queue we * still need it enabled in order to have HW Rx hash generated. */ params.rss_obj = rss_obj; bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); /* RSS configuration */ bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); if (rss_obj->udp_rss_v4) { bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); } if (rss_obj->udp_rss_v6) { bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); } /* Hash bits */ params.rss_result_mask = MULTI_MASK; memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); if (config_hash) { /* RSS keys */ for (i = 0; i < sizeof(params.rss_key) / 4; i++) { params.rss_key[i] = arc4random(); } bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); } return (ecore_config_rss(sc, ¶ms)); } static int bxe_config_rss_eth(struct bxe_softc *sc, uint8_t config_hash) { return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); } static int bxe_init_rss_pf(struct bxe_softc *sc) { uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); int i; /* * Prepare the initial contents of the indirection table if * RSS is enabled */ for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { sc->rss_conf_obj.ind_table[i] = (sc->fp->cl_id + (i % num_eth_queues)); } if (sc->udp_rss) { sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; } /* * For 57710 and 57711 SEARCHER configuration (rss_keys) is * per-port, so if explicit configuration is needed, do it only * for a PMF. * * For 57712 and newer it's a per-function configuration. */ return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); } static int bxe_set_mac_one(struct bxe_softc *sc, uint8_t *mac, struct ecore_vlan_mac_obj *obj, uint8_t set, int mac_type, unsigned long *ramrod_flags) { struct ecore_vlan_mac_ramrod_params ramrod_param; int rc; memset(&ramrod_param, 0, sizeof(ramrod_param)); /* fill in general parameters */ ramrod_param.vlan_mac_obj = obj; ramrod_param.ramrod_flags = *ramrod_flags; /* fill a user request section if needed */ if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); /* Set the command: ADD or DEL */ ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : ECORE_VLAN_MAC_DEL; } rc = ecore_config_vlan_mac(sc, &ramrod_param); if (rc == ECORE_EXISTS) { BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); /* do not treat adding same MAC as error */ rc = 0; } else if (rc < 0) { BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); } return (rc); } static int bxe_set_eth_mac(struct bxe_softc *sc, uint8_t set) { unsigned long ramrod_flags = 0; BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); /* Eth MAC is set on RSS leading client (fp[0]) */ return (bxe_set_mac_one(sc, sc->link_params.mac_addr, &sc->sp_objs->mac_obj, set, ECORE_ETH_MAC, &ramrod_flags)); } #if 0 static void bxe_update_max_mf_config(struct bxe_softc *sc, uint32_t value) { /* load old values */ uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)]; if (value != bxe_extract_max_cfg(sc, mf_cfg)) { /* leave all but MAX value */ mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; /* set new MAX value */ mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) & FUNC_MF_CFG_MAX_BW_MASK); bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg); } } #endif static int bxe_get_cur_phy_idx(struct bxe_softc *sc) { uint32_t sel_phy_idx = 0; if (sc->link_params.num_phys <= 1) { return (ELINK_INT_PHY); } if (sc->link_vars.link_up) { sel_phy_idx = ELINK_EXT_PHY1; /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && (sc->link_params.phy[ELINK_EXT_PHY2].supported & ELINK_SUPPORTED_FIBRE)) sel_phy_idx = ELINK_EXT_PHY2; } else { switch (elink_phy_selection(&sc->link_params)) { case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: sel_phy_idx = ELINK_EXT_PHY1; break; case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: sel_phy_idx = ELINK_EXT_PHY2; break; } } return (sel_phy_idx); } static int bxe_get_link_cfg_idx(struct bxe_softc *sc) { uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); /* * The selected activated PHY is always after swapping (in case PHY * swapping is enabled). So when swapping is enabled, we need to reverse * the configuration */ if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { if (sel_phy_idx == ELINK_EXT_PHY1) sel_phy_idx = ELINK_EXT_PHY2; else if (sel_phy_idx == ELINK_EXT_PHY2) sel_phy_idx = ELINK_EXT_PHY1; } return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); } static void bxe_set_requested_fc(struct bxe_softc *sc) { /* * Initialize link parameters structure variables * It is recommended to turn off RX FC for jumbo frames * for better performance */ if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; } else { sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; } } static void bxe_calc_fc_adv(struct bxe_softc *sc) { uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); switch (sc->link_vars.ieee_fc & MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: default: sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause); break; case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | ADVERTISED_Pause); break; case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; break; } } static uint16_t bxe_get_mf_speed(struct bxe_softc *sc) { uint16_t line_speed = sc->link_vars.line_speed; if (IS_MF(sc)) { uint16_t maxCfg = bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); /* calculate the current MAX line speed limit for the MF devices */ if (IS_MF_SI(sc)) { line_speed = (line_speed * maxCfg) / 100; } else { /* SD mode */ uint16_t vn_max_rate = maxCfg * 100; if (vn_max_rate < line_speed) { line_speed = vn_max_rate; } } } return (line_speed); } static void bxe_fill_report_data(struct bxe_softc *sc, struct bxe_link_report_data *data) { uint16_t line_speed = bxe_get_mf_speed(sc); memset(data, 0, sizeof(*data)); /* fill the report data with the effective line speed */ data->line_speed = line_speed; /* Link is down */ if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); } /* Full DUPLEX */ if (sc->link_vars.duplex == DUPLEX_FULL) { bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); } /* Rx Flow Control is ON */ if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); } /* Tx Flow Control is ON */ if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); } } /* report link status to OS, should be called under phy_lock */ static void bxe_link_report_locked(struct bxe_softc *sc) { struct bxe_link_report_data cur_data; /* reread mf_cfg */ if (IS_PF(sc) && !CHIP_IS_E1(sc)) { bxe_read_mf_cfg(sc); } /* Read the current link report info */ bxe_fill_report_data(sc, &cur_data); /* Don't report link down or exactly the same link status twice */ if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, &sc->last_reported_link.link_report_flags) && bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, &cur_data.link_report_flags))) { return; } sc->link_cnt++; /* report new link params and remember the state for the next time */ memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, &cur_data.link_report_flags)) { if_linkstate_change_drv(sc->ifp, LINK_STATE_DOWN); BLOGI(sc, "NIC Link is Down\n"); } else { const char *duplex; const char *flow; if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, &cur_data.link_report_flags)) { duplex = "full"; } else { duplex = "half"; } /* * Handle the FC at the end so that only these flags would be * possibly set. This way we may easily check if there is no FC * enabled. */ if (cur_data.link_report_flags) { if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, &cur_data.link_report_flags) && bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, &cur_data.link_report_flags)) { flow = "ON - receive & transmit"; } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, &cur_data.link_report_flags) && !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, &cur_data.link_report_flags)) { flow = "ON - receive"; } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, &cur_data.link_report_flags) && bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, &cur_data.link_report_flags)) { flow = "ON - transmit"; } else { flow = "none"; /* possible? */ } } else { flow = "none"; } if_linkstate_change_drv(sc->ifp, LINK_STATE_UP); BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", cur_data.line_speed, duplex, flow); } } static void bxe_link_report(struct bxe_softc *sc) { BXE_PHY_LOCK(sc); bxe_link_report_locked(sc); BXE_PHY_UNLOCK(sc); } static void bxe_link_status_update(struct bxe_softc *sc) { if (sc->state != BXE_STATE_OPEN) { return; } #if 0 /* read updated dcb configuration */ if (IS_PF(sc)) bxe_dcbx_pmf_update(sc); #endif if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { elink_link_status_update(&sc->link_params, &sc->link_vars); } else { sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | ELINK_SUPPORTED_10baseT_Full | ELINK_SUPPORTED_100baseT_Half | ELINK_SUPPORTED_100baseT_Full | ELINK_SUPPORTED_1000baseT_Full | ELINK_SUPPORTED_2500baseX_Full | ELINK_SUPPORTED_10000baseT_Full | ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE | ELINK_SUPPORTED_Autoneg | ELINK_SUPPORTED_Pause | ELINK_SUPPORTED_Asym_Pause); sc->port.advertising[0] = sc->port.supported[0]; sc->link_params.sc = sc; sc->link_params.port = SC_PORT(sc); sc->link_params.req_duplex[0] = DUPLEX_FULL; sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; sc->link_params.req_line_speed[0] = SPEED_10000; sc->link_params.speed_cap_mask[0] = 0x7f0000; sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; if (CHIP_REV_IS_FPGA(sc)) { sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; sc->link_vars.line_speed = ELINK_SPEED_1000; sc->link_vars.link_status = (LINK_STATUS_LINK_UP | LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); } else { sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; sc->link_vars.line_speed = ELINK_SPEED_10000; sc->link_vars.link_status = (LINK_STATUS_LINK_UP | LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); } sc->link_vars.link_up = 1; sc->link_vars.duplex = DUPLEX_FULL; sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; if (IS_PF(sc)) { REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); bxe_stats_handle(sc, STATS_EVENT_LINK_UP); bxe_link_report(sc); } } if (IS_PF(sc)) { if (sc->link_vars.link_up) { bxe_stats_handle(sc, STATS_EVENT_LINK_UP); } else { bxe_stats_handle(sc, STATS_EVENT_STOP); } bxe_link_report(sc); } else { bxe_link_report(sc); bxe_stats_handle(sc, STATS_EVENT_LINK_UP); } } static int bxe_initial_phy_init(struct bxe_softc *sc, int load_mode) { int rc, cfg_idx = bxe_get_link_cfg_idx(sc); uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; struct elink_params *lp = &sc->link_params; bxe_set_requested_fc(sc); if (CHIP_REV_IS_SLOW(sc)) { uint32_t bond = CHIP_BOND_ID(sc); uint32_t feat = 0; if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; } else if (bond & 0x4) { if (CHIP_IS_E3(sc)) { feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; } else { feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; } } else if (bond & 0x8) { if (CHIP_IS_E3(sc)) { feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; } else { feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; } } /* disable EMAC for E3 and above */ if (bond & 0x2) { feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; } sc->link_params.feature_config_flags |= feat; } BXE_PHY_LOCK(sc); if (load_mode == LOAD_DIAG) { lp->loopback_mode = ELINK_LOOPBACK_XGXS; /* Prefer doing PHY loopback at 10G speed, if possible */ if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { if (lp->speed_cap_mask[cfg_idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; } else { lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; } } } if (load_mode == LOAD_LOOPBACK_EXT) { lp->loopback_mode = ELINK_LOOPBACK_EXT; } rc = elink_phy_init(&sc->link_params, &sc->link_vars); BXE_PHY_UNLOCK(sc); bxe_calc_fc_adv(sc); if (sc->link_vars.link_up) { bxe_stats_handle(sc, STATS_EVENT_LINK_UP); bxe_link_report(sc); } if (!CHIP_REV_IS_SLOW(sc)) { bxe_periodic_start(sc); } sc->link_params.req_line_speed[cfg_idx] = req_line_speed; return (rc); } /* must be called under IF_ADDR_LOCK */ static int bxe_init_mcast_macs_list(struct bxe_softc *sc, struct ecore_mcast_ramrod_params *p) { if_t ifp = sc->ifp; int mc_count = 0; int mcnt, i; struct ecore_mcast_list_elem *mc_mac; unsigned char *mta; mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */ /* should we enforce one? */ ECORE_LIST_INIT(&p->mcast_list); p->mcast_list_len = 0; if (!mc_count) { return (0); } mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count, M_DEVBUF, M_NOWAIT); if(mta == NULL) { BLOGE(sc, "Failed to allocate temp mcast list\n"); return (-1); } mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO)); if (!mc_mac) { free(mta, M_DEVBUF); BLOGE(sc, "Failed to allocate temp mcast list\n"); return (-1); } if_multiaddr_array(ifp, mta, &mcnt, mc_count); /* mta and mcnt not expected to be different */ for(i=0; i< mcnt; i++) { bcopy((mta + (i * ETHER_ADDR_LEN)), mc_mac->mac, ETHER_ADDR_LEN); ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list); BLOGD(sc, DBG_LOAD, "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n", mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]); mc_mac++; } p->mcast_list_len = mc_count; free(mta, M_DEVBUF); return (0); } static void bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p) { struct ecore_mcast_list_elem *mc_mac = ECORE_LIST_FIRST_ENTRY(&p->mcast_list, struct ecore_mcast_list_elem, link); if (mc_mac) { /* only a single free as all mc_macs are in the same heap array */ free(mc_mac, M_DEVBUF); } } static int bxe_set_mc_list(struct bxe_softc *sc) { struct ecore_mcast_ramrod_params rparam = { NULL }; int rc = 0; rparam.mcast_obj = &sc->mcast_obj; BXE_MCAST_LOCK(sc); /* first, clear all configured multicast MACs */ rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); if (rc < 0) { BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); return (rc); } /* configure a new MACs list */ rc = bxe_init_mcast_macs_list(sc, &rparam); if (rc) { BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc); BXE_MCAST_UNLOCK(sc); return (rc); } /* Now add the new MACs */ rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); if (rc < 0) { BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); } bxe_free_mcast_macs_list(&rparam); BXE_MCAST_UNLOCK(sc); return (rc); } static int bxe_set_uc_list(struct bxe_softc *sc) { if_t ifp = sc->ifp; struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; struct ifaddr *ifa; unsigned long ramrod_flags = 0; int rc; #if __FreeBSD_version < 800000 IF_ADDR_LOCK(ifp); #else if_addr_rlock_drv(ifp); #endif /* first schedule a cleanup up of old configuration */ rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); if (rc < 0) { BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); #if __FreeBSD_version < 800000 IF_ADDR_UNLOCK(ifp); #else if_addr_runlock_drv(ifp); #endif return (rc); } ifa = if_getifaddr(ifp); /* XXX Is this structure */ while (ifa) { if (ifa->ifa_addr->sa_family != AF_LINK) { ifa = TAILQ_NEXT(ifa, ifa_link); continue; } rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); if (rc == -EEXIST) { BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); /* do not treat adding same MAC as an error */ rc = 0; } else if (rc < 0) { BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); #if __FreeBSD_version < 800000 IF_ADDR_UNLOCK(ifp); #else if_addr_runlock_drv(ifp); #endif return (rc); } ifa = TAILQ_NEXT(ifa, ifa_link); } #if __FreeBSD_version < 800000 IF_ADDR_UNLOCK(ifp); #else if_addr_runlock_drv(ifp); #endif /* Execute the pending commands */ bit_set(&ramrod_flags, RAMROD_CONT); return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, ECORE_UC_LIST_MAC, &ramrod_flags)); } static void bxe_handle_rx_mode_tq(void *context, int pending) { struct bxe_softc *sc = (struct bxe_softc *)context; if_t ifp = sc->ifp; uint32_t rx_mode = BXE_RX_MODE_NORMAL; BXE_CORE_LOCK(sc); if (sc->state != BXE_STATE_OPEN) { BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); BXE_CORE_UNLOCK(sc); return; } BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); if (if_getflags(ifp) & IFF_PROMISC) { rx_mode = BXE_RX_MODE_PROMISC; } else if ((if_getflags(ifp) & IFF_ALLMULTI) || ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && CHIP_IS_E1(sc))) { rx_mode = BXE_RX_MODE_ALLMULTI; } else { if (IS_PF(sc)) { /* some multicasts */ if (bxe_set_mc_list(sc) < 0) { rx_mode = BXE_RX_MODE_ALLMULTI; } if (bxe_set_uc_list(sc) < 0) { rx_mode = BXE_RX_MODE_PROMISC; } } #if 0 else { /* * Configuring mcast to a VF involves sleeping (when we * wait for the PF's response). Since this function is * called from a non sleepable context we must schedule * a work item for this purpose */ bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state); schedule_delayed_work(&sc->sp_rtnl_task, 0); } #endif } sc->rx_mode = rx_mode; /* schedule the rx_mode command */ if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); BXE_CORE_UNLOCK(sc); return; } if (IS_PF(sc)) { bxe_set_storm_rx_mode(sc); } #if 0 else { /* * Configuring mcast to a VF involves sleeping (when we * wait for the PF's response). Since this function is * called from a non sleepable context we must schedule * a work item for this purpose */ bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state); schedule_delayed_work(&sc->sp_rtnl_task, 0); } #endif BXE_CORE_UNLOCK(sc); } static void bxe_set_rx_mode(struct bxe_softc *sc) { taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task); } /* update flags in shmem */ static void bxe_update_drv_flags(struct bxe_softc *sc, uint32_t flags, uint32_t set) { uint32_t drv_flags; if (SHMEM2_HAS(sc, drv_flags)) { bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); drv_flags = SHMEM2_RD(sc, drv_flags); if (set) { SET_FLAGS(drv_flags, flags); } else { RESET_FLAGS(drv_flags, flags); } SHMEM2_WR(sc, drv_flags, drv_flags); BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); } } /* periodic timer callout routine, only runs when the interface is up */ static void bxe_periodic_callout_func(void *xsc) { struct bxe_softc *sc = (struct bxe_softc *)xsc; int i; if (!BXE_CORE_TRYLOCK(sc)) { /* just bail and try again next time */ if ((sc->state == BXE_STATE_OPEN) && (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { /* schedule the next periodic callout */ callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); } return; } if ((sc->state != BXE_STATE_OPEN) || (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); BXE_CORE_UNLOCK(sc); return; } /* Check for TX timeouts on any fastpath. */ FOR_EACH_QUEUE(sc, i) { if (bxe_watchdog(sc, &sc->fp[i]) != 0) { /* Ruh-Roh, chip was reset! */ break; } } if (!CHIP_REV_IS_SLOW(sc)) { /* * This barrier is needed to ensure the ordering between the writing * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and * the reading here. */ mb(); if (sc->port.pmf) { BXE_PHY_LOCK(sc); elink_period_func(&sc->link_params, &sc->link_vars); BXE_PHY_UNLOCK(sc); } } if (IS_PF(sc) && !BXE_NOMCP(sc)) { int mb_idx = SC_FW_MB_IDX(sc); uint32_t drv_pulse; uint32_t mcp_pulse; ++sc->fw_drv_pulse_wr_seq; sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; drv_pulse = sc->fw_drv_pulse_wr_seq; bxe_drv_pulse(sc); mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & MCP_PULSE_SEQ_MASK); /* * The delta between driver pulse and mcp response should * be 1 (before mcp response) or 0 (after mcp response). */ if ((drv_pulse != mcp_pulse) && (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { /* someone lost a heartbeat... */ BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", drv_pulse, mcp_pulse); } } /* state is BXE_STATE_OPEN */ bxe_stats_handle(sc, STATS_EVENT_UPDATE); #if 0 /* sample VF bulletin board for new posts from PF */ if (IS_VF(sc)) { bxe_sample_bulletin(sc); } #endif BXE_CORE_UNLOCK(sc); if ((sc->state == BXE_STATE_OPEN) && (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { /* schedule the next periodic callout */ callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); } } static void bxe_periodic_start(struct bxe_softc *sc) { atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); } static void bxe_periodic_stop(struct bxe_softc *sc) { atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); callout_drain(&sc->periodic_callout); } /* start the controller */ static __noinline int bxe_nic_load(struct bxe_softc *sc, int load_mode) { uint32_t val; int load_code = 0; int i, rc = 0; BXE_CORE_LOCK_ASSERT(sc); BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); sc->state = BXE_STATE_OPENING_WAITING_LOAD; if (IS_PF(sc)) { /* must be called before memory allocation and HW init */ bxe_ilt_set_info(sc); } sc->last_reported_link_state = LINK_STATE_UNKNOWN; bxe_set_fp_rx_buf_size(sc); if (bxe_alloc_fp_buffers(sc) != 0) { BLOGE(sc, "Failed to allocate fastpath memory\n"); sc->state = BXE_STATE_CLOSED; rc = ENOMEM; goto bxe_nic_load_error0; } if (bxe_alloc_mem(sc) != 0) { sc->state = BXE_STATE_CLOSED; rc = ENOMEM; goto bxe_nic_load_error0; } if (bxe_alloc_fw_stats_mem(sc) != 0) { sc->state = BXE_STATE_CLOSED; rc = ENOMEM; goto bxe_nic_load_error0; } if (IS_PF(sc)) { /* set pf load just before approaching the MCP */ bxe_set_pf_load(sc); /* if MCP exists send load request and analyze response */ if (!BXE_NOMCP(sc)) { /* attempt to load pf */ if (bxe_nic_load_request(sc, &load_code) != 0) { sc->state = BXE_STATE_CLOSED; rc = ENXIO; goto bxe_nic_load_error1; } /* what did the MCP say? */ if (bxe_nic_load_analyze_req(sc, load_code) != 0) { bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); sc->state = BXE_STATE_CLOSED; rc = ENXIO; goto bxe_nic_load_error2; } } else { BLOGI(sc, "Device has no MCP!\n"); load_code = bxe_nic_load_no_mcp(sc); } /* mark PMF if applicable */ bxe_nic_load_pmf(sc, load_code); /* Init Function state controlling object */ bxe_init_func_obj(sc); /* Initialize HW */ if (bxe_init_hw(sc, load_code) != 0) { BLOGE(sc, "HW init failed\n"); bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); sc->state = BXE_STATE_CLOSED; rc = ENXIO; goto bxe_nic_load_error2; } } /* attach interrupts */ if (bxe_interrupt_attach(sc) != 0) { sc->state = BXE_STATE_CLOSED; rc = ENXIO; goto bxe_nic_load_error2; } bxe_nic_init(sc, load_code); /* Init per-function objects */ if (IS_PF(sc)) { bxe_init_objs(sc); // XXX bxe_iov_nic_init(sc); /* set AFEX default VLAN tag to an invalid value */ sc->devinfo.mf_info.afex_def_vlan_tag = -1; // XXX bxe_nic_load_afex_dcc(sc, load_code); sc->state = BXE_STATE_OPENING_WAITING_PORT; rc = bxe_func_start(sc); if (rc) { BLOGE(sc, "Function start failed!\n"); bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); sc->state = BXE_STATE_ERROR; goto bxe_nic_load_error3; } /* send LOAD_DONE command to MCP */ if (!BXE_NOMCP(sc)) { load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); if (!load_code) { BLOGE(sc, "MCP response failure, aborting\n"); sc->state = BXE_STATE_ERROR; rc = ENXIO; goto bxe_nic_load_error3; } } rc = bxe_setup_leading(sc); if (rc) { BLOGE(sc, "Setup leading failed!\n"); sc->state = BXE_STATE_ERROR; goto bxe_nic_load_error3; } FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); if (rc) { BLOGE(sc, "Queue(%d) setup failed\n", i); sc->state = BXE_STATE_ERROR; goto bxe_nic_load_error3; } } rc = bxe_init_rss_pf(sc); if (rc) { BLOGE(sc, "PF RSS init failed\n"); sc->state = BXE_STATE_ERROR; goto bxe_nic_load_error3; } } /* XXX VF */ #if 0 else { /* VF */ FOR_EACH_ETH_QUEUE(sc, i) { rc = bxe_vfpf_setup_q(sc, i); if (rc) { BLOGE(sc, "Queue(%d) setup failed\n", i); sc->state = BXE_STATE_ERROR; goto bxe_nic_load_error3; } } } #endif /* now when Clients are configured we are ready to work */ sc->state = BXE_STATE_OPEN; /* Configure a ucast MAC */ if (IS_PF(sc)) { rc = bxe_set_eth_mac(sc, TRUE); } #if 0 else { /* IS_VF(sc) */ rc = bxe_vfpf_set_mac(sc); } #endif if (rc) { BLOGE(sc, "Setting Ethernet MAC failed\n"); sc->state = BXE_STATE_ERROR; goto bxe_nic_load_error3; } #if 0 if (IS_PF(sc) && sc->pending_max) { /* for AFEX */ bxe_update_max_mf_config(sc, sc->pending_max); sc->pending_max = 0; } #endif if (sc->port.pmf) { rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); if (rc) { sc->state = BXE_STATE_ERROR; goto bxe_nic_load_error3; } } sc->link_params.feature_config_flags &= ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; /* start fast path */ /* Initialize Rx filter */ bxe_set_rx_mode(sc); /* start the Tx */ switch (/* XXX load_mode */LOAD_OPEN) { case LOAD_NORMAL: case LOAD_OPEN: break; case LOAD_DIAG: case LOAD_LOOPBACK_EXT: sc->state = BXE_STATE_DIAG; break; default: break; } if (sc->port.pmf) { bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); } else { bxe_link_status_update(sc); } /* start the periodic timer callout */ bxe_periodic_start(sc); if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { /* mark driver is loaded in shmem2 */ val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], (val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | DRV_FLAGS_CAPABILITIES_LOADED_L2)); } /* wait for all pending SP commands to complete */ if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); bxe_periodic_stop(sc); bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); return (ENXIO); } #if 0 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) { bxe_dcbx_init(sc, FALSE); } #endif /* Tell the stack the driver is running! */ if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); return (0); bxe_nic_load_error3: if (IS_PF(sc)) { bxe_int_disable_sync(sc, 1); /* clean out queued objects */ bxe_squeeze_objects(sc); } bxe_interrupt_detach(sc); bxe_nic_load_error2: if (IS_PF(sc) && !BXE_NOMCP(sc)) { bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); } sc->port.pmf = 0; bxe_nic_load_error1: /* clear pf_load status, as it was already set */ if (IS_PF(sc)) { bxe_clear_pf_load(sc); } bxe_nic_load_error0: bxe_free_fw_stats_mem(sc); bxe_free_fp_buffers(sc); bxe_free_mem(sc); return (rc); } static int bxe_init_locked(struct bxe_softc *sc) { int other_engine = SC_PATH(sc) ? 0 : 1; uint8_t other_load_status, load_status; uint8_t global = FALSE; int rc; BXE_CORE_LOCK_ASSERT(sc); /* check if the driver is already running */ if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); return (0); } bxe_set_power_state(sc, PCI_PM_D0); /* * If parity occurred during the unload, then attentions and/or * RECOVERY_IN_PROGRES may still be set. If so we want the first function * loaded on the current engine to complete the recovery. Parity recovery * is only relevant for PF driver. */ if (IS_PF(sc)) { other_load_status = bxe_get_load_status(sc, other_engine); load_status = bxe_get_load_status(sc, SC_PATH(sc)); if (!bxe_reset_is_done(sc, SC_PATH(sc)) || bxe_chk_parity_attn(sc, &global, TRUE)) { do { /* * If there are attentions and they are in global blocks, set * the GLOBAL_RESET bit regardless whether it will be this * function that will complete the recovery or not. */ if (global) { bxe_set_reset_global(sc); } /* * Only the first function on the current engine should try * to recover in open. In case of attentions in global blocks * only the first in the chip should try to recover. */ if ((!load_status && (!global || !other_load_status)) && bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { BLOGI(sc, "Recovered during init\n"); break; } /* recovery has failed... */ bxe_set_power_state(sc, PCI_PM_D3hot); sc->recovery_state = BXE_RECOVERY_FAILED; BLOGE(sc, "Recovery flow hasn't properly " "completed yet, try again later. " "If you still see this message after a " "few retries then power cycle is required.\n"); rc = ENXIO; goto bxe_init_locked_done; } while (0); } } sc->recovery_state = BXE_RECOVERY_DONE; rc = bxe_nic_load(sc, LOAD_OPEN); bxe_init_locked_done: if (rc) { /* Tell the stack the driver is NOT running! */ BLOGE(sc, "Initialization failed, " "stack notified driver is NOT running!\n"); if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); } return (rc); } static int bxe_stop_locked(struct bxe_softc *sc) { BXE_CORE_LOCK_ASSERT(sc); return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); } /* * Handles controller initialization when called from an unlocked routine. * ifconfig calls this function. * * Returns: * void */ static void bxe_init(void *xsc) { struct bxe_softc *sc = (struct bxe_softc *)xsc; BXE_CORE_LOCK(sc); bxe_init_locked(sc); BXE_CORE_UNLOCK(sc); } static int bxe_init_ifnet(struct bxe_softc *sc) { if_t ifp; int capabilities; /* ifconfig entrypoint for media type/status reporting */ ifmedia_init(&sc->ifmedia, IFM_IMASK, bxe_ifmedia_update, bxe_ifmedia_status); /* set the default interface values */ ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ /* allocate the ifnet structure */ if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { BLOGE(sc, "Interface allocation failed!\n"); return (ENXIO); } if_setsoftc(ifp, sc); if_initname_drv(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); if_setioctlfn(ifp, bxe_ioctl); if_setstartfn(ifp, bxe_tx_start); #if __FreeBSD_version >= 800000 if_settransmitfn(ifp, bxe_tx_mq_start); if_setqflushfn(ifp, bxe_mq_flush); #endif #ifdef FreeBSD8_0 if_settimer(ifp, 0); #endif if_setinitfn(ifp, bxe_init); if_setmtu(ifp, sc->mtu); if_sethwassist(ifp, (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_TSO | CSUM_TCP_IPV6 | CSUM_UDP_IPV6)); capabilities = #if __FreeBSD_version < 700000 (IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | IFCAP_HWCSUM | IFCAP_JUMBO_MTU | IFCAP_LRO); #else (IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWFILTER | IFCAP_VLAN_HWCSUM | IFCAP_HWCSUM | IFCAP_JUMBO_MTU | IFCAP_LRO | IFCAP_TSO4 | IFCAP_TSO6 | IFCAP_WOL_MAGIC); #endif if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ if_setbaudrate(ifp, IF_Gbps(10)); /* XXX */ if_setsendqlen(ifp, sc->tx_ring_size); if_setsendqready(ifp); /* XXX */ sc->ifp = ifp; /* attach to the Ethernet interface list */ ether_ifattach_drv(ifp, sc->link_params.mac_addr); return (0); } static void bxe_deallocate_bars(struct bxe_softc *sc) { int i; for (i = 0; i < MAX_BARS; i++) { if (sc->bar[i].resource != NULL) { bus_release_resource(sc->dev, SYS_RES_MEMORY, sc->bar[i].rid, sc->bar[i].resource); BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", i, PCIR_BAR(i)); } } } static int bxe_allocate_bars(struct bxe_softc *sc) { u_int flags; int i; memset(sc->bar, 0, sizeof(sc->bar)); for (i = 0; i < MAX_BARS; i++) { /* memory resources reside at BARs 0, 2, 4 */ /* Run `pciconf -lb` to see mappings */ if ((i != 0) && (i != 2) && (i != 4)) { continue; } sc->bar[i].rid = PCIR_BAR(i); flags = RF_ACTIVE; if (i == 0) { flags |= RF_SHAREABLE; } if ((sc->bar[i].resource = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &sc->bar[i].rid, flags)) == NULL) { #if 0 /* BAR4 doesn't exist for E1 */ BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n", i, PCIR_BAR(i)); #endif return (0); } sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n", i, PCIR_BAR(i), (void *)rman_get_start(sc->bar[i].resource), (void *)rman_get_end(sc->bar[i].resource), rman_get_size(sc->bar[i].resource), (void *)sc->bar[i].kva); } return (0); } static void bxe_get_function_num(struct bxe_softc *sc) { uint32_t val = 0; /* * Read the ME register to get the function number. The ME register * holds the relative-function number and absolute-function number. The * absolute-function number appears only in E2 and above. Before that * these bits always contained zero, therefore we cannot blindly use them. */ val = REG_RD(sc, BAR_ME_REGISTER); sc->pfunc_rel = (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); sc->path_id = (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); } else { sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); } BLOGD(sc, DBG_LOAD, "Relative function %d, Absolute function %d, Path %d\n", sc->pfunc_rel, sc->pfunc_abs, sc->path_id); } static uint32_t bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) { uint32_t shmem2_size; uint32_t offset; uint32_t mf_cfg_offset_value; /* Non 57712 */ offset = (SHMEM_RD(sc, func_mb) + (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); /* 57712 plus */ if (sc->devinfo.shmem2_base != 0) { shmem2_size = SHMEM2_RD(sc, size); if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { offset = mf_cfg_offset_value; } } } return (offset); } static uint32_t bxe_pcie_capability_read(struct bxe_softc *sc, int reg, int width) { int pcie_reg; /* ensure PCIe capability is enabled */ if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { if (pcie_reg != 0) { BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); return (pci_read_config(sc->dev, (pcie_reg + reg), width)); } } BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); return (0); } static uint8_t bxe_is_pcie_pending(struct bxe_softc *sc) { return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & PCIM_EXP_STA_TRANSACTION_PND); } /* * Walk the PCI capabiites list for the device to find what features are * supported. These capabilites may be enabled/disabled by firmware so it's * best to walk the list rather than make assumptions. */ static void bxe_probe_pci_caps(struct bxe_softc *sc) { uint16_t link_status; int reg; /* check if PCI Power Management is enabled */ if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { if (reg != 0) { BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; } } link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); /* handle PCIe 2.0 workarounds for 57710 */ if (CHIP_IS_E1(sc)) { /* workaround for 57710 errata E4_57710_27462 */ sc->devinfo.pcie_link_speed = (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; /* workaround for 57710 errata E4_57710_27488 */ sc->devinfo.pcie_link_width = ((link_status & PCIM_LINK_STA_WIDTH) >> 4); if (sc->devinfo.pcie_link_speed > 1) { sc->devinfo.pcie_link_width = ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; } } else { sc->devinfo.pcie_link_speed = (link_status & PCIM_LINK_STA_SPEED); sc->devinfo.pcie_link_width = ((link_status & PCIM_LINK_STA_WIDTH) >> 4); } BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; /* check if MSI capability is enabled */ if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { if (reg != 0) { BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; } } /* check if MSI-X capability is enabled */ if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { if (reg != 0) { BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; } } } static int bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) { struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; uint32_t val; /* get the outer vlan if we're in switch-dependent mode */ val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); mf_info->ext_id = (uint16_t)val; mf_info->multi_vnics_mode = 1; if (!VALID_OVLAN(mf_info->ext_id)) { BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); return (1); } /* get the capabilities */ if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == FUNC_MF_CFG_PROTOCOL_ISCSI) { mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == FUNC_MF_CFG_PROTOCOL_FCOE) { mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; } else { mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; } mf_info->vnics_per_port = (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; return (0); } static uint32_t bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) { uint32_t retval = 0; uint32_t val; val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { retval |= MF_PROTO_SUPPORT_ETHERNET; } if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { retval |= MF_PROTO_SUPPORT_ISCSI; } if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { retval |= MF_PROTO_SUPPORT_FCOE; } } return (retval); } static int bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) { struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; uint32_t val; /* * There is no outer vlan if we're in switch-independent mode. * If the mac is valid then assume multi-function. */ val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); mf_info->vnics_per_port = (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; return (0); } static int bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) { struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; uint32_t e1hov_tag; uint32_t func_config; uint32_t niv_config; mf_info->multi_vnics_mode = 1; e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); mf_info->ext_id = (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> FUNC_MF_CFG_E1HOV_TAG_SHIFT); mf_info->default_vlan = (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> FUNC_MF_CFG_AFEX_VLAN_SHIFT); mf_info->niv_allowed_priorities = (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); mf_info->niv_default_cos = (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); mf_info->afex_vlan_mode = ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); mf_info->niv_mba_enabled = ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); mf_info->vnics_per_port = (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; return (0); } static int bxe_check_valid_mf_cfg(struct bxe_softc *sc) { struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; uint32_t mf_cfg1; uint32_t mf_cfg2; uint32_t ovlan1; uint32_t ovlan2; uint8_t i, j; BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", SC_PORT(sc)); BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", mf_info->mf_config[SC_VN(sc)]); BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", mf_info->multi_vnics_mode); BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", mf_info->vnics_per_port); BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", mf_info->ext_id); BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", mf_info->min_bw[0], mf_info->min_bw[1], mf_info->min_bw[2], mf_info->min_bw[3]); BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", mf_info->max_bw[0], mf_info->max_bw[1], mf_info->max_bw[2], mf_info->max_bw[3]); BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", sc->mac_addr_str); /* various MF mode sanity checks... */ if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { BLOGE(sc, "Enumerated function %d is marked as hidden\n", SC_PORT(sc)); return (1); } if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", mf_info->vnics_per_port, mf_info->multi_vnics_mode); return (1); } if (mf_info->mf_mode == MULTI_FUNCTION_SD) { /* vnic id > 0 must have valid ovlan in switch-dependent mode */ if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", SC_VN(sc), OVLAN(sc)); return (1); } if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", mf_info->multi_vnics_mode, OVLAN(sc)); return (1); } /* * Verify all functions are either MF or SF mode. If MF, make sure * sure that all non-hidden functions have a valid ovlan. If SF, * make sure that all non-hidden functions have an invalid ovlan. */ FOREACH_ABS_FUNC_IN_PORT(sc, i) { mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { BLOGE(sc, "mf_mode=SD function %d MF config " "mismatch, multi_vnics_mode=%d ovlan=%d\n", i, mf_info->multi_vnics_mode, ovlan1); return (1); } } /* Verify all funcs on the same port each have a different ovlan. */ FOREACH_ABS_FUNC_IN_PORT(sc, i) { mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); /* iterate from the next function on the port to the max func */ for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && VALID_OVLAN(ovlan1) && !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && VALID_OVLAN(ovlan2) && (ovlan1 == ovlan2)) { BLOGE(sc, "mf_mode=SD functions %d and %d " "have the same ovlan (%d)\n", i, j, ovlan1); return (1); } } } } /* MULTI_FUNCTION_SD */ return (0); } static int bxe_get_mf_cfg_info(struct bxe_softc *sc) { struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; uint32_t val, mac_upper; uint8_t i, vnic; /* initialize mf_info defaults */ mf_info->vnics_per_port = 1; mf_info->multi_vnics_mode = FALSE; mf_info->path_has_ovlan = FALSE; mf_info->mf_mode = SINGLE_FUNCTION; if (!CHIP_IS_MF_CAP(sc)) { return (0); } if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { BLOGE(sc, "Invalid mf_cfg_base!\n"); return (1); } /* get the MF mode (switch dependent / independent / single-function) */ val = SHMEM_RD(sc, dev_info.shared_feature_config.config); switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) { case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); /* check for legal upper mac bytes */ if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { mf_info->mf_mode = MULTI_FUNCTION_SI; } else { BLOGE(sc, "Invalid config for Switch Independent mode\n"); } break; case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: /* get outer vlan configuration */ val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { mf_info->mf_mode = MULTI_FUNCTION_SD; } else { BLOGE(sc, "Invalid config for Switch Dependent mode\n"); } break; case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ return (0); case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: /* * Mark MF mode as NIV if MCP version includes NPAR-SD support * and the MAC address is valid. */ mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); if ((SHMEM2_HAS(sc, afex_driver_support)) && (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { mf_info->mf_mode = MULTI_FUNCTION_AFEX; } else { BLOGE(sc, "Invalid config for AFEX mode\n"); } break; default: BLOGE(sc, "Unknown MF mode (0x%08x)\n", (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); return (1); } /* set path mf_mode (which could be different than function mf_mode) */ if (mf_info->mf_mode == MULTI_FUNCTION_SD) { mf_info->path_has_ovlan = TRUE; } else if (mf_info->mf_mode == SINGLE_FUNCTION) { /* * Decide on path multi vnics mode. If we're not in MF mode and in * 4-port mode, this is good enough to check vnic-0 of the other port * on the same path */ if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { uint8_t other_port = !(PORT_ID(sc) & 1); uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; } } if (mf_info->mf_mode == SINGLE_FUNCTION) { /* invalid MF config */ if (SC_VN(sc) >= 1) { BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); return (1); } return (0); } /* get the MF configuration */ mf_info->mf_config[SC_VN(sc)] = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); switch(mf_info->mf_mode) { case MULTI_FUNCTION_SD: bxe_get_shmem_mf_cfg_info_sd(sc); break; case MULTI_FUNCTION_SI: bxe_get_shmem_mf_cfg_info_si(sc); break; case MULTI_FUNCTION_AFEX: bxe_get_shmem_mf_cfg_info_niv(sc); break; default: BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", mf_info->mf_mode); return (1); } /* get the congestion management parameters */ vnic = 0; FOREACH_ABS_FUNC_IN_PORT(sc, i) { /* get min/max bw */ val = MFCFG_RD(sc, func_mf_config[i].config); mf_info->min_bw[vnic] = ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); mf_info->max_bw[vnic] = ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); vnic++; } return (bxe_check_valid_mf_cfg(sc)); } static int bxe_get_shmem_info(struct bxe_softc *sc) { int port; uint32_t mac_hi, mac_lo, val; port = SC_PORT(sc); mac_hi = mac_lo = 0; sc->link_params.sc = sc; sc->link_params.port = port; /* get the hardware config info */ sc->devinfo.hw_config = SHMEM_RD(sc, dev_info.shared_hw_config.config); sc->devinfo.hw_config2 = SHMEM_RD(sc, dev_info.shared_hw_config.config2); sc->link_params.hw_led_mode = ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> SHARED_HW_CFG_LED_MODE_SHIFT); /* get the port feature config */ sc->port.config = SHMEM_RD(sc, dev_info.port_feature_config[port].config), /* get the link params */ sc->link_params.speed_cap_mask[0] = SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); sc->link_params.speed_cap_mask[1] = SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); /* get the lane config */ sc->link_params.lane_config = SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); /* get the link config */ val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); sc->port.link_config[ELINK_INT_PHY] = val; sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); sc->port.link_config[ELINK_EXT_PHY1] = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); /* get the override preemphasis flag and enable it or turn it off */ val = SHMEM_RD(sc, dev_info.shared_feature_config.config); if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { sc->link_params.feature_config_flags |= ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; } else { sc->link_params.feature_config_flags &= ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; } /* get the initial value of the link params */ sc->link_params.multi_phy_config = SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); /* get external phy info */ sc->port.ext_phy_config = SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); /* get the multifunction configuration */ bxe_get_mf_cfg_info(sc); /* get the mac address */ if (IS_MF(sc)) { mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); } else { mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); } if ((mac_lo == 0) && (mac_hi == 0)) { *sc->mac_addr_str = 0; BLOGE(sc, "No Ethernet address programmed!\n"); } else { sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), "%02x:%02x:%02x:%02x:%02x:%02x", sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); } #if 0 if (!IS_MF(sc) && ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) { sc->flags |= BXE_NO_ISCSI; } if (!IS_MF(sc) && ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) { sc->flags |= BXE_NO_FCOE_FLAG; } #endif return (0); } static void bxe_get_tunable_params(struct bxe_softc *sc) { /* sanity checks */ if ((bxe_interrupt_mode != INTR_MODE_INTX) && (bxe_interrupt_mode != INTR_MODE_MSI) && (bxe_interrupt_mode != INTR_MODE_MSIX)) { BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); bxe_interrupt_mode = INTR_MODE_MSIX; } if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); bxe_queue_count = 0; } if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { if (bxe_max_rx_bufs == 0) { bxe_max_rx_bufs = RX_BD_USABLE; } else { BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); bxe_max_rx_bufs = 2048; } } if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); bxe_hc_rx_ticks = 25; } if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); bxe_hc_tx_ticks = 50; } if (bxe_max_aggregation_size == 0) { bxe_max_aggregation_size = TPA_AGG_SIZE; } if (bxe_max_aggregation_size > 0xffff) { BLOGW(sc, "invalid max_aggregation_size (%d)\n", bxe_max_aggregation_size); bxe_max_aggregation_size = TPA_AGG_SIZE; } if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); bxe_mrrs = -1; } if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); bxe_autogreeen = 0; } if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); bxe_udp_rss = 0; } /* pull in user settings */ sc->interrupt_mode = bxe_interrupt_mode; sc->max_rx_bufs = bxe_max_rx_bufs; sc->hc_rx_ticks = bxe_hc_rx_ticks; sc->hc_tx_ticks = bxe_hc_tx_ticks; sc->max_aggregation_size = bxe_max_aggregation_size; sc->mrrs = bxe_mrrs; sc->autogreeen = bxe_autogreeen; sc->udp_rss = bxe_udp_rss; if (bxe_interrupt_mode == INTR_MODE_INTX) { sc->num_queues = 1; } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ sc->num_queues = min((bxe_queue_count ? bxe_queue_count : mp_ncpus), MAX_RSS_CHAINS); if (sc->num_queues > mp_ncpus) { sc->num_queues = mp_ncpus; } } BLOGD(sc, DBG_LOAD, "User Config: " "debug=0x%lx " "interrupt_mode=%d " "queue_count=%d " "hc_rx_ticks=%d " "hc_tx_ticks=%d " "rx_budget=%d " "max_aggregation_size=%d " "mrrs=%d " "autogreeen=%d " "udp_rss=%d\n", bxe_debug, sc->interrupt_mode, sc->num_queues, sc->hc_rx_ticks, sc->hc_tx_ticks, bxe_rx_budget, sc->max_aggregation_size, sc->mrrs, sc->autogreeen, sc->udp_rss); } static void bxe_media_detect(struct bxe_softc *sc) { uint32_t phy_idx = bxe_get_cur_phy_idx(sc); switch (sc->link_params.phy[phy_idx].media_type) { case ELINK_ETH_PHY_SFPP_10G_FIBER: case ELINK_ETH_PHY_XFP_FIBER: BLOGI(sc, "Found 10Gb Fiber media.\n"); sc->media = IFM_10G_SR; break; case ELINK_ETH_PHY_SFP_1G_FIBER: BLOGI(sc, "Found 1Gb Fiber media.\n"); sc->media = IFM_1000_SX; break; case ELINK_ETH_PHY_KR: case ELINK_ETH_PHY_CX4: BLOGI(sc, "Found 10GBase-CX4 media.\n"); sc->media = IFM_10G_CX4; break; case ELINK_ETH_PHY_DA_TWINAX: BLOGI(sc, "Found 10Gb Twinax media.\n"); sc->media = IFM_10G_TWINAX; break; case ELINK_ETH_PHY_BASE_T: if (sc->link_params.speed_cap_mask[0] & PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { BLOGI(sc, "Found 10GBase-T media.\n"); sc->media = IFM_10G_T; } else { BLOGI(sc, "Found 1000Base-T media.\n"); sc->media = IFM_1000_T; } break; case ELINK_ETH_PHY_NOT_PRESENT: BLOGI(sc, "Media not present.\n"); sc->media = 0; break; case ELINK_ETH_PHY_UNSPECIFIED: default: BLOGI(sc, "Unknown media!\n"); sc->media = 0; break; } } #define GET_FIELD(value, fname) \ (((value) & (fname##_MASK)) >> (fname##_SHIFT)) #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) static int bxe_get_igu_cam_info(struct bxe_softc *sc) { int pfid = SC_FUNC(sc); int igu_sb_id; uint32_t val; uint8_t fid, igu_sb_cnt = 0; sc->igu_base_sb = 0xff; if (CHIP_INT_MODE_IS_BC(sc)) { int vn = SC_VN(sc); igu_sb_cnt = sc->igu_sb_cnt; sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * FP_SB_MAX_E1x); sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); return (0); } /* IGU in normal mode - read CAM */ for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; igu_sb_id++) { val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { continue; } fid = IGU_FID(val); if ((fid & IGU_FID_ENCODE_IS_PF)) { if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { continue; } if (IGU_VEC(val) == 0) { /* default status block */ sc->igu_dsb_id = igu_sb_id; } else { if (sc->igu_base_sb == 0xff) { sc->igu_base_sb = igu_sb_id; } igu_sb_cnt++; } } } /* * Due to new PF resource allocation by MFW T7.4 and above, it's optional * that number of CAM entries will not be equal to the value advertised in * PCI. Driver should use the minimal value of both as the actual status * block count */ sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); if (igu_sb_cnt == 0) { BLOGE(sc, "CAM configuration error\n"); return (-1); } return (0); } /* * Gather various information from the device config space, the device itself, * shmem, and the user input. */ static int bxe_get_device_info(struct bxe_softc *sc) { uint32_t val; int rc; /* Get the data for the device */ sc->devinfo.vendor_id = pci_get_vendor(sc->dev); sc->devinfo.device_id = pci_get_device(sc->dev); sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); /* get the chip revision (chip metal comes from pci config space) */ sc->devinfo.chip_id = sc->link_params.chip_id = (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); /* force 57811 according to MISC register */ if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { if (CHIP_IS_57810(sc)) { sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | (sc->devinfo.chip_id & 0x0000ffff)); } else if (CHIP_IS_57810_MF(sc)) { sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | (sc->devinfo.chip_id & 0x0000ffff)); } sc->devinfo.chip_id |= 0x1; } BLOGD(sc, DBG_LOAD, "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", sc->devinfo.chip_id, ((sc->devinfo.chip_id >> 16) & 0xffff), ((sc->devinfo.chip_id >> 12) & 0xf), ((sc->devinfo.chip_id >> 4) & 0xff), ((sc->devinfo.chip_id >> 0) & 0xf)); val = (REG_RD(sc, 0x2874) & 0x55); if ((sc->devinfo.chip_id & 0x1) || (CHIP_IS_E1(sc) && val) || (CHIP_IS_E1H(sc) && (val == 0x55))) { sc->flags |= BXE_ONE_PORT_FLAG; BLOGD(sc, DBG_LOAD, "single port device\n"); } /* set the doorbell size */ sc->doorbell_size = (1 << BXE_DB_SHIFT); /* determine whether the device is in 2 port or 4 port mode */ sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ if (CHIP_IS_E2E3(sc)) { /* * Read port4mode_en_ovwr[0]: * If 1, four port mode is in port4mode_en_ovwr[1]. * If 0, four port mode is in port4mode_en[0]. */ val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); if (val & 1) { val = ((val >> 1) & 1); } else { val = REG_RD(sc, MISC_REG_PORT4MODE_EN); } sc->devinfo.chip_port_mode = (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); } /* get the function and path info for the device */ bxe_get_function_num(sc); /* get the shared memory base address */ sc->devinfo.shmem_base = sc->link_params.shmem_base = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); sc->devinfo.shmem2_base = REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : MISC_REG_GENERIC_CR_0)); BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", sc->devinfo.shmem_base, sc->devinfo.shmem2_base); if (!sc->devinfo.shmem_base) { /* this should ONLY prevent upcoming shmem reads */ BLOGI(sc, "MCP not active\n"); sc->flags |= BXE_NO_MCP_FLAG; return (0); } /* make sure the shared memory contents are valid */ val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); return (0); } BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); /* get the bootcode version */ sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); snprintf(sc->devinfo.bc_ver_str, sizeof(sc->devinfo.bc_ver_str), "%d.%d.%d", ((sc->devinfo.bc_ver >> 24) & 0xff), ((sc->devinfo.bc_ver >> 16) & 0xff), ((sc->devinfo.bc_ver >> 8) & 0xff)); BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); /* get the bootcode shmem address */ sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); /* clean indirect addresses as they're not used */ pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); if (IS_PF(sc)) { REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); if (CHIP_IS_E1x(sc)) { REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); } /* * Enable internal target-read (in case we are probed after PF * FLR). Must be done prior to any BAR read access. Only for * 57712 and up */ if (!CHIP_IS_E1x(sc)) { REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); } } /* get the nvram size */ val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); sc->devinfo.flash_size = (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); /* get PCI capabilites */ bxe_probe_pci_caps(sc); bxe_set_power_state(sc, PCI_PM_D0); /* get various configuration parameters from shmem */ bxe_get_shmem_info(sc); if (sc->devinfo.pcie_msix_cap_reg != 0) { val = pci_read_config(sc->dev, (sc->devinfo.pcie_msix_cap_reg + PCIR_MSIX_CTRL), 2); sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); } else { sc->igu_sb_cnt = 1; } sc->igu_base_addr = BAR_IGU_INTMEM; /* initialize IGU parameters */ if (CHIP_IS_E1x(sc)) { sc->devinfo.int_block = INT_BLOCK_HC; sc->igu_dsb_id = DEF_SB_IGU_ID; sc->igu_base_sb = 0; } else { sc->devinfo.int_block = INT_BLOCK_IGU; /* do not allow device reset during IGU info preocessing */ bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { int tout = 5000; BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { tout--; DELAY(1000); } if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); return (-1); } } if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; } else { BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); } rc = bxe_get_igu_cam_info(sc); bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); if (rc) { return (rc); } } /* * Get base FW non-default (fast path) status block ID. This value is * used to initialize the fw_sb_id saved on the fp/queue structure to * determine the id used by the FW. */ if (CHIP_IS_E1x(sc)) { sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); } else { /* * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of * the same queue are indicated on the same IGU SB). So we prefer * FW and IGU SBs to be the same value. */ sc->base_fw_ndsb = sc->igu_base_sb; } BLOGD(sc, DBG_LOAD, "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", sc->igu_dsb_id, sc->igu_base_sb, sc->igu_sb_cnt, sc->base_fw_ndsb); elink_phy_probe(&sc->link_params); return (0); } static void bxe_link_settings_supported(struct bxe_softc *sc, uint32_t switch_cfg) { uint32_t cfg_size = 0; uint32_t idx; uint8_t port = SC_PORT(sc); /* aggregation of supported attributes of all external phys */ sc->port.supported[0] = 0; sc->port.supported[1] = 0; switch (sc->link_params.num_phys) { case 1: sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; cfg_size = 1; break; case 2: sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; cfg_size = 1; break; case 3: if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { sc->port.supported[1] = sc->link_params.phy[ELINK_EXT_PHY1].supported; sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY2].supported; } else { sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; sc->port.supported[1] = sc->link_params.phy[ELINK_EXT_PHY2].supported; } cfg_size = 2; break; } if (!(sc->port.supported[0] || sc->port.supported[1])) { BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config), SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config2)); return; } if (CHIP_IS_E3(sc)) sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); else { switch (switch_cfg) { case ELINK_SWITCH_CFG_1G: sc->port.phy_addr = REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); break; case ELINK_SWITCH_CFG_10G: sc->port.phy_addr = REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); break; default: BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", sc->port.link_config[0]); return; } } BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); /* mask what we support according to speed_cap_mask per configuration */ for (idx = 0; idx < cfg_size; idx++) { if (!(sc->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; } if (!(sc->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; } if (!(sc->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; } if (!(sc->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; } if (!(sc->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; } if (!(sc->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; } if (!(sc->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; } if (!(sc->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; } } BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", sc->port.supported[0], sc->port.supported[1]); } static void bxe_link_settings_requested(struct bxe_softc *sc) { uint32_t link_config; uint32_t idx; uint32_t cfg_size = 0; sc->port.advertising[0] = 0; sc->port.advertising[1] = 0; switch (sc->link_params.num_phys) { case 1: case 2: cfg_size = 1; break; case 3: cfg_size = 2; break; } for (idx = 0; idx < cfg_size; idx++) { sc->link_params.req_duplex[idx] = DUPLEX_FULL; link_config = sc->port.link_config[idx]; switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { case PORT_FEATURE_LINK_SPEED_AUTO: if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; sc->port.advertising[idx] |= sc->port.supported[idx]; if (sc->link_params.phy[ELINK_EXT_PHY1].type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) sc->port.advertising[idx] |= (ELINK_SUPPORTED_100baseT_Half | ELINK_SUPPORTED_100baseT_Full); } else { /* force 10G, no AN */ sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); continue; } break; case PORT_FEATURE_LINK_SPEED_10M_FULL: if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | ADVERTISED_TP); } else { BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " "speed_cap_mask=0x%08x\n", link_config, sc->link_params.speed_cap_mask[idx]); return; } break; case PORT_FEATURE_LINK_SPEED_10M_HALF: if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; sc->link_params.req_duplex[idx] = DUPLEX_HALF; sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | ADVERTISED_TP); } else { BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " "speed_cap_mask=0x%08x\n", link_config, sc->link_params.speed_cap_mask[idx]); return; } break; case PORT_FEATURE_LINK_SPEED_100M_FULL: if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | ADVERTISED_TP); } else { BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " "speed_cap_mask=0x%08x\n", link_config, sc->link_params.speed_cap_mask[idx]); return; } break; case PORT_FEATURE_LINK_SPEED_100M_HALF: if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; sc->link_params.req_duplex[idx] = DUPLEX_HALF; sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | ADVERTISED_TP); } else { BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " "speed_cap_mask=0x%08x\n", link_config, sc->link_params.speed_cap_mask[idx]); return; } break; case PORT_FEATURE_LINK_SPEED_1G: if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | ADVERTISED_TP); } else { BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " "speed_cap_mask=0x%08x\n", link_config, sc->link_params.speed_cap_mask[idx]); return; } break; case PORT_FEATURE_LINK_SPEED_2_5G: if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | ADVERTISED_TP); } else { BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " "speed_cap_mask=0x%08x\n", link_config, sc->link_params.speed_cap_mask[idx]); return; } break; case PORT_FEATURE_LINK_SPEED_10G_CX4: if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); } else { BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " "speed_cap_mask=0x%08x\n", link_config, sc->link_params.speed_cap_mask[idx]); return; } break; case PORT_FEATURE_LINK_SPEED_20G: sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; break; default: BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " "speed_cap_mask=0x%08x\n", link_config, sc->link_params.speed_cap_mask[idx]); sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; sc->port.advertising[idx] = sc->port.supported[idx]; break; } sc->link_params.req_flow_ctrl[idx] = (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; } else { bxe_set_requested_fc(sc); } } BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " "req_flow_ctrl=0x%x advertising=0x%x\n", sc->link_params.req_line_speed[idx], sc->link_params.req_duplex[idx], sc->link_params.req_flow_ctrl[idx], sc->port.advertising[idx]); } } static void bxe_get_phy_info(struct bxe_softc *sc) { uint8_t port = SC_PORT(sc); uint32_t config = sc->port.config; uint32_t eee_mode; /* shmem data already read in bxe_get_shmem_info() */ BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x " "link_config0=0x%08x\n", sc->link_params.lane_config, sc->link_params.speed_cap_mask[0], sc->port.link_config[0]); bxe_link_settings_supported(sc, sc->link_params.switch_cfg); bxe_link_settings_requested(sc); if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { sc->link_params.feature_config_flags |= ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { sc->link_params.feature_config_flags &= ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { sc->link_params.feature_config_flags |= ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; } /* configure link feature according to nvram value */ eee_mode = (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | ELINK_EEE_MODE_ENABLE_LPI | ELINK_EEE_MODE_OUTPUT_TIME); } else { sc->link_params.eee_mode = 0; } /* get the media type */ bxe_media_detect(sc); } static void bxe_get_params(struct bxe_softc *sc) { /* get user tunable params */ bxe_get_tunable_params(sc); /* select the RX and TX ring sizes */ sc->tx_ring_size = TX_BD_USABLE; sc->rx_ring_size = RX_BD_USABLE; /* XXX disable WoL */ sc->wol = 0; } static void bxe_set_modes_bitmap(struct bxe_softc *sc) { uint32_t flags = 0; if (CHIP_REV_IS_FPGA(sc)) { SET_FLAGS(flags, MODE_FPGA); } else if (CHIP_REV_IS_EMUL(sc)) { SET_FLAGS(flags, MODE_EMUL); } else { SET_FLAGS(flags, MODE_ASIC); } if (CHIP_IS_MODE_4_PORT(sc)) { SET_FLAGS(flags, MODE_PORT4); } else { SET_FLAGS(flags, MODE_PORT2); } if (CHIP_IS_E2(sc)) { SET_FLAGS(flags, MODE_E2); } else if (CHIP_IS_E3(sc)) { SET_FLAGS(flags, MODE_E3); if (CHIP_REV(sc) == CHIP_REV_Ax) { SET_FLAGS(flags, MODE_E3_A0); } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); } } if (IS_MF(sc)) { SET_FLAGS(flags, MODE_MF); switch (sc->devinfo.mf_info.mf_mode) { case MULTI_FUNCTION_SD: SET_FLAGS(flags, MODE_MF_SD); break; case MULTI_FUNCTION_SI: SET_FLAGS(flags, MODE_MF_SI); break; case MULTI_FUNCTION_AFEX: SET_FLAGS(flags, MODE_MF_AFEX); break; } } else { SET_FLAGS(flags, MODE_SF); } #if defined(__LITTLE_ENDIAN) SET_FLAGS(flags, MODE_LITTLE_ENDIAN); #else /* __BIG_ENDIAN */ SET_FLAGS(flags, MODE_BIG_ENDIAN); #endif INIT_MODE_FLAGS(sc) = flags; } static int bxe_alloc_hsi_mem(struct bxe_softc *sc) { struct bxe_fastpath *fp; bus_addr_t busaddr; int max_agg_queues; int max_segments; bus_size_t max_size; bus_size_t max_seg_size; char buf[32]; int rc; int i, j; /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ /* allocate the parent bus DMA tag */ rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 1, /* alignment */ 0, /* boundary limit */ BUS_SPACE_MAXADDR, /* restricted low */ BUS_SPACE_MAXADDR, /* restricted hi */ NULL, /* addr filter() */ NULL, /* addr filter() arg */ BUS_SPACE_MAXSIZE_32BIT, /* max map size */ BUS_SPACE_UNRESTRICTED, /* num discontinuous */ BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 0, /* flags */ NULL, /* lock() */ NULL, /* lock() arg */ &sc->parent_dma_tag); /* returned dma tag */ if (rc != 0) { BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); return (1); } /************************/ /* DEFAULT STATUS BLOCK */ /************************/ if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), &sc->def_sb_dma, "default status block") != 0) { /* XXX */ bus_dma_tag_destroy(sc->parent_dma_tag); return (1); } sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; /***************/ /* EVENT QUEUE */ /***************/ if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, &sc->eq_dma, "event queue") != 0) { /* XXX */ bxe_dma_free(sc, &sc->def_sb_dma); sc->def_sb = NULL; bus_dma_tag_destroy(sc->parent_dma_tag); return (1); } sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; /*************/ /* SLOW PATH */ /*************/ if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), &sc->sp_dma, "slow path") != 0) { /* XXX */ bxe_dma_free(sc, &sc->eq_dma); sc->eq = NULL; bxe_dma_free(sc, &sc->def_sb_dma); sc->def_sb = NULL; bus_dma_tag_destroy(sc->parent_dma_tag); return (1); } sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; /*******************/ /* SLOW PATH QUEUE */ /*******************/ if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, &sc->spq_dma, "slow path queue") != 0) { /* XXX */ bxe_dma_free(sc, &sc->sp_dma); sc->sp = NULL; bxe_dma_free(sc, &sc->eq_dma); sc->eq = NULL; bxe_dma_free(sc, &sc->def_sb_dma); sc->def_sb = NULL; bus_dma_tag_destroy(sc->parent_dma_tag); return (1); } sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; /***************************/ /* FW DECOMPRESSION BUFFER */ /***************************/ if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, "fw decompression buffer") != 0) { /* XXX */ bxe_dma_free(sc, &sc->spq_dma); sc->spq = NULL; bxe_dma_free(sc, &sc->sp_dma); sc->sp = NULL; bxe_dma_free(sc, &sc->eq_dma); sc->eq = NULL; bxe_dma_free(sc, &sc->def_sb_dma); sc->def_sb = NULL; bus_dma_tag_destroy(sc->parent_dma_tag); return (1); } sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; if ((sc->gz_strm = malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { /* XXX */ bxe_dma_free(sc, &sc->gz_buf_dma); sc->gz_buf = NULL; bxe_dma_free(sc, &sc->spq_dma); sc->spq = NULL; bxe_dma_free(sc, &sc->sp_dma); sc->sp = NULL; bxe_dma_free(sc, &sc->eq_dma); sc->eq = NULL; bxe_dma_free(sc, &sc->def_sb_dma); sc->def_sb = NULL; bus_dma_tag_destroy(sc->parent_dma_tag); return (1); } /*************/ /* FASTPATHS */ /*************/ /* allocate DMA memory for each fastpath structure */ for (i = 0; i < sc->num_queues; i++) { fp = &sc->fp[i]; fp->sc = sc; fp->index = i; /*******************/ /* FP STATUS BLOCK */ /*******************/ snprintf(buf, sizeof(buf), "fp %d status block", i); if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), &fp->sb_dma, buf) != 0) { /* XXX unwind and free previous fastpath allocations */ BLOGE(sc, "Failed to alloc %s\n", buf); return (1); } else { if (CHIP_IS_E2E3(sc)) { fp->status_block.e2_sb = (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; } else { fp->status_block.e1x_sb = (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; } } /******************/ /* FP TX BD CHAIN */ /******************/ snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), &fp->tx_dma, buf) != 0) { /* XXX unwind and free previous fastpath allocations */ BLOGE(sc, "Failed to alloc %s\n", buf); return (1); } else { fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; } /* link together the tx bd chain pages */ for (j = 1; j <= TX_BD_NUM_PAGES; j++) { /* index into the tx bd chain array to last entry per page */ struct eth_tx_next_bd *tx_next_bd = &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; /* point to the next page and wrap from last page */ busaddr = (fp->tx_dma.paddr + (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); } /******************/ /* FP RX BD CHAIN */ /******************/ snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), &fp->rx_dma, buf) != 0) { /* XXX unwind and free previous fastpath allocations */ BLOGE(sc, "Failed to alloc %s\n", buf); return (1); } else { fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; } /* link together the rx bd chain pages */ for (j = 1; j <= RX_BD_NUM_PAGES; j++) { /* index into the rx bd chain array to last entry per page */ struct eth_rx_bd *rx_bd = &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; /* point to the next page and wrap from last page */ busaddr = (fp->rx_dma.paddr + (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); rx_bd->addr_hi = htole32(U64_HI(busaddr)); rx_bd->addr_lo = htole32(U64_LO(busaddr)); } /*******************/ /* FP RX RCQ CHAIN */ /*******************/ snprintf(buf, sizeof(buf), "fp %d rcq chain", i); if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), &fp->rcq_dma, buf) != 0) { /* XXX unwind and free previous fastpath allocations */ BLOGE(sc, "Failed to alloc %s\n", buf); return (1); } else { fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; } /* link together the rcq chain pages */ for (j = 1; j <= RCQ_NUM_PAGES; j++) { /* index into the rcq chain array to last entry per page */ struct eth_rx_cqe_next_page *rx_cqe_next = (struct eth_rx_cqe_next_page *) &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; /* point to the next page and wrap from last page */ busaddr = (fp->rcq_dma.paddr + (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); } /*******************/ /* FP RX SGE CHAIN */ /*******************/ snprintf(buf, sizeof(buf), "fp %d sge chain", i); if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), &fp->rx_sge_dma, buf) != 0) { /* XXX unwind and free previous fastpath allocations */ BLOGE(sc, "Failed to alloc %s\n", buf); return (1); } else { fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; } /* link together the sge chain pages */ for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { /* index into the rcq chain array to last entry per page */ struct eth_rx_sge *rx_sge = &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; /* point to the next page and wrap from last page */ busaddr = (fp->rx_sge_dma.paddr + (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); rx_sge->addr_hi = htole32(U64_HI(busaddr)); rx_sge->addr_lo = htole32(U64_LO(busaddr)); } /***********************/ /* FP TX MBUF DMA MAPS */ /***********************/ /* set required sizes before mapping to conserve resources */ if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { max_size = BXE_TSO_MAX_SIZE; max_segments = BXE_TSO_MAX_SEGMENTS; max_seg_size = BXE_TSO_MAX_SEG_SIZE; } else { max_size = (MCLBYTES * BXE_MAX_SEGMENTS); max_segments = BXE_MAX_SEGMENTS; max_seg_size = MCLBYTES; } /* create a dma tag for the tx mbufs */ rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 1, /* alignment */ 0, /* boundary limit */ BUS_SPACE_MAXADDR, /* restricted low */ BUS_SPACE_MAXADDR, /* restricted hi */ NULL, /* addr filter() */ NULL, /* addr filter() arg */ max_size, /* max map size */ max_segments, /* num discontinuous */ max_seg_size, /* max seg size */ 0, /* flags */ NULL, /* lock() */ NULL, /* lock() arg */ &fp->tx_mbuf_tag); /* returned dma tag */ if (rc != 0) { /* XXX unwind and free previous fastpath allocations */ BLOGE(sc, "Failed to create dma tag for " "'fp %d tx mbufs' (%d)\n", i, rc); return (1); } /* create dma maps for each of the tx mbuf clusters */ for (j = 0; j < TX_BD_TOTAL; j++) { if (bus_dmamap_create(fp->tx_mbuf_tag, BUS_DMA_NOWAIT, &fp->tx_mbuf_chain[j].m_map)) { /* XXX unwind and free previous fastpath allocations */ BLOGE(sc, "Failed to create dma map for " "'fp %d tx mbuf %d' (%d)\n", i, j, rc); return (1); } } /***********************/ /* FP RX MBUF DMA MAPS */ /***********************/ /* create a dma tag for the rx mbufs */ rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 1, /* alignment */ 0, /* boundary limit */ BUS_SPACE_MAXADDR, /* restricted low */ BUS_SPACE_MAXADDR, /* restricted hi */ NULL, /* addr filter() */ NULL, /* addr filter() arg */ MJUM9BYTES, /* max map size */ 1, /* num discontinuous */ MJUM9BYTES, /* max seg size */ 0, /* flags */ NULL, /* lock() */ NULL, /* lock() arg */ &fp->rx_mbuf_tag); /* returned dma tag */ if (rc != 0) { /* XXX unwind and free previous fastpath allocations */ BLOGE(sc, "Failed to create dma tag for " "'fp %d rx mbufs' (%d)\n", i, rc); return (1); } /* create dma maps for each of the rx mbuf clusters */ for (j = 0; j < RX_BD_TOTAL; j++) { if (bus_dmamap_create(fp->rx_mbuf_tag, BUS_DMA_NOWAIT, &fp->rx_mbuf_chain[j].m_map)) { /* XXX unwind and free previous fastpath allocations */ BLOGE(sc, "Failed to create dma map for " "'fp %d rx mbuf %d' (%d)\n", i, j, rc); return (1); } } /* create dma map for the spare rx mbuf cluster */ if (bus_dmamap_create(fp->rx_mbuf_tag, BUS_DMA_NOWAIT, &fp->rx_mbuf_spare_map)) { /* XXX unwind and free previous fastpath allocations */ BLOGE(sc, "Failed to create dma map for " "'fp %d spare rx mbuf' (%d)\n", i, rc); return (1); } /***************************/ /* FP RX SGE MBUF DMA MAPS */ /***************************/ /* create a dma tag for the rx sge mbufs */ rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 1, /* alignment */ 0, /* boundary limit */ BUS_SPACE_MAXADDR, /* restricted low */ BUS_SPACE_MAXADDR, /* restricted hi */ NULL, /* addr filter() */ NULL, /* addr filter() arg */ BCM_PAGE_SIZE, /* max map size */ 1, /* num discontinuous */ BCM_PAGE_SIZE, /* max seg size */ 0, /* flags */ NULL, /* lock() */ NULL, /* lock() arg */ &fp->rx_sge_mbuf_tag); /* returned dma tag */ if (rc != 0) { /* XXX unwind and free previous fastpath allocations */ BLOGE(sc, "Failed to create dma tag for " "'fp %d rx sge mbufs' (%d)\n", i, rc); return (1); } /* create dma maps for the rx sge mbuf clusters */ for (j = 0; j < RX_SGE_TOTAL; j++) { if (bus_dmamap_create(fp->rx_sge_mbuf_tag, BUS_DMA_NOWAIT, &fp->rx_sge_mbuf_chain[j].m_map)) { /* XXX unwind and free previous fastpath allocations */ BLOGE(sc, "Failed to create dma map for " "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc); return (1); } } /* create dma map for the spare rx sge mbuf cluster */ if (bus_dmamap_create(fp->rx_sge_mbuf_tag, BUS_DMA_NOWAIT, &fp->rx_sge_mbuf_spare_map)) { /* XXX unwind and free previous fastpath allocations */ BLOGE(sc, "Failed to create dma map for " "'fp %d spare rx sge mbuf' (%d)\n", i, rc); return (1); } /***************************/ /* FP RX TPA MBUF DMA MAPS */ /***************************/ /* create dma maps for the rx tpa mbuf clusters */ max_agg_queues = MAX_AGG_QS(sc); for (j = 0; j < max_agg_queues; j++) { if (bus_dmamap_create(fp->rx_mbuf_tag, BUS_DMA_NOWAIT, &fp->rx_tpa_info[j].bd.m_map)) { /* XXX unwind and free previous fastpath allocations */ BLOGE(sc, "Failed to create dma map for " "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc); return (1); } } /* create dma map for the spare rx tpa mbuf cluster */ if (bus_dmamap_create(fp->rx_mbuf_tag, BUS_DMA_NOWAIT, &fp->rx_tpa_info_mbuf_spare_map)) { /* XXX unwind and free previous fastpath allocations */ BLOGE(sc, "Failed to create dma map for " "'fp %d spare rx tpa mbuf' (%d)\n", i, rc); return (1); } bxe_init_sge_ring_bit_mask(fp); } return (0); } static void bxe_free_hsi_mem(struct bxe_softc *sc) { struct bxe_fastpath *fp; int max_agg_queues; int i, j; if (sc->parent_dma_tag == NULL) { return; /* assume nothing was allocated */ } for (i = 0; i < sc->num_queues; i++) { fp = &sc->fp[i]; /*******************/ /* FP STATUS BLOCK */ /*******************/ bxe_dma_free(sc, &fp->sb_dma); memset(&fp->status_block, 0, sizeof(fp->status_block)); /******************/ /* FP TX BD CHAIN */ /******************/ bxe_dma_free(sc, &fp->tx_dma); fp->tx_chain = NULL; /******************/ /* FP RX BD CHAIN */ /******************/ bxe_dma_free(sc, &fp->rx_dma); fp->rx_chain = NULL; /*******************/ /* FP RX RCQ CHAIN */ /*******************/ bxe_dma_free(sc, &fp->rcq_dma); fp->rcq_chain = NULL; /*******************/ /* FP RX SGE CHAIN */ /*******************/ bxe_dma_free(sc, &fp->rx_sge_dma); fp->rx_sge_chain = NULL; /***********************/ /* FP TX MBUF DMA MAPS */ /***********************/ if (fp->tx_mbuf_tag != NULL) { for (j = 0; j < TX_BD_TOTAL; j++) { if (fp->tx_mbuf_chain[j].m_map != NULL) { bus_dmamap_unload(fp->tx_mbuf_tag, fp->tx_mbuf_chain[j].m_map); bus_dmamap_destroy(fp->tx_mbuf_tag, fp->tx_mbuf_chain[j].m_map); } } bus_dma_tag_destroy(fp->tx_mbuf_tag); fp->tx_mbuf_tag = NULL; } /***********************/ /* FP RX MBUF DMA MAPS */ /***********************/ if (fp->rx_mbuf_tag != NULL) { for (j = 0; j < RX_BD_TOTAL; j++) { if (fp->rx_mbuf_chain[j].m_map != NULL) { bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_chain[j].m_map); bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_chain[j].m_map); } } if (fp->rx_mbuf_spare_map != NULL) { bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); } /***************************/ /* FP RX TPA MBUF DMA MAPS */ /***************************/ max_agg_queues = MAX_AGG_QS(sc); for (j = 0; j < max_agg_queues; j++) { if (fp->rx_tpa_info[j].bd.m_map != NULL) { bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_tpa_info[j].bd.m_map); bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_tpa_info[j].bd.m_map); } } if (fp->rx_tpa_info_mbuf_spare_map != NULL) { bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_tpa_info_mbuf_spare_map); bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_tpa_info_mbuf_spare_map); } bus_dma_tag_destroy(fp->rx_mbuf_tag); fp->rx_mbuf_tag = NULL; } /***************************/ /* FP RX SGE MBUF DMA MAPS */ /***************************/ if (fp->rx_sge_mbuf_tag != NULL) { for (j = 0; j < RX_SGE_TOTAL; j++) { if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { bus_dmamap_unload(fp->rx_sge_mbuf_tag, fp->rx_sge_mbuf_chain[j].m_map); bus_dmamap_destroy(fp->rx_sge_mbuf_tag, fp->rx_sge_mbuf_chain[j].m_map); } } if (fp->rx_sge_mbuf_spare_map != NULL) { bus_dmamap_unload(fp->rx_sge_mbuf_tag, fp->rx_sge_mbuf_spare_map); bus_dmamap_destroy(fp->rx_sge_mbuf_tag, fp->rx_sge_mbuf_spare_map); } bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); fp->rx_sge_mbuf_tag = NULL; } } /***************************/ /* FW DECOMPRESSION BUFFER */ /***************************/ bxe_dma_free(sc, &sc->gz_buf_dma); sc->gz_buf = NULL; free(sc->gz_strm, M_DEVBUF); sc->gz_strm = NULL; /*******************/ /* SLOW PATH QUEUE */ /*******************/ bxe_dma_free(sc, &sc->spq_dma); sc->spq = NULL; /*************/ /* SLOW PATH */ /*************/ bxe_dma_free(sc, &sc->sp_dma); sc->sp = NULL; /***************/ /* EVENT QUEUE */ /***************/ bxe_dma_free(sc, &sc->eq_dma); sc->eq = NULL; /************************/ /* DEFAULT STATUS BLOCK */ /************************/ bxe_dma_free(sc, &sc->def_sb_dma); sc->def_sb = NULL; bus_dma_tag_destroy(sc->parent_dma_tag); sc->parent_dma_tag = NULL; } /* * Previous driver DMAE transaction may have occurred when pre-boot stage * ended and boot began. This would invalidate the addresses of the * transaction, resulting in was-error bit set in the PCI causing all * hw-to-host PCIe transactions to timeout. If this happened we want to clear * the interrupt which detected this from the pglueb and the was-done bit */ static void bxe_prev_interrupted_dmae(struct bxe_softc *sc) { uint32_t val; if (!CHIP_IS_E1x(sc)) { val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { BLOGD(sc, DBG_LOAD, "Clearing 'was-error' bit that was set in pglueb"); REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); } } } static int bxe_prev_mcp_done(struct bxe_softc *sc) { uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); if (!rc) { BLOGE(sc, "MCP response failure, aborting\n"); return (-1); } return (0); } static struct bxe_prev_list_node * bxe_prev_path_get_entry(struct bxe_softc *sc) { struct bxe_prev_list_node *tmp; LIST_FOREACH(tmp, &bxe_prev_list, node) { if ((sc->pcie_bus == tmp->bus) && (sc->pcie_device == tmp->slot) && (SC_PATH(sc) == tmp->path)) { return (tmp); } } return (NULL); } static uint8_t bxe_prev_is_path_marked(struct bxe_softc *sc) { struct bxe_prev_list_node *tmp; int rc = FALSE; mtx_lock(&bxe_prev_mtx); tmp = bxe_prev_path_get_entry(sc); if (tmp) { if (tmp->aer) { BLOGD(sc, DBG_LOAD, "Path %d/%d/%d was marked by AER\n", sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); } else { rc = TRUE; BLOGD(sc, DBG_LOAD, "Path %d/%d/%d was already cleaned from previous drivers\n", sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); } } mtx_unlock(&bxe_prev_mtx); return (rc); } static int bxe_prev_mark_path(struct bxe_softc *sc, uint8_t after_undi) { struct bxe_prev_list_node *tmp; mtx_lock(&bxe_prev_mtx); /* Check whether the entry for this path already exists */ tmp = bxe_prev_path_get_entry(sc); if (tmp) { if (!tmp->aer) { BLOGD(sc, DBG_LOAD, "Re-marking AER in path %d/%d/%d\n", sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); } else { BLOGD(sc, DBG_LOAD, "Removing AER indication from path %d/%d/%d\n", sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); tmp->aer = 0; } mtx_unlock(&bxe_prev_mtx); return (0); } mtx_unlock(&bxe_prev_mtx); /* Create an entry for this path and add it */ tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, (M_NOWAIT | M_ZERO)); if (!tmp) { BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); return (-1); } tmp->bus = sc->pcie_bus; tmp->slot = sc->pcie_device; tmp->path = SC_PATH(sc); tmp->aer = 0; tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; mtx_lock(&bxe_prev_mtx); BLOGD(sc, DBG_LOAD, "Marked path %d/%d/%d - finished previous unload\n", sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); mtx_unlock(&bxe_prev_mtx); return (0); } static int bxe_do_flr(struct bxe_softc *sc) { int i; /* only E2 and onwards support FLR */ if (CHIP_IS_E1x(sc)) { BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); return (-1); } /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", sc->devinfo.bc_ver); return (-1); } /* Wait for Transaction Pending bit clean */ for (i = 0; i < 4; i++) { if (i) { DELAY(((1 << (i - 1)) * 100) * 1000); } if (!bxe_is_pcie_pending(sc)) { goto clear; } } BLOGE(sc, "PCIE transaction is not cleared, " "proceeding with reset anyway\n"); clear: BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); return (0); } struct bxe_mac_vals { uint32_t xmac_addr; uint32_t xmac_val; uint32_t emac_addr; uint32_t emac_val; uint32_t umac_addr; uint32_t umac_val; uint32_t bmac_addr; uint32_t bmac_val[2]; }; static void bxe_prev_unload_close_mac(struct bxe_softc *sc, struct bxe_mac_vals *vals) { uint32_t val, base_addr, offset, mask, reset_reg; uint8_t mac_stopped = FALSE; uint8_t port = SC_PORT(sc); uint32_t wb_data[2]; /* reset addresses as they also mark which values were changed */ vals->bmac_addr = 0; vals->umac_addr = 0; vals->xmac_addr = 0; vals->emac_addr = 0; reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); if (!CHIP_IS_E3(sc)) { val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; if ((mask & reset_reg) && val) { BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM : NIG_REG_INGRESS_BMAC0_MEM; offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL : BIGMAC_REGISTER_BMAC_CONTROL; /* * use rd/wr since we cannot use dmae. This is safe * since MCP won't access the bus due to the request * to unload, and no function on the path can be * loaded at this time. */ wb_data[0] = REG_RD(sc, base_addr + offset); wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); vals->bmac_addr = base_addr + offset; vals->bmac_val[0] = wb_data[0]; vals->bmac_val[1] = wb_data[1]; wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; REG_WR(sc, vals->bmac_addr, wb_data[0]); REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); } BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; vals->emac_val = REG_RD(sc, vals->emac_addr); REG_WR(sc, vals->emac_addr, 0); mac_stopped = TRUE; } else { if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); vals->xmac_addr = base_addr + XMAC_REG_CTRL; vals->xmac_val = REG_RD(sc, vals->xmac_addr); REG_WR(sc, vals->xmac_addr, 0); mac_stopped = TRUE; } mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; if (mask & reset_reg) { BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; vals->umac_val = REG_RD(sc, vals->umac_addr); REG_WR(sc, vals->umac_addr, 0); mac_stopped = TRUE; } } if (mac_stopped) { DELAY(20000); } } #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) static void bxe_prev_unload_undi_inc(struct bxe_softc *sc, uint8_t port, uint8_t inc) { uint16_t rcq, bd; uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); BLOGD(sc, DBG_LOAD, "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", port, bd, rcq); } static int bxe_prev_unload_common(struct bxe_softc *sc) { uint32_t reset_reg, tmp_reg = 0, rc; uint8_t prev_undi = FALSE; struct bxe_mac_vals mac_vals; uint32_t timer_count = 1000; uint32_t prev_brb; /* * It is possible a previous function received 'common' answer, * but hasn't loaded yet, therefore creating a scenario of * multiple functions receiving 'common' on the same path. */ BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); memset(&mac_vals, 0, sizeof(mac_vals)); if (bxe_prev_is_path_marked(sc)) { return (bxe_prev_mcp_done(sc)); } reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); /* Reset should be performed after BRB is emptied */ if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { /* Close the MAC Rx to prevent BRB from filling up */ bxe_prev_unload_close_mac(sc, &mac_vals); /* close LLH filters towards the BRB */ elink_set_rx_filter(&sc->link_params, 0); /* * Check if the UNDI driver was previously loaded. * UNDI driver initializes CID offset for normal bell to 0x7 */ if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); if (tmp_reg == 0x7) { BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); prev_undi = TRUE; /* clear the UNDI indication */ REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); /* clear possible idle check errors */ REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); } } /* wait until BRB is empty */ tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); while (timer_count) { prev_brb = tmp_reg; tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); if (!tmp_reg) { break; } BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); /* reset timer as long as BRB actually gets emptied */ if (prev_brb > tmp_reg) { timer_count = 1000; } else { timer_count--; } /* If UNDI resides in memory, manually increment it */ if (prev_undi) { bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); } DELAY(10); } if (!timer_count) { BLOGE(sc, "Failed to empty BRB\n"); } } /* No packets are in the pipeline, path is ready for reset */ bxe_reset_common(sc); if (mac_vals.xmac_addr) { REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); } if (mac_vals.umac_addr) { REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); } if (mac_vals.emac_addr) { REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); } if (mac_vals.bmac_addr) { REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); } rc = bxe_prev_mark_path(sc, prev_undi); if (rc) { bxe_prev_mcp_done(sc); return (rc); } return (bxe_prev_mcp_done(sc)); } static int bxe_prev_unload_uncommon(struct bxe_softc *sc) { int rc; BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); /* Test if previous unload process was already finished for this path */ if (bxe_prev_is_path_marked(sc)) { return (bxe_prev_mcp_done(sc)); } BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); /* * If function has FLR capabilities, and existing FW version matches * the one required, then FLR will be sufficient to clean any residue * left by previous driver */ rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); if (!rc) { /* fw version is good */ BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); rc = bxe_do_flr(sc); } if (!rc) { /* FLR was performed */ BLOGD(sc, DBG_LOAD, "FLR successful\n"); return (0); } BLOGD(sc, DBG_LOAD, "Could not FLR\n"); /* Close the MCP request, return failure*/ rc = bxe_prev_mcp_done(sc); if (!rc) { rc = BXE_PREV_WAIT_NEEDED; } return (rc); } static int bxe_prev_unload(struct bxe_softc *sc) { int time_counter = 10; uint32_t fw, hw_lock_reg, hw_lock_val; uint32_t rc = 0; /* * Clear HW from errors which may have resulted from an interrupted * DMAE transaction. */ bxe_prev_interrupted_dmae(sc); /* Release previously held locks */ hw_lock_reg = (SC_FUNC(sc) <= 5) ? (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); hw_lock_val = (REG_RD(sc, hw_lock_reg)); if (hw_lock_val) { if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); } BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); REG_WR(sc, hw_lock_reg, 0xffffffff); } else { BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); } if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); } do { /* Lock MCP using an unload request */ fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); if (!fw) { BLOGE(sc, "MCP response failure, aborting\n"); rc = -1; break; } if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { rc = bxe_prev_unload_common(sc); break; } /* non-common reply from MCP night require looping */ rc = bxe_prev_unload_uncommon(sc); if (rc != BXE_PREV_WAIT_NEEDED) { break; } DELAY(20000); } while (--time_counter); if (!time_counter || rc) { BLOGE(sc, "Failed to unload previous driver!\n"); rc = -1; } return (rc); } void bxe_dcbx_set_state(struct bxe_softc *sc, uint8_t dcb_on, uint32_t dcbx_enabled) { if (!CHIP_IS_E1x(sc)) { sc->dcb_state = dcb_on; sc->dcbx_enabled = dcbx_enabled; } else { sc->dcb_state = FALSE; sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; } BLOGD(sc, DBG_LOAD, "DCB state [%s:%s]\n", dcb_on ? "ON" : "OFF", (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? "on-chip with negotiation" : "invalid"); } /* must be called after sriov-enable */ static int bxe_set_qm_cid_count(struct bxe_softc *sc) { int cid_count = BXE_L2_MAX_CID(sc); if (IS_SRIOV(sc)) { cid_count += BXE_VF_CIDS; } if (CNIC_SUPPORT(sc)) { cid_count += CNIC_CID_MAX; } return (roundup(cid_count, QM_CID_ROUND)); } static void bxe_init_multi_cos(struct bxe_softc *sc) { int pri, cos; uint32_t pri_map = 0; /* XXX change to user config */ for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); if (cos < sc->max_cos) { sc->prio_to_cos[pri] = cos; } else { BLOGW(sc, "Invalid COS %d for priority %d " "(max COS is %d), setting to 0\n", cos, pri, (sc->max_cos - 1)); sc->prio_to_cos[pri] = 0; } } } static int bxe_sysctl_state(SYSCTL_HANDLER_ARGS) { struct bxe_softc *sc; int error, result; result = 0; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr) { return (error); } if (result == 1) { sc = (struct bxe_softc *)arg1; BLOGI(sc, "... dumping driver state ...\n"); /* XXX */ } return (error); } static int bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) { struct bxe_softc *sc = (struct bxe_softc *)arg1; uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; uint32_t *offset; uint64_t value = 0; int index = (int)arg2; if (index >= BXE_NUM_ETH_STATS) { BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); return (-1); } offset = (eth_stats + bxe_eth_stats_arr[index].offset); switch (bxe_eth_stats_arr[index].size) { case 4: value = (uint64_t)*offset; break; case 8: value = HILO_U64(*offset, *(offset + 1)); break; default: BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", index, bxe_eth_stats_arr[index].size); return (-1); } return (sysctl_handle_64(oidp, &value, 0, req)); } static int bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) { struct bxe_softc *sc = (struct bxe_softc *)arg1; uint32_t *eth_stats; uint32_t *offset; uint64_t value = 0; uint32_t q_stat = (uint32_t)arg2; uint32_t fp_index = ((q_stat >> 16) & 0xffff); uint32_t index = (q_stat & 0xffff); eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; if (index >= BXE_NUM_ETH_Q_STATS) { BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); return (-1); } offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); switch (bxe_eth_q_stats_arr[index].size) { case 4: value = (uint64_t)*offset; break; case 8: value = HILO_U64(*offset, *(offset + 1)); break; default: BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", index, bxe_eth_q_stats_arr[index].size); return (-1); } return (sysctl_handle_64(oidp, &value, 0, req)); } static void bxe_add_sysctls(struct bxe_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid_list *children; struct sysctl_oid *queue_top, *queue; struct sysctl_oid_list *queue_top_children, *queue_children; char queue_num_buf[32]; uint32_t q_stat; int i, j; ctx = device_get_sysctl_ctx(sc->dev); children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", CTLFLAG_RD, BXE_DRIVER_VERSION, 0, "version"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0, "bootcode version"); snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", BCM_5710_FW_MAJOR_VERSION, BCM_5710_FW_MINOR_VERSION, BCM_5710_FW_REVISION_VERSION, BCM_5710_FW_ENGINEERING_VERSION); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", CTLFLAG_RD, &sc->fw_ver_str, 0, "firmware version"); snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : "Unknown")); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", CTLFLAG_RD, &sc->mf_mode_str, 0, "multifunction mode"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, "multifunction vnics per port"); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", CTLFLAG_RD, &sc->mac_addr_str, 0, "mac address"); snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : "???GT/s"), sc->devinfo.pcie_link_width); SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", CTLFLAG_RD, &sc->pci_link_str, 0, "pci link status"); sc->debug = bxe_debug; SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug", CTLFLAG_RW, &sc->debug, 0, "debug logging mode"); sc->rx_budget = bxe_rx_budget; SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", CTLFLAG_RW, &sc->rx_budget, 0, "rx processing budget"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", CTLTYPE_UINT | CTLFLAG_RW, sc, 0, bxe_sysctl_state, "IU", "dump driver state"); for (i = 0; i < BXE_NUM_ETH_STATS; i++) { SYSCTL_ADD_PROC(ctx, children, OID_AUTO, bxe_eth_stats_arr[i].string, CTLTYPE_U64 | CTLFLAG_RD, sc, i, bxe_sysctl_eth_stat, "LU", bxe_eth_stats_arr[i].string); } /* add a new parent node for all queues "dev.bxe.#.queue" */ queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", CTLFLAG_RD, NULL, "queue"); queue_top_children = SYSCTL_CHILDREN(queue_top); for (i = 0; i < sc->num_queues; i++) { /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, queue_num_buf, CTLFLAG_RD, NULL, "single queue"); queue_children = SYSCTL_CHILDREN(queue); for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { q_stat = ((i << 16) | j); SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, bxe_eth_q_stats_arr[j].string, CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, bxe_sysctl_eth_q_stat, "LU", bxe_eth_q_stats_arr[j].string); } } } /* * Device attach function. * * Allocates device resources, performs secondary chip identification, and * initializes driver instance variables. This function is called from driver * load after a successful probe. * * Returns: * 0 = Success, >0 = Failure */ static int bxe_attach(device_t dev) { struct bxe_softc *sc; sc = device_get_softc(dev); BLOGD(sc, DBG_LOAD, "Starting attach...\n"); sc->state = BXE_STATE_CLOSED; sc->dev = dev; sc->unit = device_get_unit(dev); BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); sc->pcie_bus = pci_get_bus(dev); sc->pcie_device = pci_get_slot(dev); sc->pcie_func = pci_get_function(dev); /* enable bus master capability */ pci_enable_busmaster(dev); /* get the BARs */ if (bxe_allocate_bars(sc) != 0) { return (ENXIO); } /* initialize the mutexes */ bxe_init_mutexes(sc); /* prepare the periodic callout */ callout_init(&sc->periodic_callout, 0); /* prepare the chip taskqueue */ sc->chip_tq_flags = CHIP_TQ_NONE; snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), "bxe%d_chip_tq", sc->unit); TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, taskqueue_thread_enqueue, &sc->chip_tq); taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ "%s", sc->chip_tq_name); /* get device info and set params */ if (bxe_get_device_info(sc) != 0) { BLOGE(sc, "getting device info\n"); bxe_deallocate_bars(sc); pci_disable_busmaster(dev); return (ENXIO); } /* get final misc params */ bxe_get_params(sc); /* set the default MTU (changed via ifconfig) */ sc->mtu = ETHERMTU; bxe_set_modes_bitmap(sc); /* XXX * If in AFEX mode and the function is configured for FCoE * then bail... no L2 allowed. */ /* get phy settings from shmem and 'and' against admin settings */ bxe_get_phy_info(sc); /* initialize the FreeBSD ifnet interface */ if (bxe_init_ifnet(sc) != 0) { bxe_release_mutexes(sc); bxe_deallocate_bars(sc); pci_disable_busmaster(dev); return (ENXIO); } /* allocate device interrupts */ if (bxe_interrupt_alloc(sc) != 0) { if (sc->ifp != NULL) { ether_ifdetach_drv(sc->ifp); } ifmedia_removeall(&sc->ifmedia); bxe_release_mutexes(sc); bxe_deallocate_bars(sc); pci_disable_busmaster(dev); return (ENXIO); } /* allocate ilt */ if (bxe_alloc_ilt_mem(sc) != 0) { bxe_interrupt_free(sc); if (sc->ifp != NULL) { ether_ifdetach_drv(sc->ifp); } ifmedia_removeall(&sc->ifmedia); bxe_release_mutexes(sc); bxe_deallocate_bars(sc); pci_disable_busmaster(dev); return (ENXIO); } /* allocate the host hardware/software hsi structures */ if (bxe_alloc_hsi_mem(sc) != 0) { bxe_free_ilt_mem(sc); bxe_interrupt_free(sc); if (sc->ifp != NULL) { ether_ifdetach_drv(sc->ifp); } ifmedia_removeall(&sc->ifmedia); bxe_release_mutexes(sc); bxe_deallocate_bars(sc); pci_disable_busmaster(dev); return (ENXIO); } /* need to reset chip if UNDI was active */ if (IS_PF(sc) && !BXE_NOMCP(sc)) { /* init fw_seq */ sc->fw_seq = (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & DRV_MSG_SEQ_NUMBER_MASK); BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); bxe_prev_unload(sc); } #if 1 /* XXX */ bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); #else if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && SHMEM2_RD(sc, dcbx_lldp_params_offset) && SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); bxe_dcbx_init_params(sc); } else { bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); } #endif /* calculate qm_cid_count */ sc->qm_cid_count = bxe_set_qm_cid_count(sc); BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); sc->max_cos = 1; bxe_init_multi_cos(sc); bxe_add_sysctls(sc); return (0); } /* * Device detach function. * * Stops the controller, resets the controller, and releases resources. * * Returns: * 0 = Success, >0 = Failure */ static int bxe_detach(device_t dev) { struct bxe_softc *sc; if_t ifp; sc = device_get_softc(dev); BLOGD(sc, DBG_LOAD, "Starting detach...\n"); ifp = sc->ifp; if (ifp != NULL && if_vlantrunkinuse(ifp)) { BLOGE(sc, "Cannot detach while VLANs are in use.\n"); return(EBUSY); } /* stop the periodic callout */ bxe_periodic_stop(sc); /* stop the chip taskqueue */ atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); if (sc->chip_tq) { taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); taskqueue_free(sc->chip_tq); sc->chip_tq = NULL; } /* stop and reset the controller if it was open */ if (sc->state != BXE_STATE_CLOSED) { BXE_CORE_LOCK(sc); bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); BXE_CORE_UNLOCK(sc); } /* release the network interface */ if (ifp != NULL) { ether_ifdetach_drv(ifp); } ifmedia_removeall(&sc->ifmedia); /* XXX do the following based on driver state... */ /* free the host hardware/software hsi structures */ bxe_free_hsi_mem(sc); /* free ilt */ bxe_free_ilt_mem(sc); /* release the interrupts */ bxe_interrupt_free(sc); /* Release the mutexes*/ bxe_release_mutexes(sc); /* Release the PCIe BAR mapped memory */ bxe_deallocate_bars(sc); /* Release the FreeBSD interface. */ if (sc->ifp != NULL) { if_free_drv(sc->ifp); } pci_disable_busmaster(dev); return (0); } /* * Device shutdown function. * * Stops and resets the controller. * * Returns: * Nothing */ static int bxe_shutdown(device_t dev) { struct bxe_softc *sc; sc = device_get_softc(dev); BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); /* stop the periodic callout */ bxe_periodic_stop(sc); BXE_CORE_LOCK(sc); bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); BXE_CORE_UNLOCK(sc); return (0); } void bxe_igu_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id, uint8_t segment, uint16_t index, uint8_t op, uint8_t update) { uint32_t igu_addr = sc->igu_base_addr; igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); } static void bxe_igu_clear_sb_gen(struct bxe_softc *sc, uint8_t func, uint8_t idu_sb_id, uint8_t is_pf) { uint32_t data, ctl, cnt = 100; uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; uint32_t sb_bit = 1 << (idu_sb_id%32); uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; /* Not supported in BC mode */ if (CHIP_INT_MODE_IS_BC(sc)) { return; } data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << IGU_REGULAR_CLEANUP_TYPE_SHIFT) | IGU_REGULAR_CLEANUP_SET | IGU_REGULAR_BCLEANUP); ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | (func_encode << IGU_CTRL_REG_FID_SHIFT) | (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", data, igu_addr_data); REG_WR(sc, igu_addr_data, data); bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, BUS_SPACE_BARRIER_WRITE); mb(); BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", ctl, igu_addr_ctl); REG_WR(sc, igu_addr_ctl, ctl); bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, BUS_SPACE_BARRIER_WRITE); mb(); /* wait for clean up to finish */ while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { DELAY(20000); } if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { BLOGD(sc, DBG_LOAD, "Unable to finish IGU cleanup: " "idu_sb_id %d offset %d bit %d (cnt %d)\n", idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); } } static void bxe_igu_clear_sb(struct bxe_softc *sc, uint8_t idu_sb_id) { bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); } /*******************/ /* ECORE CALLBACKS */ /*******************/ static void bxe_reset_common(struct bxe_softc *sc) { uint32_t val = 0x1400; /* reset_common */ REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); if (CHIP_IS_E3(sc)) { val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; } REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); } static void bxe_common_init_phy(struct bxe_softc *sc) { uint32_t shmem_base[2]; uint32_t shmem2_base[2]; /* Avoid common init in case MFW supports LFA */ if (SHMEM2_RD(sc, size) > (uint32_t)offsetof(struct shmem2_region, lfa_host_addr[SC_PORT(sc)])) { return; } shmem_base[0] = sc->devinfo.shmem_base; shmem2_base[0] = sc->devinfo.shmem2_base; if (!CHIP_IS_E1x(sc)) { shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); } BXE_PHY_LOCK(sc); elink_common_init_phy(sc, shmem_base, shmem2_base, sc->devinfo.chip_id, 0); BXE_PHY_UNLOCK(sc); } static void bxe_pf_disable(struct bxe_softc *sc) { uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); val &= ~IGU_PF_CONF_FUNC_EN; REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); } static void bxe_init_pxp(struct bxe_softc *sc) { uint16_t devctl; int r_order, w_order; devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); if (sc->mrrs == -1) { r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); } else { BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); r_order = sc->mrrs; } ecore_init_pxp_arb(sc, r_order, w_order); } static uint32_t bxe_get_pretend_reg(struct bxe_softc *sc) { uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); return (base + (SC_ABS_FUNC(sc)) * stride); } /* * Called only on E1H or E2. * When pretending to be PF, the pretend value is the function number 0..7. * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID * combination. */ static int bxe_pretend_func(struct bxe_softc *sc, uint16_t pretend_func_val) { uint32_t pretend_reg; if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { return (-1); } /* get my own pretend register */ pretend_reg = bxe_get_pretend_reg(sc); REG_WR(sc, pretend_reg, pretend_func_val); REG_RD(sc, pretend_reg); return (0); } static void bxe_iov_init_dmae(struct bxe_softc *sc) { return; #if 0 BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF"); if (!IS_SRIOV(sc)) { return; } REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0); #endif } #if 0 static int bxe_iov_init_ilt(struct bxe_softc *sc, uint16_t line) { return (line); #if 0 int i; struct ecore_ilt* ilt = sc->ilt; if (!IS_SRIOV(sc)) { return (line); } /* set vfs ilt lines */ for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) { struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i); ilt->lines[line+i].page = hw_cxt->addr; ilt->lines[line+i].page_mapping = hw_cxt->mapping; ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */ } return (line+i); #endif } #endif static void bxe_iov_init_dq(struct bxe_softc *sc) { return; #if 0 if (!IS_SRIOV(sc)) { return; } /* Set the DQ such that the CID reflect the abs_vfid */ REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0); REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS)); /* * Set VFs starting CID. If its > 0 the preceding CIDs are belong to * the PF L2 queues */ REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID); /* The VF window size is the log2 of the max number of CIDs per VF */ REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND); /* * The VF doorbell size 0 - *B, 4 - 128B. We set it here to match * the Pf doorbell size although the 2 are independent. */ REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST, BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT); /* * No security checks for now - * configure single rule (out of 16) mask = 0x1, value = 0x0, * CID range 0 - 0x1ffff */ REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1); REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0); REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0); REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff); /* set the number of VF alllowed doorbells to the full DQ range */ REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000); /* set the VF doorbell threshold */ REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4); #endif } /* send a NIG loopback debug packet */ static void bxe_lb_pckt(struct bxe_softc *sc) { uint32_t wb_write[3]; /* Ethernet source and destination addresses */ wb_write[0] = 0x55555555; wb_write[1] = 0x55555555; wb_write[2] = 0x20; /* SOP */ REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); /* NON-IP protocol */ wb_write[0] = 0x09000000; wb_write[1] = 0x55555555; wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); } /* * Some of the internal memories are not directly readable from the driver. * To test them we send debug packets. */ static int bxe_int_mem_test(struct bxe_softc *sc) { int factor; int count, i; uint32_t val = 0; if (CHIP_REV_IS_FPGA(sc)) { factor = 120; } else if (CHIP_REV_IS_EMUL(sc)) { factor = 200; } else { factor = 1; } /* disable inputs of parser neighbor blocks */ REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); REG_WR(sc, CFC_REG_DEBUG0, 0x1); REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); /* write 0 to parser credits for CFC search request */ REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); /* send Ethernet packet */ bxe_lb_pckt(sc); /* TODO do i reset NIG statistic? */ /* Wait until NIG register shows 1 packet of size 0x10 */ count = 1000 * factor; while (count) { bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); val = *BXE_SP(sc, wb_data[0]); if (val == 0x10) { break; } DELAY(10000); count--; } if (val != 0x10) { BLOGE(sc, "NIG timeout val=0x%x\n", val); return (-1); } /* wait until PRS register shows 1 packet */ count = (1000 * factor); while (count) { val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); if (val == 1) { break; } DELAY(10000); count--; } if (val != 0x1) { BLOGE(sc, "PRS timeout val=0x%x\n", val); return (-2); } /* Reset and init BRB, PRS */ REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); DELAY(50000); REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); DELAY(50000); ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); /* Disable inputs of parser neighbor blocks */ REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); REG_WR(sc, CFC_REG_DEBUG0, 0x1); REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); /* Write 0 to parser credits for CFC search request */ REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); /* send 10 Ethernet packets */ for (i = 0; i < 10; i++) { bxe_lb_pckt(sc); } /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ count = (1000 * factor); while (count) { bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); val = *BXE_SP(sc, wb_data[0]); if (val == 0xb0) { break; } DELAY(10000); count--; } if (val != 0xb0) { BLOGE(sc, "NIG timeout val=0x%x\n", val); return (-3); } /* Wait until PRS register shows 2 packets */ val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); if (val != 2) { BLOGE(sc, "PRS timeout val=0x%x\n", val); } /* Write 1 to parser credits for CFC search request */ REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); /* Wait until PRS register shows 3 packets */ DELAY(10000 * factor); /* Wait until NIG register shows 1 packet of size 0x10 */ val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); if (val != 3) { BLOGE(sc, "PRS timeout val=0x%x\n", val); } /* clear NIG EOP FIFO */ for (i = 0; i < 11; i++) { REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); } val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); if (val != 1) { BLOGE(sc, "clear of NIG failed\n"); return (-4); } /* Reset and init BRB, PRS, NIG */ REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); DELAY(50000); REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); DELAY(50000); ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); if (!CNIC_SUPPORT(sc)) { /* set NIC mode */ REG_WR(sc, PRS_REG_NIC_MODE, 1); } /* Enable inputs of parser neighbor blocks */ REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); REG_WR(sc, CFC_REG_DEBUG0, 0x0); REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); return (0); } static void bxe_setup_fan_failure_detection(struct bxe_softc *sc) { int is_required; uint32_t val; int port; is_required = 0; val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & SHARED_HW_CFG_FAN_FAILURE_MASK); if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { is_required = 1; } /* * The fan failure mechanism is usually related to the PHY type since * the power consumption of the board is affected by the PHY. Currently, * fan is required for most designs with SFX7101, BCM8727 and BCM8481. */ else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { for (port = PORT_0; port < PORT_MAX; port++) { is_required |= elink_fan_failure_det_req(sc, sc->devinfo.shmem_base, sc->devinfo.shmem2_base, port); } } BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); if (is_required == 0) { return; } /* Fan failure is indicated by SPIO 5 */ bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); /* set to active low mode */ val = REG_RD(sc, MISC_REG_SPIO_INT); val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); REG_WR(sc, MISC_REG_SPIO_INT, val); /* enable interrupt to signal the IGU */ val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); val |= MISC_SPIO_SPIO5; REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); } static void bxe_enable_blocks_attention(struct bxe_softc *sc) { uint32_t val; REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); if (!CHIP_IS_E1x(sc)) { REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); } else { REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); } REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); /* * mask read length error interrupts in brb for parser * (parsing unit and 'checksum and crc' unit) * these errors are legal (PU reads fixed length and CAC can cause * read length error on truncated packets) */ REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); REG_WR(sc, QM_REG_QM_INT_MASK, 0); REG_WR(sc, TM_REG_TM_INT_MASK, 0); REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); if (!CHIP_IS_E1x(sc)) { val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); } REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ if (!CHIP_IS_E1x(sc)) { /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); } REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ } /** * bxe_init_hw_common - initialize the HW at the COMMON phase. * * @sc: driver handle */ static int bxe_init_hw_common(struct bxe_softc *sc) { uint8_t abs_func_id; uint32_t val; BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", SC_ABS_FUNC(sc)); /* * take the RESET lock to protect undi_unload flow from accessing * registers while we are resetting the chip */ bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); bxe_reset_common(sc); REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); val = 0xfffc; if (CHIP_IS_E3(sc)) { val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; } REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); BLOGD(sc, DBG_LOAD, "after misc block init\n"); if (!CHIP_IS_E1x(sc)) { /* * 4-port mode or 2-port mode we need to turn off master-enable for * everyone. After that we turn it back on for self. So, we disregard * multi-function, and always disable all functions on the given path, * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 */ for (abs_func_id = SC_PATH(sc); abs_func_id < (E2_FUNC_MAX * 2); abs_func_id += 2) { if (abs_func_id == SC_ABS_FUNC(sc)) { REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); continue; } bxe_pretend_func(sc, abs_func_id); /* clear pf enable */ bxe_pf_disable(sc); bxe_pretend_func(sc, SC_ABS_FUNC(sc)); } } BLOGD(sc, DBG_LOAD, "after pf disable\n"); ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); if (CHIP_IS_E1(sc)) { /* * enable HW interrupt from PXP on USDM overflow * bit 16 on INT_MASK_0 */ REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); } ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); bxe_init_pxp(sc); #ifdef __BIG_ENDIAN REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); /* make sure this value is 0 */ REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); #endif ecore_ilt_init_page_size(sc, INITOP_SET); if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); } /* let the HW do it's magic... */ DELAY(100000); /* finish PXP init */ val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); if (val != 1) { BLOGE(sc, "PXP2 CFG failed\n"); return (-1); } val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); if (val != 1) { BLOGE(sc, "PXP2 RD_INIT failed\n"); return (-1); } BLOGD(sc, DBG_LOAD, "after pxp init\n"); /* * Timer bug workaround for E2 only. We need to set the entire ILT to have * entries with value "0" and valid bit on. This needs to be done by the * first PF that is loaded in a path (i.e. common phase) */ if (!CHIP_IS_E1x(sc)) { /* * In E2 there is a bug in the timers block that can cause function 6 / 7 * (i.e. vnic3) to start even if it is marked as "scan-off". * This occurs when a different function (func2,3) is being marked * as "scan-off". Real-life scenario for example: if a driver is being * load-unloaded while func6,7 are down. This will cause the timer to access * the ilt, translate to a logical address and send a request to read/write. * Since the ilt for the function that is down is not valid, this will cause * a translation error which is unrecoverable. * The Workaround is intended to make sure that when this happens nothing * fatal will occur. The workaround: * 1. First PF driver which loads on a path will: * a. After taking the chip out of reset, by using pretend, * it will write "0" to the following registers of * the other vnics. * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); * And for itself it will write '1' to * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable * dmae-operations (writing to pram for example.) * note: can be done for only function 6,7 but cleaner this * way. * b. Write zero+valid to the entire ILT. * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of * VNIC3 (of that port). The range allocated will be the * entire ILT. This is needed to prevent ILT range error. * 2. Any PF driver load flow: * a. ILT update with the physical addresses of the allocated * logical pages. * b. Wait 20msec. - note that this timeout is needed to make * sure there are no requests in one of the PXP internal * queues with "old" ILT addresses. * c. PF enable in the PGLC. * d. Clear the was_error of the PF in the PGLC. (could have * occurred while driver was down) * e. PF enable in the CFC (WEAK + STRONG) * f. Timers scan enable * 3. PF driver unload flow: * a. Clear the Timers scan_en. * b. Polling for scan_on=0 for that PF. * c. Clear the PF enable bit in the PXP. * d. Clear the PF enable in the CFC (WEAK + STRONG) * e. Write zero+valid to all ILT entries (The valid bit must * stay set) * f. If this is VNIC 3 of a port then also init * first_timers_ilt_entry to zero and last_timers_ilt_entry * to the last enrty in the ILT. * * Notes: * Currently the PF error in the PGLC is non recoverable. * In the future the there will be a recovery routine for this error. * Currently attention is masked. * Having an MCP lock on the load/unload process does not guarantee that * there is no Timer disable during Func6/7 enable. This is because the * Timers scan is currently being cleared by the MCP on FLR. * Step 2.d can be done only for PF6/7 and the driver can also check if * there is error before clearing it. But the flow above is simpler and * more general. * All ILT entries are written by zero+valid and not just PF6/7 * ILT entries since in the future the ILT entries allocation for * PF-s might be dynamic. */ struct ilt_client_info ilt_cli; struct ecore_ilt ilt; memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); memset(&ilt, 0, sizeof(struct ecore_ilt)); /* initialize dummy TM client */ ilt_cli.start = 0; ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; ilt_cli.client_num = ILT_CLIENT_TM; /* * Step 1: set zeroes to all ilt page entries with valid bit on * Step 2: set the timers first/last ilt entry to point * to the entire range to prevent ILT range error for 3rd/4th * vnic (this code assumes existence of the vnic) * * both steps performed by call to ecore_ilt_client_init_op() * with dummy TM client * * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT * and his brother are split registers */ bxe_pretend_func(sc, (SC_PATH(sc) + 6)); ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); bxe_pretend_func(sc, SC_ABS_FUNC(sc)); REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); } REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); if (!CHIP_IS_E1x(sc)) { int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : (CHIP_REV_IS_FPGA(sc) ? 400 : 0); ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); /* let the HW do it's magic... */ do { DELAY(200000); val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); } while (factor-- && (val != 1)); if (val != 1) { BLOGE(sc, "ATC_INIT failed\n"); return (-1); } } BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); bxe_iov_init_dmae(sc); /* clean the DMAE memory */ sc->dmae_ready = 1; ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); /* QM queues pointers table */ ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); /* soft reset pulse */ REG_WR(sc, QM_REG_SOFT_RESET, 1); REG_WR(sc, QM_REG_SOFT_RESET, 0); if (CNIC_SUPPORT(sc)) ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); if (!CHIP_REV_IS_SLOW(sc)) { /* enable hw interrupt from doorbell Q */ REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); } ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); if (!CHIP_IS_E1(sc)) { REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); } if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { if (IS_MF_AFEX(sc)) { /* * configure that AFEX and VLAN headers must be * received in AFEX mode */ REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); } else { /* * Bit-map indicating which L2 hdrs may appear * after the basic Ethernet header */ REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); } } ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); if (!CHIP_IS_E1x(sc)) { /* reset VFC memories */ REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, VFC_MEMORIES_RST_REG_CAM_RST | VFC_MEMORIES_RST_REG_RAM_RST); REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, VFC_MEMORIES_RST_REG_CAM_RST | VFC_MEMORIES_RST_REG_RAM_RST); DELAY(20000); } ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); /* sync semi rtc */ REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x80000000); REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x80000000); ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); if (!CHIP_IS_E1x(sc)) { if (IS_MF_AFEX(sc)) { /* * configure that AFEX and VLAN headers must be * sent in AFEX mode */ REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); } else { REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); } } REG_WR(sc, SRC_REG_SOFT_RST, 1); ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); if (CNIC_SUPPORT(sc)) { REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); } REG_WR(sc, SRC_REG_SOFT_RST, 0); if (sizeof(union cdu_context) != 1024) { /* we currently assume that a context is 1024 bytes */ BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", (long)sizeof(union cdu_context)); } ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); val = (4 << 24) + (0 << 12) + 1024; REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); /* enable context validation interrupt from CFC */ REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); /* set the thresholds to prevent CFC/CDU race */ REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); } ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); /* Reset PCIE errors for debug */ REG_WR(sc, 0x2814, 0xffffffff); REG_WR(sc, 0x3820, 0xffffffff); if (!CHIP_IS_E1x(sc)) { REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); } ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); if (!CHIP_IS_E1(sc)) { /* in E3 this done in per-port section */ if (!CHIP_IS_E3(sc)) REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); } if (CHIP_IS_E1H(sc)) { /* not applicable for E2 (and above ...) */ REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); } if (CHIP_REV_IS_SLOW(sc)) { DELAY(200000); } /* finish CFC init */ val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); if (val != 1) { BLOGE(sc, "CFC LL_INIT failed\n"); return (-1); } val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); if (val != 1) { BLOGE(sc, "CFC AC_INIT failed\n"); return (-1); } val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); if (val != 1) { BLOGE(sc, "CFC CAM_INIT failed\n"); return (-1); } REG_WR(sc, CFC_REG_DEBUG0, 0); if (CHIP_IS_E1(sc)) { /* read NIG statistic to see if this is our first up since powerup */ bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); val = *BXE_SP(sc, wb_data[0]); /* do internal memory self test */ if ((val == 0) && bxe_int_mem_test(sc)) { BLOGE(sc, "internal mem self test failed\n"); return (-1); } } bxe_setup_fan_failure_detection(sc); /* clear PXP2 attentions */ REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); bxe_enable_blocks_attention(sc); if (!CHIP_REV_IS_SLOW(sc)) { ecore_enable_blocks_parity(sc); } if (!BXE_NOMCP(sc)) { if (CHIP_IS_E1x(sc)) { bxe_common_init_phy(sc); } } return (0); } /** * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. * * @sc: driver handle */ static int bxe_init_hw_common_chip(struct bxe_softc *sc) { int rc = bxe_init_hw_common(sc); if (rc) { return (rc); } /* In E2 2-PORT mode, same ext phy is used for the two paths */ if (!BXE_NOMCP(sc)) { bxe_common_init_phy(sc); } return (0); } static int bxe_init_hw_port(struct bxe_softc *sc) { int port = SC_PORT(sc); int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; uint32_t low, high; uint32_t val; BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); ecore_init_block(sc, BLOCK_MISC, init_phase); ecore_init_block(sc, BLOCK_PXP, init_phase); ecore_init_block(sc, BLOCK_PXP2, init_phase); /* * Timers bug workaround: disables the pf_master bit in pglue at * common phase, we need to enable it here before any dmae access are * attempted. Therefore we manually added the enable-master to the * port phase (it also happens in the function phase) */ if (!CHIP_IS_E1x(sc)) { REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); } ecore_init_block(sc, BLOCK_ATC, init_phase); ecore_init_block(sc, BLOCK_DMAE, init_phase); ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); ecore_init_block(sc, BLOCK_QM, init_phase); ecore_init_block(sc, BLOCK_TCM, init_phase); ecore_init_block(sc, BLOCK_UCM, init_phase); ecore_init_block(sc, BLOCK_CCM, init_phase); ecore_init_block(sc, BLOCK_XCM, init_phase); /* QM cid (connection) count */ ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); if (CNIC_SUPPORT(sc)) { ecore_init_block(sc, BLOCK_TM, init_phase); REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); } ecore_init_block(sc, BLOCK_DORQ, init_phase); ecore_init_block(sc, BLOCK_BRB1, init_phase); if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { if (IS_MF(sc)) { low = (BXE_ONE_PORT(sc) ? 160 : 246); } else if (sc->mtu > 4096) { if (BXE_ONE_PORT(sc)) { low = 160; } else { val = sc->mtu; /* (24*1024 + val*4)/256 */ low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); } } else { low = (BXE_ONE_PORT(sc) ? 80 : 160); } high = (low + 56); /* 14*1024/256 */ REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); } if (CHIP_IS_MODE_4_PORT(sc)) { REG_WR(sc, SC_PORT(sc) ? BRB1_REG_MAC_GUARANTIED_1 : BRB1_REG_MAC_GUARANTIED_0, 40); } ecore_init_block(sc, BLOCK_PRS, init_phase); if (CHIP_IS_E3B0(sc)) { if (IS_MF_AFEX(sc)) { /* configure headers for AFEX mode */ REG_WR(sc, SC_PORT(sc) ? PRS_REG_HDRS_AFTER_BASIC_PORT_1 : PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); REG_WR(sc, SC_PORT(sc) ? PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); REG_WR(sc, SC_PORT(sc) ? PRS_REG_MUST_HAVE_HDRS_PORT_1 : PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); } else { /* Ovlan exists only if we are in multi-function + * switch-dependent mode, in switch-independent there * is no ovlan headers */ REG_WR(sc, SC_PORT(sc) ? PRS_REG_HDRS_AFTER_BASIC_PORT_1 : PRS_REG_HDRS_AFTER_BASIC_PORT_0, (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); } } ecore_init_block(sc, BLOCK_TSDM, init_phase); ecore_init_block(sc, BLOCK_CSDM, init_phase); ecore_init_block(sc, BLOCK_USDM, init_phase); ecore_init_block(sc, BLOCK_XSDM, init_phase); ecore_init_block(sc, BLOCK_TSEM, init_phase); ecore_init_block(sc, BLOCK_USEM, init_phase); ecore_init_block(sc, BLOCK_CSEM, init_phase); ecore_init_block(sc, BLOCK_XSEM, init_phase); ecore_init_block(sc, BLOCK_UPB, init_phase); ecore_init_block(sc, BLOCK_XPB, init_phase); ecore_init_block(sc, BLOCK_PBF, init_phase); if (CHIP_IS_E1x(sc)) { /* configure PBF to work without PAUSE mtu 9000 */ REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); /* update threshold */ REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); /* update init credit */ REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); /* probe changes */ REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); DELAY(50); REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); } if (CNIC_SUPPORT(sc)) { ecore_init_block(sc, BLOCK_SRC, init_phase); } ecore_init_block(sc, BLOCK_CDU, init_phase); ecore_init_block(sc, BLOCK_CFC, init_phase); if (CHIP_IS_E1(sc)) { REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); } ecore_init_block(sc, BLOCK_HC, init_phase); ecore_init_block(sc, BLOCK_IGU, init_phase); ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); /* init aeu_mask_attn_func_0/1: * - SF mode: bits 3-7 are masked. only bits 0-2 are in use * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF * bits 4-7 are used for "per vn group attention" */ val = IS_MF(sc) ? 0xF7 : 0x7; /* Enable DCBX attention for all but E1 */ val |= CHIP_IS_E1(sc) ? 0 : 0x10; REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); ecore_init_block(sc, BLOCK_NIG, init_phase); if (!CHIP_IS_E1x(sc)) { /* Bit-map indicating which L2 hdrs may appear after the * basic Ethernet header */ if (IS_MF_AFEX(sc)) { REG_WR(sc, SC_PORT(sc) ? NIG_REG_P1_HDRS_AFTER_BASIC : NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); } else { REG_WR(sc, SC_PORT(sc) ? NIG_REG_P1_HDRS_AFTER_BASIC : NIG_REG_P0_HDRS_AFTER_BASIC, IS_MF_SD(sc) ? 7 : 6); } if (CHIP_IS_E3(sc)) { REG_WR(sc, SC_PORT(sc) ? NIG_REG_LLH1_MF_MODE : NIG_REG_LLH_MF_MODE, IS_MF(sc)); } } if (!CHIP_IS_E3(sc)) { REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); } if (!CHIP_IS_E1(sc)) { /* 0x2 disable mf_ov, 0x1 enable */ REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, (IS_MF_SD(sc) ? 0x1 : 0x2)); if (!CHIP_IS_E1x(sc)) { val = 0; switch (sc->devinfo.mf_info.mf_mode) { case MULTI_FUNCTION_SD: val = 1; break; case MULTI_FUNCTION_SI: case MULTI_FUNCTION_AFEX: val = 2; break; } REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : NIG_REG_LLH0_CLS_TYPE), val); } REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); } /* If SPIO5 is set to generate interrupts, enable it for this port */ val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); if (val & MISC_SPIO_SPIO5) { uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); val = REG_RD(sc, reg_addr); val |= AEU_INPUTS_ATTN_BITS_SPIO5; REG_WR(sc, reg_addr, val); } return (0); } static uint32_t bxe_flr_clnup_reg_poll(struct bxe_softc *sc, uint32_t reg, uint32_t expected, uint32_t poll_count) { uint32_t cur_cnt = poll_count; uint32_t val; while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { DELAY(FLR_WAIT_INTERVAL); } return (val); } static int bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, uint32_t reg, char *msg, uint32_t poll_cnt) { uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); if (val != 0) { BLOGE(sc, "%s usage count=%d\n", msg, val); return (1); } return (0); } /* Common routines with VF FLR cleanup */ static uint32_t bxe_flr_clnup_poll_count(struct bxe_softc *sc) { /* adjust polling timeout */ if (CHIP_REV_IS_EMUL(sc)) { return (FLR_POLL_CNT * 2000); } if (CHIP_REV_IS_FPGA(sc)) { return (FLR_POLL_CNT * 120); } return (FLR_POLL_CNT); } static int bxe_poll_hw_usage_counters(struct bxe_softc *sc, uint32_t poll_cnt) { /* wait for CFC PF usage-counter to zero (includes all the VFs) */ if (bxe_flr_clnup_poll_hw_counter(sc, CFC_REG_NUM_LCIDS_INSIDE_PF, "CFC PF usage counter timed out", poll_cnt)) { return (1); } /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ if (bxe_flr_clnup_poll_hw_counter(sc, DORQ_REG_PF_USAGE_CNT, "DQ PF usage counter timed out", poll_cnt)) { return (1); } /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ if (bxe_flr_clnup_poll_hw_counter(sc, QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), "QM PF usage counter timed out", poll_cnt)) { return (1); } /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ if (bxe_flr_clnup_poll_hw_counter(sc, TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), "Timers VNIC usage counter timed out", poll_cnt)) { return (1); } if (bxe_flr_clnup_poll_hw_counter(sc, TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), "Timers NUM_SCANS usage counter timed out", poll_cnt)) { return (1); } /* Wait DMAE PF usage counter to zero */ if (bxe_flr_clnup_poll_hw_counter(sc, dmae_reg_go_c[INIT_DMAE_C(sc)], "DMAE dommand register timed out", poll_cnt)) { return (1); } return (0); } #define OP_GEN_PARAM(param) \ (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) #define OP_GEN_TYPE(type) \ (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) #define OP_GEN_AGG_VECT(index) \ (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) static int bxe_send_final_clnup(struct bxe_softc *sc, uint8_t clnup_func, uint32_t poll_cnt) { uint32_t op_gen_command = 0; uint32_t comp_addr = (BAR_CSTRORM_INTMEM + CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); int ret = 0; if (REG_RD(sc, comp_addr)) { BLOGE(sc, "Cleanup complete was not 0 before sending\n"); return (1); } op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); op_gen_command |= OP_GEN_AGG_VECT(clnup_func); op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { BLOGE(sc, "FW final cleanup did not succeed\n"); BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", (REG_RD(sc, comp_addr))); bxe_panic(sc, ("FLR cleanup failed\n")); return (1); } /* Zero completion for nxt FLR */ REG_WR(sc, comp_addr, 0); return (ret); } static void bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, struct pbf_pN_buf_regs *regs, uint32_t poll_count) { uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; uint32_t cur_cnt = poll_count; crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); crd = crd_start = REG_RD(sc, regs->crd); init_crd = REG_RD(sc, regs->init_crd); BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); while ((crd != init_crd) && ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < (init_crd - crd_start))) { if (cur_cnt--) { DELAY(FLR_WAIT_INTERVAL); crd = REG_RD(sc, regs->crd); crd_freed = REG_RD(sc, regs->crd_freed); } else { BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); break; } } BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); } static void bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, struct pbf_pN_cmd_regs *regs, uint32_t poll_count) { uint32_t occup, to_free, freed, freed_start; uint32_t cur_cnt = poll_count; occup = to_free = REG_RD(sc, regs->lines_occup); freed = freed_start = REG_RD(sc, regs->lines_freed); BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); while (occup && ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { if (cur_cnt--) { DELAY(FLR_WAIT_INTERVAL); occup = REG_RD(sc, regs->lines_occup); freed = REG_RD(sc, regs->lines_freed); } else { BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); break; } } BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); } static void bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) { struct pbf_pN_cmd_regs cmd_regs[] = { {0, (CHIP_IS_E3B0(sc)) ? PBF_REG_TQ_OCCUPANCY_Q0 : PBF_REG_P0_TQ_OCCUPANCY, (CHIP_IS_E3B0(sc)) ? PBF_REG_TQ_LINES_FREED_CNT_Q0 : PBF_REG_P0_TQ_LINES_FREED_CNT}, {1, (CHIP_IS_E3B0(sc)) ? PBF_REG_TQ_OCCUPANCY_Q1 : PBF_REG_P1_TQ_OCCUPANCY, (CHIP_IS_E3B0(sc)) ? PBF_REG_TQ_LINES_FREED_CNT_Q1 : PBF_REG_P1_TQ_LINES_FREED_CNT}, {4, (CHIP_IS_E3B0(sc)) ? PBF_REG_TQ_OCCUPANCY_LB_Q : PBF_REG_P4_TQ_OCCUPANCY, (CHIP_IS_E3B0(sc)) ? PBF_REG_TQ_LINES_FREED_CNT_LB_Q : PBF_REG_P4_TQ_LINES_FREED_CNT} }; struct pbf_pN_buf_regs buf_regs[] = { {0, (CHIP_IS_E3B0(sc)) ? PBF_REG_INIT_CRD_Q0 : PBF_REG_P0_INIT_CRD , (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q0 : PBF_REG_P0_CREDIT, (CHIP_IS_E3B0(sc)) ? PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, {1, (CHIP_IS_E3B0(sc)) ? PBF_REG_INIT_CRD_Q1 : PBF_REG_P1_INIT_CRD, (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q1 : PBF_REG_P1_CREDIT, (CHIP_IS_E3B0(sc)) ? PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, {4, (CHIP_IS_E3B0(sc)) ? PBF_REG_INIT_CRD_LB_Q : PBF_REG_P4_INIT_CRD, (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_LB_Q : PBF_REG_P4_CREDIT, (CHIP_IS_E3B0(sc)) ? PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, }; int i; /* Verify the command queues are flushed P0, P1, P4 */ for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); } /* Verify the transmission buffers are flushed P0, P1, P4 */ for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); } } static void bxe_hw_enable_status(struct bxe_softc *sc) { uint32_t val; val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); val = REG_RD(sc, PBF_REG_DISABLE_PF); BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); } static int bxe_pf_flr_clnup(struct bxe_softc *sc) { uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); /* Re-enable PF target read access */ REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); /* Poll HW usage counters */ BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { return (-1); } /* Zero the igu 'trailing edge' and 'leading edge' */ /* Send the FW cleanup command */ if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { return (-1); } /* ATC cleanup */ /* Verify TX hw is flushed */ bxe_tx_hw_flushed(sc, poll_cnt); /* Wait 100ms (not adjusted according to platform) */ DELAY(100000); /* Verify no pending pci transactions */ if (bxe_is_pcie_pending(sc)) { BLOGE(sc, "PCIE Transactions still pending\n"); } /* Debug */ bxe_hw_enable_status(sc); /* * Master enable - Due to WB DMAE writes performed before this * register is re-initialized as part of the regular function init */ REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); return (0); } #if 0 static void bxe_init_searcher(struct bxe_softc *sc) { int port = SC_PORT(sc); ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM); /* T1 hash bits value determines the T1 number of entries */ REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); } #endif static int bxe_init_hw_func(struct bxe_softc *sc) { int port = SC_PORT(sc); int func = SC_FUNC(sc); int init_phase = PHASE_PF0 + func; struct ecore_ilt *ilt = sc->ilt; uint16_t cdu_ilt_start; uint32_t addr, val; uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; int i, main_mem_width, rc; BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); /* FLR cleanup */ if (!CHIP_IS_E1x(sc)) { rc = bxe_pf_flr_clnup(sc); if (rc) { BLOGE(sc, "FLR cleanup failed!\n"); // XXX bxe_fw_dump(sc); // XXX bxe_idle_chk(sc); return (rc); } } /* set MSI reconfigure capability */ if (sc->devinfo.int_block == INT_BLOCK_HC) { addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); val = REG_RD(sc, addr); val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; REG_WR(sc, addr, val); } ecore_init_block(sc, BLOCK_PXP, init_phase); ecore_init_block(sc, BLOCK_PXP2, init_phase); ilt = sc->ilt; cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; #if 0 if (IS_SRIOV(sc)) { cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS; } cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start); #if (BXE_FIRST_VF_CID > 0) /* * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes * those of the VFs, so start line should be reset */ cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; #endif #endif for (i = 0; i < L2_ILT_LINES(sc); i++) { ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; ilt->lines[cdu_ilt_start + i].page_mapping = sc->context[i].vcxt_dma.paddr; ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; } ecore_ilt_init_op(sc, INITOP_SET); #if 0 if (!CONFIGURE_NIC_MODE(sc)) { bxe_init_searcher(sc); REG_WR(sc, PRS_REG_NIC_MODE, 0); BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n"); } else #endif { /* Set NIC mode */ REG_WR(sc, PRS_REG_NIC_MODE, 1); BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); } if (!CHIP_IS_E1x(sc)) { uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; /* Turn on a single ISR mode in IGU if driver is going to use * INT#x or MSI */ if (sc->interrupt_mode != INTR_MODE_MSIX) { pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; } /* * Timers workaround bug: function init part. * Need to wait 20msec after initializing ILT, * needed to make sure there are no requests in * one of the PXP internal queues with "old" ILT addresses */ DELAY(20000); /* * Master enable - Due to WB DMAE writes performed before this * register is re-initialized as part of the regular function * init */ REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); /* Enable the function in IGU */ REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); } sc->dmae_ready = 1; ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); if (!CHIP_IS_E1x(sc)) REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); ecore_init_block(sc, BLOCK_ATC, init_phase); ecore_init_block(sc, BLOCK_DMAE, init_phase); ecore_init_block(sc, BLOCK_NIG, init_phase); ecore_init_block(sc, BLOCK_SRC, init_phase); ecore_init_block(sc, BLOCK_MISC, init_phase); ecore_init_block(sc, BLOCK_TCM, init_phase); ecore_init_block(sc, BLOCK_UCM, init_phase); ecore_init_block(sc, BLOCK_CCM, init_phase); ecore_init_block(sc, BLOCK_XCM, init_phase); ecore_init_block(sc, BLOCK_TSEM, init_phase); ecore_init_block(sc, BLOCK_USEM, init_phase); ecore_init_block(sc, BLOCK_CSEM, init_phase); ecore_init_block(sc, BLOCK_XSEM, init_phase); if (!CHIP_IS_E1x(sc)) REG_WR(sc, QM_REG_PF_EN, 1); if (!CHIP_IS_E1x(sc)) { REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); } ecore_init_block(sc, BLOCK_QM, init_phase); ecore_init_block(sc, BLOCK_TM, init_phase); ecore_init_block(sc, BLOCK_DORQ, init_phase); bxe_iov_init_dq(sc); ecore_init_block(sc, BLOCK_BRB1, init_phase); ecore_init_block(sc, BLOCK_PRS, init_phase); ecore_init_block(sc, BLOCK_TSDM, init_phase); ecore_init_block(sc, BLOCK_CSDM, init_phase); ecore_init_block(sc, BLOCK_USDM, init_phase); ecore_init_block(sc, BLOCK_XSDM, init_phase); ecore_init_block(sc, BLOCK_UPB, init_phase); ecore_init_block(sc, BLOCK_XPB, init_phase); ecore_init_block(sc, BLOCK_PBF, init_phase); if (!CHIP_IS_E1x(sc)) REG_WR(sc, PBF_REG_DISABLE_PF, 0); ecore_init_block(sc, BLOCK_CDU, init_phase); ecore_init_block(sc, BLOCK_CFC, init_phase); if (!CHIP_IS_E1x(sc)) REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); if (IS_MF(sc)) { REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); } ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); /* HC init per function */ if (sc->devinfo.int_block == INT_BLOCK_HC) { if (CHIP_IS_E1H(sc)) { REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); } ecore_init_block(sc, BLOCK_HC, init_phase); } else { int num_segs, sb_idx, prod_offset; REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); if (!CHIP_IS_E1x(sc)) { REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); } ecore_init_block(sc, BLOCK_IGU, init_phase); if (!CHIP_IS_E1x(sc)) { int dsb_idx = 0; /** * Producer memory: * E2 mode: address 0-135 match to the mapping memory; * 136 - PF0 default prod; 137 - PF1 default prod; * 138 - PF2 default prod; 139 - PF3 default prod; * 140 - PF0 attn prod; 141 - PF1 attn prod; * 142 - PF2 attn prod; 143 - PF3 attn prod; * 144-147 reserved. * * E1.5 mode - In backward compatible mode; * for non default SB; each even line in the memory * holds the U producer and each odd line hold * the C producer. The first 128 producers are for * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 * producers are for the DSB for each PF. * Each PF has five segments: (the order inside each * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; * 132-135 C prods; 136-139 X prods; 140-143 T prods; * 144-147 attn prods; */ /* non-default-status-blocks */ num_segs = CHIP_INT_MODE_IS_BC(sc) ? IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { prod_offset = (sc->igu_base_sb + sb_idx) * num_segs; for (i = 0; i < num_segs; i++) { addr = IGU_REG_PROD_CONS_MEMORY + (prod_offset + i) * 4; REG_WR(sc, addr, 0); } /* send consumer update with value 0 */ bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, USTORM_ID, 0, IGU_INT_NOP, 1); bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); } /* default-status-blocks */ num_segs = CHIP_INT_MODE_IS_BC(sc) ? IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; if (CHIP_IS_MODE_4_PORT(sc)) dsb_idx = SC_FUNC(sc); else dsb_idx = SC_VN(sc); prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? IGU_BC_BASE_DSB_PROD + dsb_idx : IGU_NORM_BASE_DSB_PROD + dsb_idx); /* * igu prods come in chunks of E1HVN_MAX (4) - * does not matters what is the current chip mode */ for (i = 0; i < (num_segs * E1HVN_MAX); i += E1HVN_MAX) { addr = IGU_REG_PROD_CONS_MEMORY + (prod_offset + i)*4; REG_WR(sc, addr, 0); } /* send consumer update with 0 */ if (CHIP_INT_MODE_IS_BC(sc)) { bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_NOP, 1); bxe_ack_sb(sc, sc->igu_dsb_id, CSTORM_ID, 0, IGU_INT_NOP, 1); bxe_ack_sb(sc, sc->igu_dsb_id, XSTORM_ID, 0, IGU_INT_NOP, 1); bxe_ack_sb(sc, sc->igu_dsb_id, TSTORM_ID, 0, IGU_INT_NOP, 1); bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 0, IGU_INT_NOP, 1); } else { bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_NOP, 1); bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 0, IGU_INT_NOP, 1); } bxe_igu_clear_sb(sc, sc->igu_dsb_id); /* !!! these should become driver const once rf-tool supports split-68 const */ REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); } } /* Reset PCIE errors for debug */ REG_WR(sc, 0x2114, 0xffffffff); REG_WR(sc, 0x2120, 0xffffffff); if (CHIP_IS_E1x(sc)) { main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ main_mem_base = HC_REG_MAIN_MEMORY + SC_PORT(sc) * (main_mem_size * 4); main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; main_mem_width = 8; val = REG_RD(sc, main_mem_prty_clr); if (val) { BLOGD(sc, DBG_LOAD, "Parity errors in HC block during function init (0x%x)!\n", val); } /* Clear "false" parity errors in MSI-X table */ for (i = main_mem_base; i < main_mem_base + main_mem_size * 4; i += main_mem_width) { bxe_read_dmae(sc, i, main_mem_width / 4); bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), i, main_mem_width / 4); } /* Clear HC parity attention */ REG_RD(sc, main_mem_prty_clr); } #if 1 /* Enable STORMs SP logging */ REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); #endif elink_phy_probe(&sc->link_params); return (0); } static void bxe_link_reset(struct bxe_softc *sc) { if (!BXE_NOMCP(sc)) { BXE_PHY_LOCK(sc); elink_lfa_reset(&sc->link_params, &sc->link_vars); BXE_PHY_UNLOCK(sc); } else { if (!CHIP_REV_IS_SLOW(sc)) { BLOGW(sc, "Bootcode is missing - cannot reset link\n"); } } } static void bxe_reset_port(struct bxe_softc *sc) { int port = SC_PORT(sc); uint32_t val; /* reset physical Link */ bxe_link_reset(sc); REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); /* Do not rcv packets to BRB */ REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); /* Do not direct rcv packets that are not for MCP to the BRB */ REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); /* Configure AEU */ REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); DELAY(100000); /* Check for BRB port occupancy */ val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); if (val) { BLOGD(sc, DBG_LOAD, "BRB1 is not empty, %d blocks are occupied\n", val); } /* TODO: Close Doorbell port? */ } static void bxe_ilt_wr(struct bxe_softc *sc, uint32_t index, bus_addr_t addr) { int reg; uint32_t wb_write[2]; if (CHIP_IS_E1(sc)) { reg = PXP2_REG_RQ_ONCHIP_AT + index*8; } else { reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; } wb_write[0] = ONCHIP_ADDR1(addr); wb_write[1] = ONCHIP_ADDR2(addr); REG_WR_DMAE(sc, reg, wb_write, 2); } static void bxe_clear_func_ilt(struct bxe_softc *sc, uint32_t func) { uint32_t i, base = FUNC_ILT_BASE(func); for (i = base; i < base + ILT_PER_FUNC; i++) { bxe_ilt_wr(sc, i, 0); } } static void bxe_reset_func(struct bxe_softc *sc) { struct bxe_fastpath *fp; int port = SC_PORT(sc); int func = SC_FUNC(sc); int i; /* Disable the function in the FW */ REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); /* FP SBs */ FOR_EACH_ETH_QUEUE(sc, i) { fp = &sc->fp[i]; REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), SB_DISABLED); } #if 0 if (CNIC_LOADED(sc)) { /* CNIC SB */ REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET (bxe_cnic_fw_sb_id(sc)), SB_DISABLED); } #endif /* SP SB */ REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), SB_DISABLED); for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); } /* Configure IGU */ if (sc->devinfo.int_block == INT_BLOCK_HC) { REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); } else { REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); } if (CNIC_LOADED(sc)) { /* Disable Timer scan */ REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); /* * Wait for at least 10ms and up to 2 second for the timers * scan to complete */ for (i = 0; i < 200; i++) { DELAY(10000); if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) break; } } /* Clear ILT */ bxe_clear_func_ilt(sc, func); /* * Timers workaround bug for E2: if this is vnic-3, * we need to set the entire ilt range for this timers. */ if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { struct ilt_client_info ilt_cli; /* use dummy TM client */ memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); ilt_cli.start = 0; ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; ilt_cli.client_num = ILT_CLIENT_TM; ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); } /* this assumes that reset_port() called before reset_func()*/ if (!CHIP_IS_E1x(sc)) { bxe_pf_disable(sc); } sc->dmae_ready = 0; } static int bxe_gunzip_init(struct bxe_softc *sc) { return (0); } static void bxe_gunzip_end(struct bxe_softc *sc) { return; } static int bxe_init_firmware(struct bxe_softc *sc) { if (CHIP_IS_E1(sc)) { ecore_init_e1_firmware(sc); sc->iro_array = e1_iro_arr; } else if (CHIP_IS_E1H(sc)) { ecore_init_e1h_firmware(sc); sc->iro_array = e1h_iro_arr; } else if (!CHIP_IS_E1x(sc)) { ecore_init_e2_firmware(sc); sc->iro_array = e2_iro_arr; } else { BLOGE(sc, "Unsupported chip revision\n"); return (-1); } return (0); } static void bxe_release_firmware(struct bxe_softc *sc) { /* Do nothing */ return; } static int ecore_gunzip(struct bxe_softc *sc, const uint8_t *zbuf, int len) { /* XXX : Implement... */ BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); return (FALSE); } static void ecore_reg_wr_ind(struct bxe_softc *sc, uint32_t addr, uint32_t val) { bxe_reg_wr_ind(sc, addr, val); } static void ecore_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr, uint32_t addr, uint32_t len) { bxe_write_dmae_phys_len(sc, phys_addr, addr, len); } void ecore_storm_memset_struct(struct bxe_softc *sc, uint32_t addr, size_t size, uint32_t *data) { uint8_t i; for (i = 0; i < size/4; i++) { REG_WR(sc, addr + (i * 4), data[i]); } }