/*- * Copyright (C) 2012 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include "nvme_private.h" static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, struct nvme_async_event_request *aer); static void nvme_ctrlr_cb(void *arg, const struct nvme_completion *status) { struct nvme_completion *cpl = arg; struct mtx *mtx; /* * Copy status into the argument passed by the caller, so that * the caller can check the status to determine if the * the request passed or failed. */ memcpy(cpl, status, sizeof(*cpl)); mtx = mtx_pool_find(mtxpool_sleep, cpl); mtx_lock(mtx); wakeup(cpl); mtx_unlock(mtx); } static int nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr) { /* Chatham puts the NVMe MMRs behind BAR 2/3, not BAR 0/1. */ if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID) ctrlr->resource_id = PCIR_BAR(2); else ctrlr->resource_id = PCIR_BAR(0); ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY, &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE); if(ctrlr->resource == NULL) { device_printf(ctrlr->dev, "unable to allocate pci resource\n"); return (ENOMEM); } ctrlr->bus_tag = rman_get_bustag(ctrlr->resource); ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource); ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle; /* * The NVMe spec allows for the MSI-X table to be placed behind * BAR 4/5, separate from the control/doorbell registers. Always * try to map this bar, because it must be mapped prior to calling * pci_alloc_msix(). If the table isn't behind BAR 4/5, * bus_alloc_resource() will just return NULL which is OK. */ ctrlr->bar4_resource_id = PCIR_BAR(4); ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY, &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE); return (0); } #ifdef CHATHAM2 static int nvme_ctrlr_allocate_chatham_bar(struct nvme_controller *ctrlr) { ctrlr->chatham_resource_id = PCIR_BAR(CHATHAM_CONTROL_BAR); ctrlr->chatham_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY, &ctrlr->chatham_resource_id, 0, ~0, 1, RF_ACTIVE); if(ctrlr->chatham_resource == NULL) { device_printf(ctrlr->dev, "unable to alloc pci resource\n"); return (ENOMEM); } ctrlr->chatham_bus_tag = rman_get_bustag(ctrlr->chatham_resource); ctrlr->chatham_bus_handle = rman_get_bushandle(ctrlr->chatham_resource); return (0); } static void nvme_ctrlr_setup_chatham(struct nvme_controller *ctrlr) { uint64_t reg1, reg2, reg3; uint64_t temp1, temp2; uint32_t temp3; uint32_t use_flash_timings = 0; DELAY(10000); temp3 = chatham_read_4(ctrlr, 0x8080); device_printf(ctrlr->dev, "Chatham version: 0x%x\n", temp3); ctrlr->chatham_lbas = chatham_read_4(ctrlr, 0x8068) - 0x110; ctrlr->chatham_size = ctrlr->chatham_lbas * 512; device_printf(ctrlr->dev, "Chatham size: %jd\n", (intmax_t)ctrlr->chatham_size); reg1 = reg2 = reg3 = ctrlr->chatham_size - 1; TUNABLE_INT_FETCH("hw.nvme.use_flash_timings", &use_flash_timings); if (use_flash_timings) { device_printf(ctrlr->dev, "Chatham: using flash timings\n"); temp1 = 0x00001b58000007d0LL; temp2 = 0x000000cb00000131LL; } else { device_printf(ctrlr->dev, "Chatham: using DDR timings\n"); temp1 = temp2 = 0x0LL; } chatham_write_8(ctrlr, 0x8000, reg1); chatham_write_8(ctrlr, 0x8008, reg2); chatham_write_8(ctrlr, 0x8010, reg3); chatham_write_8(ctrlr, 0x8020, temp1); temp3 = chatham_read_4(ctrlr, 0x8020); chatham_write_8(ctrlr, 0x8028, temp2); temp3 = chatham_read_4(ctrlr, 0x8028); chatham_write_8(ctrlr, 0x8030, temp1); chatham_write_8(ctrlr, 0x8038, temp2); chatham_write_8(ctrlr, 0x8040, temp1); chatham_write_8(ctrlr, 0x8048, temp2); chatham_write_8(ctrlr, 0x8050, temp1); chatham_write_8(ctrlr, 0x8058, temp2); DELAY(10000); } static void nvme_chatham_populate_cdata(struct nvme_controller *ctrlr) { struct nvme_controller_data *cdata; cdata = &ctrlr->cdata; cdata->vid = 0x8086; cdata->ssvid = 0x2011; /* * Chatham2 puts garbage data in these fields when we * invoke IDENTIFY_CONTROLLER, so we need to re-zero * the fields before calling bcopy(). */ memset(cdata->sn, 0, sizeof(cdata->sn)); memcpy(cdata->sn, "2012", strlen("2012")); memset(cdata->mn, 0, sizeof(cdata->mn)); memcpy(cdata->mn, "CHATHAM2", strlen("CHATHAM2")); memset(cdata->fr, 0, sizeof(cdata->fr)); memcpy(cdata->fr, "0", strlen("0")); cdata->rab = 8; cdata->aerl = 3; cdata->lpa.ns_smart = 1; cdata->sqes.min = 6; cdata->sqes.max = 6; cdata->sqes.min = 4; cdata->sqes.max = 4; cdata->nn = 1; /* Chatham2 doesn't support DSM command */ cdata->oncs.dsm = 0; cdata->vwc.present = 1; } #endif /* CHATHAM2 */ static void nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr) { struct nvme_qpair *qpair; uint32_t num_entries; qpair = &ctrlr->adminq; num_entries = NVME_ADMIN_ENTRIES; TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries); /* * If admin_entries was overridden to an invalid value, revert it * back to our default value. */ if (num_entries < NVME_MIN_ADMIN_ENTRIES || num_entries > NVME_MAX_ADMIN_ENTRIES) { printf("nvme: invalid hw.nvme.admin_entries=%d specified\n", num_entries); num_entries = NVME_ADMIN_ENTRIES; } /* * The admin queue's max xfer size is treated differently than the * max I/O xfer size. 16KB is sufficient here - maybe even less? */ nvme_qpair_construct(qpair, 0, /* qpair ID */ 0, /* vector */ num_entries, NVME_ADMIN_TRACKERS, 16*1024, /* max xfer size */ ctrlr); } static int nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr) { struct nvme_qpair *qpair; union cap_lo_register cap_lo; int i, num_entries, num_trackers; num_entries = NVME_IO_ENTRIES; TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries); /* * NVMe spec sets a hard limit of 64K max entries, but * devices may specify a smaller limit, so we need to check * the MQES field in the capabilities register. */ cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo); num_entries = min(num_entries, cap_lo.bits.mqes+1); num_trackers = NVME_IO_TRACKERS; TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers); num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS); num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS); /* * No need to have more trackers than entries in the submit queue. * Note also that for a queue size of N, we can only have (N-1) * commands outstanding, hence the "-1" here. */ num_trackers = min(num_trackers, (num_entries-1)); ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE; TUNABLE_INT_FETCH("hw.nvme.max_xfer_size", &ctrlr->max_xfer_size); /* * Check that tunable doesn't specify a size greater than what our * driver supports, and is an even PAGE_SIZE multiple. */ if (ctrlr->max_xfer_size > NVME_MAX_XFER_SIZE || ctrlr->max_xfer_size % PAGE_SIZE) ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE; ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair), M_NVME, M_ZERO | M_NOWAIT); if (ctrlr->ioq == NULL) return (ENOMEM); for (i = 0; i < ctrlr->num_io_queues; i++) { qpair = &ctrlr->ioq[i]; /* * Admin queue has ID=0. IO queues start at ID=1 - * hence the 'i+1' here. * * For I/O queues, use the controller-wide max_xfer_size * calculated in nvme_attach(). */ nvme_qpair_construct(qpair, i+1, /* qpair ID */ ctrlr->msix_enabled ? i+1 : 0, /* vector */ num_entries, num_trackers, ctrlr->max_xfer_size, ctrlr); if (ctrlr->per_cpu_io_queues) bus_bind_intr(ctrlr->dev, qpair->res, i); } return (0); } static int nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr) { int ms_waited; union cc_register cc; union csts_register csts; cc.raw = nvme_mmio_read_4(ctrlr, cc); csts.raw = nvme_mmio_read_4(ctrlr, csts); if (!cc.bits.en) { device_printf(ctrlr->dev, "%s called with cc.en = 0\n", __func__); return (ENXIO); } ms_waited = 0; while (!csts.bits.rdy) { DELAY(1000); if (ms_waited++ > ctrlr->ready_timeout_in_ms) { device_printf(ctrlr->dev, "controller did not become " "ready within %d ms\n", ctrlr->ready_timeout_in_ms); return (ENXIO); } csts.raw = nvme_mmio_read_4(ctrlr, csts); } return (0); } static void nvme_ctrlr_disable(struct nvme_controller *ctrlr) { union cc_register cc; union csts_register csts; cc.raw = nvme_mmio_read_4(ctrlr, cc); csts.raw = nvme_mmio_read_4(ctrlr, csts); if (cc.bits.en == 1 && csts.bits.rdy == 0) nvme_ctrlr_wait_for_ready(ctrlr); cc.bits.en = 0; nvme_mmio_write_4(ctrlr, cc, cc.raw); DELAY(5000); } static int nvme_ctrlr_enable(struct nvme_controller *ctrlr) { union cc_register cc; union csts_register csts; union aqa_register aqa; cc.raw = nvme_mmio_read_4(ctrlr, cc); csts.raw = nvme_mmio_read_4(ctrlr, csts); if (cc.bits.en == 1) { if (csts.bits.rdy == 1) return (0); else return (nvme_ctrlr_wait_for_ready(ctrlr)); } nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr); DELAY(5000); nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr); DELAY(5000); aqa.raw = 0; /* acqs and asqs are 0-based. */ aqa.bits.acqs = ctrlr->adminq.num_entries-1; aqa.bits.asqs = ctrlr->adminq.num_entries-1; nvme_mmio_write_4(ctrlr, aqa, aqa.raw); DELAY(5000); cc.bits.en = 1; cc.bits.css = 0; cc.bits.ams = 0; cc.bits.shn = 0; cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */ cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */ /* This evaluates to 0, which is according to spec. */ cc.bits.mps = (PAGE_SIZE >> 13); nvme_mmio_write_4(ctrlr, cc, cc.raw); DELAY(5000); return (nvme_ctrlr_wait_for_ready(ctrlr)); } int nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr) { int i; nvme_admin_qpair_disable(&ctrlr->adminq); for (i = 0; i < ctrlr->num_io_queues; i++) nvme_io_qpair_disable(&ctrlr->ioq[i]); DELAY(100*1000); nvme_ctrlr_disable(ctrlr); return (nvme_ctrlr_enable(ctrlr)); } void nvme_ctrlr_reset(struct nvme_controller *ctrlr) { int status; status = nvme_ctrlr_hw_reset(ctrlr); DELAY(100*1000); if (status == 0) taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->restart_task); } static int nvme_ctrlr_identify(struct nvme_controller *ctrlr) { struct mtx *mtx; struct nvme_completion cpl; int status; mtx = mtx_pool_find(mtxpool_sleep, &cpl); mtx_lock(mtx); nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata, nvme_ctrlr_cb, &cpl); status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5); mtx_unlock(mtx); if ((status != 0) || cpl.sf_sc || cpl.sf_sct) { printf("nvme_identify_controller failed!\n"); return (ENXIO); } #ifdef CHATHAM2 if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID) nvme_chatham_populate_cdata(ctrlr); #endif return (0); } static int nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr) { struct mtx *mtx; struct nvme_completion cpl; int cq_allocated, sq_allocated, status; mtx = mtx_pool_find(mtxpool_sleep, &cpl); mtx_lock(mtx); nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues, nvme_ctrlr_cb, &cpl); status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5); mtx_unlock(mtx); if ((status != 0) || cpl.sf_sc || cpl.sf_sct) { printf("nvme_set_num_queues failed!\n"); return (ENXIO); } /* * Data in cdw0 is 0-based. * Lower 16-bits indicate number of submission queues allocated. * Upper 16-bits indicate number of completion queues allocated. */ sq_allocated = (cpl.cdw0 & 0xFFFF) + 1; cq_allocated = (cpl.cdw0 >> 16) + 1; /* * Check that the controller was able to allocate the number of * queues we requested. If not, revert to one IO queue. */ if (sq_allocated < ctrlr->num_io_queues || cq_allocated < ctrlr->num_io_queues) { ctrlr->num_io_queues = 1; ctrlr->per_cpu_io_queues = 0; /* TODO: destroy extra queues that were created * previously but now found to be not needed. */ } return (0); } static int nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr) { struct mtx *mtx; struct nvme_qpair *qpair; struct nvme_completion cpl; int i, status; mtx = mtx_pool_find(mtxpool_sleep, &cpl); for (i = 0; i < ctrlr->num_io_queues; i++) { qpair = &ctrlr->ioq[i]; mtx_lock(mtx); nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector, nvme_ctrlr_cb, &cpl); status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5); mtx_unlock(mtx); if ((status != 0) || cpl.sf_sc || cpl.sf_sct) { printf("nvme_create_io_cq failed!\n"); return (ENXIO); } mtx_lock(mtx); nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_ctrlr_cb, &cpl); status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5); mtx_unlock(mtx); if ((status != 0) || cpl.sf_sc || cpl.sf_sct) { printf("nvme_create_io_sq failed!\n"); return (ENXIO); } } return (0); } static int nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr) { struct nvme_namespace *ns; int i, status; for (i = 0; i < ctrlr->cdata.nn; i++) { ns = &ctrlr->ns[i]; status = nvme_ns_construct(ns, i+1, ctrlr); if (status != 0) return (status); } return (0); } static void nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl) { struct nvme_async_event_request *aer = arg; if (cpl->sf_sc == NVME_SC_ABORTED_SQ_DELETION) { /* * This is simulated when controller is being shut down, to * effectively abort outstanding asynchronous event requests * and make sure all memory is freed. Do not repost the * request in this case. */ return; } nvme_notify_async_consumers(aer->ctrlr, cpl); /* TODO: decode async event type based on status */ /* * Repost another asynchronous event request to replace the one that * just completed. */ printf("Asynchronous event occurred.\n"); nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); } static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, struct nvme_async_event_request *aer) { struct nvme_request *req; aer->ctrlr = ctrlr; req = nvme_allocate_request(NULL, 0, nvme_ctrlr_async_event_cb, aer); aer->req = req; /* * Override default timeout value here, since asynchronous event * requests should by nature never be timed out. */ req->timeout = 0; req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST; nvme_ctrlr_submit_admin_request(ctrlr, req); } static void nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr) { union nvme_critical_warning_state state; struct nvme_async_event_request *aer; uint32_t i; state.raw = 0xFF; state.bits.reserved = 0; nvme_ctrlr_cmd_set_async_event_config(ctrlr, state, NULL, NULL); /* aerl is a zero-based value, so we need to add 1 here. */ ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1)); /* Chatham doesn't support AERs. */ if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID) ctrlr->num_aers = 0; for (i = 0; i < ctrlr->num_aers; i++) { aer = &ctrlr->aer[i]; nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); } } static void nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr) { ctrlr->int_coal_time = 0; TUNABLE_INT_FETCH("hw.nvme.int_coal_time", &ctrlr->int_coal_time); ctrlr->int_coal_threshold = 0; TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold", &ctrlr->int_coal_threshold); nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time, ctrlr->int_coal_threshold, NULL, NULL); } void nvme_ctrlr_start(void *ctrlr_arg) { struct nvme_controller *ctrlr = ctrlr_arg; int i; nvme_admin_qpair_enable(&ctrlr->adminq); if (nvme_ctrlr_identify(ctrlr) != 0) goto err; if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) goto err; if (nvme_ctrlr_create_qpairs(ctrlr) != 0) goto err; if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) goto err; nvme_ctrlr_configure_aer(ctrlr); nvme_ctrlr_configure_int_coalescing(ctrlr); for (i = 0; i < ctrlr->num_io_queues; i++) nvme_io_qpair_enable(&ctrlr->ioq[i]); ctrlr->is_started = TRUE; err: if (ctrlr->num_start_attempts == 0) { /* * Initialize sysctls, even if controller failed to start, to * assist with debugging admin queue pair. Only run this * code on the initial start attempt though, and not * subsequent start attempts due to controller-level resets. * */ nvme_sysctl_initialize_ctrlr(ctrlr); config_intrhook_disestablish(&ctrlr->config_hook); } ctrlr->num_start_attempts++; } static void nvme_ctrlr_restart_task(void *arg, int pending) { struct nvme_controller *ctrlr = arg; nvme_ctrlr_start(ctrlr); } static void nvme_ctrlr_intx_handler(void *arg) { struct nvme_controller *ctrlr = arg; nvme_mmio_write_4(ctrlr, intms, 1); nvme_qpair_process_completions(&ctrlr->adminq); if (ctrlr->ioq[0].cpl) nvme_qpair_process_completions(&ctrlr->ioq[0]); nvme_mmio_write_4(ctrlr, intmc, 1); } static int nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr) { ctrlr->num_io_queues = 1; ctrlr->per_cpu_io_queues = 0; ctrlr->rid = 0; ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ, &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE); if (ctrlr->res == NULL) { device_printf(ctrlr->dev, "unable to allocate shared IRQ\n"); return (ENOMEM); } bus_setup_intr(ctrlr->dev, ctrlr->res, INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler, ctrlr, &ctrlr->tag); if (ctrlr->tag == NULL) { device_printf(ctrlr->dev, "unable to setup legacy interrupt handler\n"); return (ENOMEM); } return (0); } static int nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, struct thread *td) { struct nvme_controller *ctrlr; struct nvme_completion cpl; struct mtx *mtx; ctrlr = cdev->si_drv1; switch (cmd) { case NVME_IDENTIFY_CONTROLLER: #ifdef CHATHAM2 /* * Don't refresh data on Chatham, since Chatham returns * garbage on IDENTIFY anyways. */ if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID) { memcpy(arg, &ctrlr->cdata, sizeof(ctrlr->cdata)); break; } #endif /* Refresh data before returning to user. */ mtx = mtx_pool_find(mtxpool_sleep, &cpl); mtx_lock(mtx); nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata, nvme_ctrlr_cb, &cpl); msleep(&cpl, mtx, PRIBIO, "nvme_ioctl", 0); mtx_unlock(mtx); if (cpl.sf_sc || cpl.sf_sct) return (ENXIO); memcpy(arg, &ctrlr->cdata, sizeof(ctrlr->cdata)); break; case NVME_RESET_CONTROLLER: nvme_ctrlr_reset(ctrlr); break; default: return (ENOTTY); } return (0); } static struct cdevsw nvme_ctrlr_cdevsw = { .d_version = D_VERSION, .d_flags = 0, .d_ioctl = nvme_ctrlr_ioctl }; int nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev) { union cap_lo_register cap_lo; union cap_hi_register cap_hi; int num_vectors, per_cpu_io_queues, status = 0; ctrlr->dev = dev; ctrlr->is_started = FALSE; ctrlr->num_start_attempts = 0; status = nvme_ctrlr_allocate_bar(ctrlr); if (status != 0) return (status); #ifdef CHATHAM2 if (pci_get_devid(dev) == CHATHAM_PCI_ID) { status = nvme_ctrlr_allocate_chatham_bar(ctrlr); if (status != 0) return (status); nvme_ctrlr_setup_chatham(ctrlr); } #endif /* * Software emulators may set the doorbell stride to something * other than zero, but this driver is not set up to handle that. */ cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi); if (cap_hi.bits.dstrd != 0) return (ENXIO); /* Get ready timeout value from controller, in units of 500ms. */ cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo); ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500; per_cpu_io_queues = 1; TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues); ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE; if (ctrlr->per_cpu_io_queues) ctrlr->num_io_queues = mp_ncpus; else ctrlr->num_io_queues = 1; ctrlr->force_intx = 0; TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx); ctrlr->msix_enabled = 1; if (ctrlr->force_intx) { ctrlr->msix_enabled = 0; goto intx; } /* One vector per IO queue, plus one vector for admin queue. */ num_vectors = ctrlr->num_io_queues + 1; if (pci_msix_count(dev) < num_vectors) { ctrlr->msix_enabled = 0; goto intx; } if (pci_alloc_msix(dev, &num_vectors) != 0) ctrlr->msix_enabled = 0; intx: if (!ctrlr->msix_enabled) nvme_ctrlr_configure_intx(ctrlr); nvme_ctrlr_construct_admin_qpair(ctrlr); status = nvme_ctrlr_construct_io_qpairs(ctrlr); if (status != 0) return (status); ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev)); if (ctrlr->cdev == NULL) return (ENXIO); ctrlr->cdev->si_drv1 = (void *)ctrlr; TASK_INIT(&ctrlr->restart_task, 0, nvme_ctrlr_restart_task, ctrlr); ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK, taskqueue_thread_enqueue, &ctrlr->taskqueue); taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq"); return (0); } void nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev) { int i; taskqueue_free(ctrlr->taskqueue); for (i = 0; i < NVME_MAX_NAMESPACES; i++) nvme_ns_destruct(&ctrlr->ns[i]); if (ctrlr->cdev) destroy_dev(ctrlr->cdev); for (i = 0; i < ctrlr->num_io_queues; i++) { nvme_io_qpair_destroy(&ctrlr->ioq[i]); } free(ctrlr->ioq, M_NVME); nvme_admin_qpair_destroy(&ctrlr->adminq); if (ctrlr->resource != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, ctrlr->resource_id, ctrlr->resource); } if (ctrlr->bar4_resource != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, ctrlr->bar4_resource_id, ctrlr->bar4_resource); } #ifdef CHATHAM2 if (ctrlr->chatham_resource != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, ctrlr->chatham_resource_id, ctrlr->chatham_resource); } #endif if (ctrlr->tag) bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag); if (ctrlr->res) bus_release_resource(ctrlr->dev, SYS_RES_IRQ, rman_get_rid(ctrlr->res), ctrlr->res); if (ctrlr->msix_enabled) pci_release_msi(dev); } void nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr, struct nvme_request *req) { nvme_qpair_submit_request(&ctrlr->adminq, req); } void nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr, struct nvme_request *req) { struct nvme_qpair *qpair; if (ctrlr->per_cpu_io_queues) qpair = &ctrlr->ioq[curcpu]; else qpair = &ctrlr->ioq[0]; nvme_qpair_submit_request(qpair, req); } device_t nvme_ctrlr_get_device(struct nvme_controller *ctrlr) { return (ctrlr->dev); } const struct nvme_controller_data * nvme_ctrlr_get_data(struct nvme_controller *ctrlr) { return (&ctrlr->cdata); }