/*- * Copyright (c) 2006 IronPort Systems * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /*- * Copyright (c) 2007 LSI Corp. * Copyright (c) 2007 Rajesh Prabhakaran. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include "opt_mfi.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int mfi_alloc_commands(struct mfi_softc *); static int mfi_comms_init(struct mfi_softc *); static int mfi_get_controller_info(struct mfi_softc *); static int mfi_get_log_state(struct mfi_softc *, struct mfi_evt_log_state **); static int mfi_parse_entries(struct mfi_softc *, int, int); static void mfi_data_cb(void *, bus_dma_segment_t *, int, int); static void mfi_startup(void *arg); static void mfi_intr(void *arg); static void mfi_ldprobe(struct mfi_softc *sc); static void mfi_syspdprobe(struct mfi_softc *sc); static void mfi_handle_evt(void *context, int pending); static int mfi_aen_register(struct mfi_softc *sc, int seq, int locale); static void mfi_aen_complete(struct mfi_command *); static int mfi_add_ld(struct mfi_softc *sc, int); static void mfi_add_ld_complete(struct mfi_command *); static int mfi_add_sys_pd(struct mfi_softc *sc, int); static void mfi_add_sys_pd_complete(struct mfi_command *); static struct mfi_command * mfi_bio_command(struct mfi_softc *); static void mfi_bio_complete(struct mfi_command *); static struct mfi_command *mfi_build_ldio(struct mfi_softc *,struct bio*); static struct mfi_command *mfi_build_syspdio(struct mfi_softc *,struct bio*); static int mfi_send_frame(struct mfi_softc *, struct mfi_command *); static int mfi_abort(struct mfi_softc *, struct mfi_command *); static int mfi_linux_ioctl_int(struct cdev *, u_long, caddr_t, int, struct thread *); static void mfi_timeout(void *); static int mfi_user_command(struct mfi_softc *, struct mfi_ioc_passthru *); static void mfi_enable_intr_xscale(struct mfi_softc *sc); static void mfi_enable_intr_ppc(struct mfi_softc *sc); static int32_t mfi_read_fw_status_xscale(struct mfi_softc *sc); static int32_t mfi_read_fw_status_ppc(struct mfi_softc *sc); static int mfi_check_clear_intr_xscale(struct mfi_softc *sc); static int mfi_check_clear_intr_ppc(struct mfi_softc *sc); static void mfi_issue_cmd_xscale(struct mfi_softc *sc, bus_addr_t bus_add, uint32_t frame_cnt); static void mfi_issue_cmd_ppc(struct mfi_softc *sc, bus_addr_t bus_add, uint32_t frame_cnt); static int mfi_config_lock(struct mfi_softc *sc, uint32_t opcode); static void mfi_config_unlock(struct mfi_softc *sc, int locked); static int mfi_check_command_pre(struct mfi_softc *sc, struct mfi_command *cm); static void mfi_check_command_post(struct mfi_softc *sc, struct mfi_command *cm); static int mfi_check_for_sscd(struct mfi_softc *sc, struct mfi_command *cm); SYSCTL_NODE(_hw, OID_AUTO, mfi, CTLFLAG_RD, 0, "MFI driver parameters"); static int mfi_event_locale = MFI_EVT_LOCALE_ALL; TUNABLE_INT("hw.mfi.event_locale", &mfi_event_locale); SYSCTL_INT(_hw_mfi, OID_AUTO, event_locale, CTLFLAG_RW, &mfi_event_locale, 0, "event message locale"); static int mfi_event_class = MFI_EVT_CLASS_INFO; TUNABLE_INT("hw.mfi.event_class", &mfi_event_class); SYSCTL_INT(_hw_mfi, OID_AUTO, event_class, CTLFLAG_RW, &mfi_event_class, 0, "event message class"); static int mfi_max_cmds = 128; TUNABLE_INT("hw.mfi.max_cmds", &mfi_max_cmds); SYSCTL_INT(_hw_mfi, OID_AUTO, max_cmds, CTLFLAG_RD, &mfi_max_cmds, 0, "Max commands"); static int mfi_detect_jbod_change = 1; TUNABLE_INT("hw.mfi.detect_jbod_change", &mfi_detect_jbod_change); SYSCTL_INT(_hw_mfi, OID_AUTO, detect_jbod_change, CTLFLAG_RW, &mfi_detect_jbod_change, 0, "Detect a change to a JBOD"); /* Management interface */ static d_open_t mfi_open; static d_close_t mfi_close; static d_ioctl_t mfi_ioctl; static d_poll_t mfi_poll; static struct cdevsw mfi_cdevsw = { .d_version = D_VERSION, .d_flags = 0, .d_open = mfi_open, .d_close = mfi_close, .d_ioctl = mfi_ioctl, .d_poll = mfi_poll, .d_name = "mfi", }; MALLOC_DEFINE(M_MFIBUF, "mfibuf", "Buffers for the MFI driver"); #define MFI_INQ_LENGTH SHORT_INQUIRY_LENGTH struct mfi_skinny_dma_info mfi_skinny; static void mfi_enable_intr_xscale(struct mfi_softc *sc) { MFI_WRITE4(sc, MFI_OMSK, 0x01); } static void mfi_enable_intr_ppc(struct mfi_softc *sc) { if (sc->mfi_flags & MFI_FLAGS_1078) { MFI_WRITE4(sc, MFI_ODCR0, 0xFFFFFFFF); MFI_WRITE4(sc, MFI_OMSK, ~MFI_1078_EIM); } else if (sc->mfi_flags & MFI_FLAGS_GEN2) { MFI_WRITE4(sc, MFI_ODCR0, 0xFFFFFFFF); MFI_WRITE4(sc, MFI_OMSK, ~MFI_GEN2_EIM); } else if (sc->mfi_flags & MFI_FLAGS_SKINNY) { MFI_WRITE4(sc, MFI_OMSK, ~0x00000001); } } static int32_t mfi_read_fw_status_xscale(struct mfi_softc *sc) { return MFI_READ4(sc, MFI_OMSG0); } static int32_t mfi_read_fw_status_ppc(struct mfi_softc *sc) { return MFI_READ4(sc, MFI_OSP0); } static int mfi_check_clear_intr_xscale(struct mfi_softc *sc) { int32_t status; status = MFI_READ4(sc, MFI_OSTS); if ((status & MFI_OSTS_INTR_VALID) == 0) return 1; MFI_WRITE4(sc, MFI_OSTS, status); return 0; } static int mfi_check_clear_intr_ppc(struct mfi_softc *sc) { int32_t status; status = MFI_READ4(sc, MFI_OSTS); if (sc->mfi_flags & MFI_FLAGS_1078) { if (!(status & MFI_1078_RM)) { return 1; } } else if (sc->mfi_flags & MFI_FLAGS_GEN2) { if (!(status & MFI_GEN2_RM)) { return 1; } } else if (sc->mfi_flags & MFI_FLAGS_SKINNY) { if (!(status & MFI_SKINNY_RM)) { return 1; } } if (sc->mfi_flags & MFI_FLAGS_SKINNY) MFI_WRITE4(sc, MFI_OSTS, status); else MFI_WRITE4(sc, MFI_ODCR0, status); return 0; } static void mfi_issue_cmd_xscale(struct mfi_softc *sc, bus_addr_t bus_add, uint32_t frame_cnt) { MFI_WRITE4(sc, MFI_IQP,(bus_add >>3)|frame_cnt); } static void mfi_issue_cmd_ppc(struct mfi_softc *sc, bus_addr_t bus_add, uint32_t frame_cnt) { if (sc->mfi_flags & MFI_FLAGS_SKINNY) { MFI_WRITE4(sc, MFI_IQPL, (bus_add | frame_cnt <<1)|1 ); MFI_WRITE4(sc, MFI_IQPH, 0x00000000); } else { MFI_WRITE4(sc, MFI_IQP, (bus_add | frame_cnt <<1)|1 ); } } int mfi_transition_firmware(struct mfi_softc *sc) { uint32_t fw_state, cur_state; int max_wait, i; uint32_t cur_abs_reg_val = 0; uint32_t prev_abs_reg_val = 0; cur_abs_reg_val = sc->mfi_read_fw_status(sc); fw_state = cur_abs_reg_val & MFI_FWSTATE_MASK; while (fw_state != MFI_FWSTATE_READY) { if (bootverbose) device_printf(sc->mfi_dev, "Waiting for firmware to " "become ready\n"); cur_state = fw_state; switch (fw_state) { case MFI_FWSTATE_FAULT: device_printf(sc->mfi_dev, "Firmware fault\n"); return (ENXIO); case MFI_FWSTATE_WAIT_HANDSHAKE: if (sc->mfi_flags & MFI_FLAGS_SKINNY || sc->mfi_flags & MFI_FLAGS_TBOLT) MFI_WRITE4(sc, MFI_SKINNY_IDB, MFI_FWINIT_CLEAR_HANDSHAKE); else MFI_WRITE4(sc, MFI_IDB, MFI_FWINIT_CLEAR_HANDSHAKE); max_wait = MFI_RESET_WAIT_TIME; break; case MFI_FWSTATE_OPERATIONAL: if (sc->mfi_flags & MFI_FLAGS_SKINNY || sc->mfi_flags & MFI_FLAGS_TBOLT) MFI_WRITE4(sc, MFI_SKINNY_IDB, 7); else MFI_WRITE4(sc, MFI_IDB, MFI_FWINIT_READY); max_wait = MFI_RESET_WAIT_TIME; break; case MFI_FWSTATE_UNDEFINED: case MFI_FWSTATE_BB_INIT: max_wait = MFI_RESET_WAIT_TIME; break; case MFI_FWSTATE_FW_INIT_2: max_wait = MFI_RESET_WAIT_TIME; break; case MFI_FWSTATE_FW_INIT: case MFI_FWSTATE_FLUSH_CACHE: max_wait = MFI_RESET_WAIT_TIME; break; case MFI_FWSTATE_DEVICE_SCAN: max_wait = MFI_RESET_WAIT_TIME; /* wait for 180 seconds */ prev_abs_reg_val = cur_abs_reg_val; break; case MFI_FWSTATE_BOOT_MESSAGE_PENDING: if (sc->mfi_flags & MFI_FLAGS_SKINNY || sc->mfi_flags & MFI_FLAGS_TBOLT) MFI_WRITE4(sc, MFI_SKINNY_IDB, MFI_FWINIT_HOTPLUG); else MFI_WRITE4(sc, MFI_IDB, MFI_FWINIT_HOTPLUG); max_wait = MFI_RESET_WAIT_TIME; break; default: device_printf(sc->mfi_dev, "Unknown firmware state %#x\n", fw_state); return (ENXIO); } for (i = 0; i < (max_wait * 10); i++) { cur_abs_reg_val = sc->mfi_read_fw_status(sc); fw_state = cur_abs_reg_val & MFI_FWSTATE_MASK; if (fw_state == cur_state) DELAY(100000); else break; } if (fw_state == MFI_FWSTATE_DEVICE_SCAN) { /* Check the device scanning progress */ if (prev_abs_reg_val != cur_abs_reg_val) { continue; } } if (fw_state == cur_state) { device_printf(sc->mfi_dev, "Firmware stuck in state " "%#x\n", fw_state); return (ENXIO); } } return (0); } static void mfi_addr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { bus_addr_t *addr; addr = arg; *addr = segs[0].ds_addr; } int mfi_attach(struct mfi_softc *sc) { uint32_t status; int error, commsz, framessz, sensesz; int frames, unit, max_fw_sge; uint32_t tb_mem_size = 0; if (sc == NULL) return EINVAL; device_printf(sc->mfi_dev, "Megaraid SAS driver Ver %s \n", MEGASAS_VERSION); mtx_init(&sc->mfi_io_lock, "MFI I/O lock", NULL, MTX_DEF); sx_init(&sc->mfi_config_lock, "MFI config"); TAILQ_INIT(&sc->mfi_ld_tqh); TAILQ_INIT(&sc->mfi_syspd_tqh); TAILQ_INIT(&sc->mfi_evt_queue); TASK_INIT(&sc->mfi_evt_task, 0, mfi_handle_evt, sc); TASK_INIT(&sc->mfi_map_sync_task, 0, mfi_handle_map_sync, sc); TAILQ_INIT(&sc->mfi_aen_pids); TAILQ_INIT(&sc->mfi_cam_ccbq); mfi_initq_free(sc); mfi_initq_ready(sc); mfi_initq_busy(sc); mfi_initq_bio(sc); sc->adpreset = 0; sc->last_seq_num = 0; sc->disableOnlineCtrlReset = 1; sc->issuepend_done = 1; sc->hw_crit_error = 0; if (sc->mfi_flags & MFI_FLAGS_1064R) { sc->mfi_enable_intr = mfi_enable_intr_xscale; sc->mfi_read_fw_status = mfi_read_fw_status_xscale; sc->mfi_check_clear_intr = mfi_check_clear_intr_xscale; sc->mfi_issue_cmd = mfi_issue_cmd_xscale; } else if (sc->mfi_flags & MFI_FLAGS_TBOLT) { sc->mfi_enable_intr = mfi_tbolt_enable_intr_ppc; sc->mfi_disable_intr = mfi_tbolt_disable_intr_ppc; sc->mfi_read_fw_status = mfi_tbolt_read_fw_status_ppc; sc->mfi_check_clear_intr = mfi_tbolt_check_clear_intr_ppc; sc->mfi_issue_cmd = mfi_tbolt_issue_cmd_ppc; sc->mfi_adp_reset = mfi_tbolt_adp_reset; sc->mfi_tbolt = 1; TAILQ_INIT(&sc->mfi_cmd_tbolt_tqh); } else { sc->mfi_enable_intr = mfi_enable_intr_ppc; sc->mfi_read_fw_status = mfi_read_fw_status_ppc; sc->mfi_check_clear_intr = mfi_check_clear_intr_ppc; sc->mfi_issue_cmd = mfi_issue_cmd_ppc; } /* Before we get too far, see if the firmware is working */ if ((error = mfi_transition_firmware(sc)) != 0) { device_printf(sc->mfi_dev, "Firmware not in READY state, " "error %d\n", error); return (ENXIO); } /* Start: LSIP200113393 */ if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */ 1, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MEGASAS_MAX_NAME*sizeof(bus_addr_t), /* maxsize */ 1, /* msegments */ MEGASAS_MAX_NAME*sizeof(bus_addr_t), /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->verbuf_h_dmat)) { device_printf(sc->mfi_dev, "Cannot allocate verbuf_h_dmat DMA tag\n"); return (ENOMEM); } if (bus_dmamem_alloc(sc->verbuf_h_dmat, (void **)&sc->verbuf, BUS_DMA_NOWAIT, &sc->verbuf_h_dmamap)) { device_printf(sc->mfi_dev, "Cannot allocate verbuf_h_dmamap memory\n"); return (ENOMEM); } bzero(sc->verbuf, MEGASAS_MAX_NAME*sizeof(bus_addr_t)); bus_dmamap_load(sc->verbuf_h_dmat, sc->verbuf_h_dmamap, sc->verbuf, MEGASAS_MAX_NAME*sizeof(bus_addr_t), mfi_addr_cb, &sc->verbuf_h_busaddr, 0); /* End: LSIP200113393 */ /* * Get information needed for sizing the contiguous memory for the * frame pool. Size down the sgl parameter since we know that * we will never need more than what's required for MAXPHYS. * It would be nice if these constants were available at runtime * instead of compile time. */ status = sc->mfi_read_fw_status(sc); sc->mfi_max_fw_cmds = status & MFI_FWSTATE_MAXCMD_MASK; max_fw_sge = (status & MFI_FWSTATE_MAXSGL_MASK) >> 16; sc->mfi_max_sge = min(max_fw_sge, ((MFI_MAXPHYS / PAGE_SIZE) + 1)); /* ThunderBolt Support get the contiguous memory */ if (sc->mfi_flags & MFI_FLAGS_TBOLT) { mfi_tbolt_init_globals(sc); device_printf(sc->mfi_dev, "MaxCmd = %x MaxSgl = %x state = %x \n", sc->mfi_max_fw_cmds, sc->mfi_max_sge, status); tb_mem_size = mfi_tbolt_get_memory_requirement(sc); if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */ 1, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ tb_mem_size, /* maxsize */ 1, /* msegments */ tb_mem_size, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->mfi_tb_dmat)) { device_printf(sc->mfi_dev, "Cannot allocate comms DMA tag\n"); return (ENOMEM); } if (bus_dmamem_alloc(sc->mfi_tb_dmat, (void **)&sc->request_message_pool, BUS_DMA_NOWAIT, &sc->mfi_tb_dmamap)) { device_printf(sc->mfi_dev, "Cannot allocate comms memory\n"); return (ENOMEM); } bzero(sc->request_message_pool, tb_mem_size); bus_dmamap_load(sc->mfi_tb_dmat, sc->mfi_tb_dmamap, sc->request_message_pool, tb_mem_size, mfi_addr_cb, &sc->mfi_tb_busaddr, 0); /* For ThunderBolt memory init */ if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */ 0x100, 0, /* alignmnt, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MFI_FRAME_SIZE, /* maxsize */ 1, /* msegments */ MFI_FRAME_SIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->mfi_tb_init_dmat)) { device_printf(sc->mfi_dev, "Cannot allocate init DMA tag\n"); return (ENOMEM); } if (bus_dmamem_alloc(sc->mfi_tb_init_dmat, (void **)&sc->mfi_tb_init, BUS_DMA_NOWAIT, &sc->mfi_tb_init_dmamap)) { device_printf(sc->mfi_dev, "Cannot allocate init memory\n"); return (ENOMEM); } bzero(sc->mfi_tb_init, MFI_FRAME_SIZE); bus_dmamap_load(sc->mfi_tb_init_dmat, sc->mfi_tb_init_dmamap, sc->mfi_tb_init, MFI_FRAME_SIZE, mfi_addr_cb, &sc->mfi_tb_init_busaddr, 0); if (mfi_tbolt_init_desc_pool(sc, sc->request_message_pool, tb_mem_size)) { device_printf(sc->mfi_dev, "Thunderbolt pool preparation error\n"); return 0; } /* Allocate DMA memory mapping for MPI2 IOC Init descriptor, we are taking it diffrent from what we have allocated for Request and reply descriptors to avoid confusion later */ tb_mem_size = sizeof(struct MPI2_IOC_INIT_REQUEST); if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */ 1, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ tb_mem_size, /* maxsize */ 1, /* msegments */ tb_mem_size, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->mfi_tb_ioc_init_dmat)) { device_printf(sc->mfi_dev, "Cannot allocate comms DMA tag\n"); return (ENOMEM); } if (bus_dmamem_alloc(sc->mfi_tb_ioc_init_dmat, (void **)&sc->mfi_tb_ioc_init_desc, BUS_DMA_NOWAIT, &sc->mfi_tb_ioc_init_dmamap)) { device_printf(sc->mfi_dev, "Cannot allocate comms memory\n"); return (ENOMEM); } bzero(sc->mfi_tb_ioc_init_desc, tb_mem_size); bus_dmamap_load(sc->mfi_tb_ioc_init_dmat, sc->mfi_tb_ioc_init_dmamap, sc->mfi_tb_ioc_init_desc, tb_mem_size, mfi_addr_cb, &sc->mfi_tb_ioc_init_busaddr, 0); } /* * Create the dma tag for data buffers. Used both for block I/O * and for various internal data queries. */ if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */ 1, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT,/* maxsize */ sc->mfi_max_sge, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ busdma_lock_mutex, /* lockfunc */ &sc->mfi_io_lock, /* lockfuncarg */ &sc->mfi_buffer_dmat)) { device_printf(sc->mfi_dev, "Cannot allocate buffer DMA tag\n"); return (ENOMEM); } /* * Allocate DMA memory for the comms queues. Keep it under 4GB for * efficiency. The mfi_hwcomms struct includes space for 1 reply queue * entry, so the calculated size here will be will be 1 more than * mfi_max_fw_cmds. This is apparently a requirement of the hardware. */ commsz = (sizeof(uint32_t) * sc->mfi_max_fw_cmds) + sizeof(struct mfi_hwcomms); if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */ 1, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ commsz, /* maxsize */ 1, /* msegments */ commsz, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->mfi_comms_dmat)) { device_printf(sc->mfi_dev, "Cannot allocate comms DMA tag\n"); return (ENOMEM); } if (bus_dmamem_alloc(sc->mfi_comms_dmat, (void **)&sc->mfi_comms, BUS_DMA_NOWAIT, &sc->mfi_comms_dmamap)) { device_printf(sc->mfi_dev, "Cannot allocate comms memory\n"); return (ENOMEM); } bzero(sc->mfi_comms, commsz); bus_dmamap_load(sc->mfi_comms_dmat, sc->mfi_comms_dmamap, sc->mfi_comms, commsz, mfi_addr_cb, &sc->mfi_comms_busaddr, 0); /* * Allocate DMA memory for the command frames. Keep them in the * lower 4GB for efficiency. Calculate the size of the commands at * the same time; each command is one 64 byte frame plus a set of * additional frames for holding sg lists or other data. * The assumption here is that the SG list will start at the second * frame and not use the unused bytes in the first frame. While this * isn't technically correct, it simplifies the calculation and allows * for command frames that might be larger than an mfi_io_frame. */ if (sizeof(bus_addr_t) == 8) { sc->mfi_sge_size = sizeof(struct mfi_sg64); sc->mfi_flags |= MFI_FLAGS_SG64; } else { sc->mfi_sge_size = sizeof(struct mfi_sg32); } if (sc->mfi_flags & MFI_FLAGS_SKINNY) sc->mfi_sge_size = sizeof(struct mfi_sg_skinny); frames = (sc->mfi_sge_size * sc->mfi_max_sge - 1) / MFI_FRAME_SIZE + 2; sc->mfi_cmd_size = frames * MFI_FRAME_SIZE; framessz = sc->mfi_cmd_size * sc->mfi_max_fw_cmds; if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */ 64, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ framessz, /* maxsize */ 1, /* nsegments */ framessz, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->mfi_frames_dmat)) { device_printf(sc->mfi_dev, "Cannot allocate frame DMA tag\n"); return (ENOMEM); } if (bus_dmamem_alloc(sc->mfi_frames_dmat, (void **)&sc->mfi_frames, BUS_DMA_NOWAIT, &sc->mfi_frames_dmamap)) { device_printf(sc->mfi_dev, "Cannot allocate frames memory\n"); return (ENOMEM); } bzero(sc->mfi_frames, framessz); bus_dmamap_load(sc->mfi_frames_dmat, sc->mfi_frames_dmamap, sc->mfi_frames, framessz, mfi_addr_cb, &sc->mfi_frames_busaddr,0); /* * Allocate DMA memory for the frame sense data. Keep them in the * lower 4GB for efficiency */ sensesz = sc->mfi_max_fw_cmds * MFI_SENSE_LEN; if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */ 4, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ sensesz, /* maxsize */ 1, /* nsegments */ sensesz, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->mfi_sense_dmat)) { device_printf(sc->mfi_dev, "Cannot allocate sense DMA tag\n"); return (ENOMEM); } if (bus_dmamem_alloc(sc->mfi_sense_dmat, (void **)&sc->mfi_sense, BUS_DMA_NOWAIT, &sc->mfi_sense_dmamap)) { device_printf(sc->mfi_dev, "Cannot allocate sense memory\n"); return (ENOMEM); } bus_dmamap_load(sc->mfi_sense_dmat, sc->mfi_sense_dmamap, sc->mfi_sense, sensesz, mfi_addr_cb, &sc->mfi_sense_busaddr, 0); if ((error = mfi_alloc_commands(sc)) != 0) return (error); /* Before moving the FW to operational state, check whether * hostmemory is required by the FW or not */ /* ThunderBolt MFI_IOC2 INIT */ if (sc->mfi_flags & MFI_FLAGS_TBOLT) { sc->mfi_disable_intr(sc); if ((error = mfi_tbolt_init_MFI_queue(sc)) != 0) { device_printf(sc->mfi_dev, "TB Init has failed with error %d\n",error); return error; } if ((error = mfi_tbolt_alloc_cmd(sc)) != 0) return error; if (bus_setup_intr(sc->mfi_dev, sc->mfi_irq, INTR_MPSAFE|INTR_TYPE_BIO, NULL, mfi_intr_tbolt, sc, &sc->mfi_intr)) { device_printf(sc->mfi_dev, "Cannot set up interrupt\n"); return (EINVAL); } sc->mfi_enable_intr(sc); } else { if ((error = mfi_comms_init(sc)) != 0) return (error); if (bus_setup_intr(sc->mfi_dev, sc->mfi_irq, INTR_MPSAFE|INTR_TYPE_BIO, NULL, mfi_intr, sc, &sc->mfi_intr)) { device_printf(sc->mfi_dev, "Cannot set up interrupt\n"); return (EINVAL); } sc->mfi_enable_intr(sc); } if ((error = mfi_get_controller_info(sc)) != 0) return (error); sc->disableOnlineCtrlReset = 0; /* Register a config hook to probe the bus for arrays */ sc->mfi_ich.ich_func = mfi_startup; sc->mfi_ich.ich_arg = sc; if (config_intrhook_establish(&sc->mfi_ich) != 0) { device_printf(sc->mfi_dev, "Cannot establish configuration " "hook\n"); return (EINVAL); } if ((error = mfi_aen_setup(sc, 0), 0) != 0) { mtx_unlock(&sc->mfi_io_lock); return (error); } /* * Register a shutdown handler. */ if ((sc->mfi_eh = EVENTHANDLER_REGISTER(shutdown_final, mfi_shutdown, sc, SHUTDOWN_PRI_DEFAULT)) == NULL) { device_printf(sc->mfi_dev, "Warning: shutdown event " "registration failed\n"); } /* * Create the control device for doing management */ unit = device_get_unit(sc->mfi_dev); sc->mfi_cdev = make_dev(&mfi_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, "mfi%d", unit); if (unit == 0) make_dev_alias(sc->mfi_cdev, "megaraid_sas_ioctl_node"); if (sc->mfi_cdev != NULL) sc->mfi_cdev->si_drv1 = sc; SYSCTL_ADD_INT(device_get_sysctl_ctx(sc->mfi_dev), SYSCTL_CHILDREN(device_get_sysctl_tree(sc->mfi_dev)), OID_AUTO, "delete_busy_volumes", CTLFLAG_RW, &sc->mfi_delete_busy_volumes, 0, "Allow removal of busy volumes"); SYSCTL_ADD_INT(device_get_sysctl_ctx(sc->mfi_dev), SYSCTL_CHILDREN(device_get_sysctl_tree(sc->mfi_dev)), OID_AUTO, "keep_deleted_volumes", CTLFLAG_RW, &sc->mfi_keep_deleted_volumes, 0, "Don't detach the mfid device for a busy volume that is deleted"); device_add_child(sc->mfi_dev, "mfip", -1); bus_generic_attach(sc->mfi_dev); /* Start the timeout watchdog */ callout_init(&sc->mfi_watchdog_callout, CALLOUT_MPSAFE); callout_reset(&sc->mfi_watchdog_callout, MFI_CMD_TIMEOUT * hz, mfi_timeout, sc); if (sc->mfi_flags & MFI_FLAGS_TBOLT) { mfi_tbolt_sync_map_info(sc); } return (0); } static int mfi_alloc_commands(struct mfi_softc *sc) { struct mfi_command *cm; int i, ncmds; /* * XXX Should we allocate all the commands up front, or allocate on * demand later like 'aac' does? */ ncmds = MIN(mfi_max_cmds, sc->mfi_max_fw_cmds); if (bootverbose) device_printf(sc->mfi_dev, "Max fw cmds= %d, sizing driver " "pool to %d\n", sc->mfi_max_fw_cmds, ncmds); sc->mfi_commands = malloc(sizeof(struct mfi_command) * ncmds, M_MFIBUF, M_WAITOK | M_ZERO); for (i = 0; i < ncmds; i++) { cm = &sc->mfi_commands[i]; cm->cm_frame = (union mfi_frame *)((uintptr_t)sc->mfi_frames + sc->mfi_cmd_size * i); cm->cm_frame_busaddr = sc->mfi_frames_busaddr + sc->mfi_cmd_size * i; cm->cm_frame->header.context = i; cm->cm_sense = &sc->mfi_sense[i]; cm->cm_sense_busaddr= sc->mfi_sense_busaddr + MFI_SENSE_LEN * i; cm->cm_sc = sc; cm->cm_index = i; if (bus_dmamap_create(sc->mfi_buffer_dmat, 0, &cm->cm_dmamap) == 0) { mtx_lock(&sc->mfi_io_lock); mfi_release_command(cm); mtx_unlock(&sc->mfi_io_lock); } else break; sc->mfi_total_cmds++; } return (0); } void mfi_release_command(struct mfi_command *cm) { struct mfi_frame_header *hdr; uint32_t *hdr_data; mtx_assert(&cm->cm_sc->mfi_io_lock, MA_OWNED); /* * Zero out the important fields of the frame, but make sure the * context field is preserved. For efficiency, handle the fields * as 32 bit words. Clear out the first S/G entry too for safety. */ hdr = &cm->cm_frame->header; if (cm->cm_data != NULL && hdr->sg_count) { cm->cm_sg->sg32[0].len = 0; cm->cm_sg->sg32[0].addr = 0; } hdr_data = (uint32_t *)cm->cm_frame; hdr_data[0] = 0; /* cmd, sense_len, cmd_status, scsi_status */ hdr_data[1] = 0; /* target_id, lun_id, cdb_len, sg_count */ hdr_data[4] = 0; /* flags, timeout */ hdr_data[5] = 0; /* data_len */ cm->cm_extra_frames = 0; cm->cm_flags = 0; cm->cm_complete = NULL; cm->cm_private = NULL; cm->cm_data = NULL; cm->cm_sg = 0; cm->cm_total_frame_size = 0; cm->retry_for_fw_reset = 0; mfi_enqueue_free(cm); } int mfi_dcmd_command(struct mfi_softc *sc, struct mfi_command **cmp, uint32_t opcode, void **bufp, size_t bufsize) { struct mfi_command *cm; struct mfi_dcmd_frame *dcmd; void *buf = NULL; uint32_t context = 0; mtx_assert(&sc->mfi_io_lock, MA_OWNED); cm = mfi_dequeue_free(sc); if (cm == NULL) return (EBUSY); /* Zero out the MFI frame */ context = cm->cm_frame->header.context; bzero(cm->cm_frame, sizeof(union mfi_frame)); cm->cm_frame->header.context = context; if ((bufsize > 0) && (bufp != NULL)) { if (*bufp == NULL) { buf = malloc(bufsize, M_MFIBUF, M_NOWAIT|M_ZERO); if (buf == NULL) { mfi_release_command(cm); return (ENOMEM); } *bufp = buf; } else { buf = *bufp; } } dcmd = &cm->cm_frame->dcmd; bzero(dcmd->mbox, MFI_MBOX_SIZE); dcmd->header.cmd = MFI_CMD_DCMD; dcmd->header.timeout = 0; dcmd->header.flags = 0; dcmd->header.data_len = bufsize; dcmd->header.scsi_status = 0; dcmd->opcode = opcode; cm->cm_sg = &dcmd->sgl; cm->cm_total_frame_size = MFI_DCMD_FRAME_SIZE; cm->cm_flags = 0; cm->cm_data = buf; cm->cm_private = buf; cm->cm_len = bufsize; *cmp = cm; if ((bufp != NULL) && (*bufp == NULL) && (buf != NULL)) *bufp = buf; return (0); } static int mfi_comms_init(struct mfi_softc *sc) { struct mfi_command *cm; struct mfi_init_frame *init; struct mfi_init_qinfo *qinfo; int error; uint32_t context = 0; mtx_lock(&sc->mfi_io_lock); if ((cm = mfi_dequeue_free(sc)) == NULL) return (EBUSY); /* Zero out the MFI frame */ context = cm->cm_frame->header.context; bzero(cm->cm_frame, sizeof(union mfi_frame)); cm->cm_frame->header.context = context; /* * Abuse the SG list area of the frame to hold the init_qinfo * object; */ init = &cm->cm_frame->init; qinfo = (struct mfi_init_qinfo *)((uintptr_t)init + MFI_FRAME_SIZE); bzero(qinfo, sizeof(struct mfi_init_qinfo)); qinfo->rq_entries = sc->mfi_max_fw_cmds + 1; qinfo->rq_addr_lo = sc->mfi_comms_busaddr + offsetof(struct mfi_hwcomms, hw_reply_q); qinfo->pi_addr_lo = sc->mfi_comms_busaddr + offsetof(struct mfi_hwcomms, hw_pi); qinfo->ci_addr_lo = sc->mfi_comms_busaddr + offsetof(struct mfi_hwcomms, hw_ci); init->header.cmd = MFI_CMD_INIT; init->header.data_len = sizeof(struct mfi_init_qinfo); init->qinfo_new_addr_lo = cm->cm_frame_busaddr + MFI_FRAME_SIZE; cm->cm_data = NULL; cm->cm_flags = MFI_CMD_POLLED; if ((error = mfi_mapcmd(sc, cm)) != 0) { device_printf(sc->mfi_dev, "failed to send init command\n"); mtx_unlock(&sc->mfi_io_lock); return (error); } mfi_release_command(cm); mtx_unlock(&sc->mfi_io_lock); return (0); } static int mfi_get_controller_info(struct mfi_softc *sc) { struct mfi_command *cm = NULL; struct mfi_ctrl_info *ci = NULL; uint32_t max_sectors_1, max_sectors_2; int error; mtx_lock(&sc->mfi_io_lock); error = mfi_dcmd_command(sc, &cm, MFI_DCMD_CTRL_GETINFO, (void **)&ci, sizeof(*ci)); if (error) goto out; cm->cm_flags = MFI_CMD_DATAIN | MFI_CMD_POLLED; if ((error = mfi_mapcmd(sc, cm)) != 0) { device_printf(sc->mfi_dev, "Failed to get controller info\n"); sc->mfi_max_io = (sc->mfi_max_sge - 1) * PAGE_SIZE / MFI_SECTOR_LEN; error = 0; goto out; } bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap); max_sectors_1 = (1 << ci->stripe_sz_ops.max) * ci->max_strips_per_io; max_sectors_2 = ci->max_request_size; sc->mfi_max_io = min(max_sectors_1, max_sectors_2); sc->disableOnlineCtrlReset = ci->properties.OnOffProperties.disableOnlineCtrlReset; out: if (ci) free(ci, M_MFIBUF); if (cm) mfi_release_command(cm); mtx_unlock(&sc->mfi_io_lock); return (error); } static int mfi_get_log_state(struct mfi_softc *sc, struct mfi_evt_log_state **log_state) { struct mfi_command *cm = NULL; int error; mtx_lock(&sc->mfi_io_lock); error = mfi_dcmd_command(sc, &cm, MFI_DCMD_CTRL_EVENT_GETINFO, (void **)log_state, sizeof(**log_state)); if (error) goto out; cm->cm_flags = MFI_CMD_DATAIN | MFI_CMD_POLLED; if ((error = mfi_mapcmd(sc, cm)) != 0) { device_printf(sc->mfi_dev, "Failed to get log state\n"); goto out; } bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap); out: if (cm) mfi_release_command(cm); mtx_unlock(&sc->mfi_io_lock); return (error); } int mfi_aen_setup(struct mfi_softc *sc, uint32_t seq_start) { struct mfi_evt_log_state *log_state = NULL; union mfi_evt class_locale; int error = 0; uint32_t seq; class_locale.members.reserved = 0; class_locale.members.locale = mfi_event_locale; class_locale.members.evt_class = mfi_event_class; if (seq_start == 0) { error = mfi_get_log_state(sc, &log_state); sc->mfi_boot_seq_num = log_state->boot_seq_num; if (error) { if (log_state) free(log_state, M_MFIBUF); return (error); } /* * Walk through any events that fired since the last * shutdown. */ mfi_parse_entries(sc, log_state->shutdown_seq_num, log_state->newest_seq_num); seq = log_state->newest_seq_num; } else seq = seq_start; mfi_aen_register(sc, seq, class_locale.word); free(log_state, M_MFIBUF); return 0; } int mfi_wait_command(struct mfi_softc *sc, struct mfi_command *cm) { mtx_assert(&sc->mfi_io_lock, MA_OWNED); cm->cm_complete = NULL; /* * MegaCli can issue a DCMD of 0. In this case do nothing * and return 0 to it as status */ if (cm->cm_frame->dcmd.opcode == 0) { cm->cm_frame->header.cmd_status = MFI_STAT_OK; cm->cm_error = 0; return (cm->cm_error); } mfi_enqueue_ready(cm); mfi_startio(sc); if ((cm->cm_flags & MFI_CMD_COMPLETED) == 0) msleep(cm, &sc->mfi_io_lock, PRIBIO, "mfiwait", 0); return (cm->cm_error); } void mfi_free(struct mfi_softc *sc) { struct mfi_command *cm; int i; callout_drain(&sc->mfi_watchdog_callout); if (sc->mfi_cdev != NULL) destroy_dev(sc->mfi_cdev); if (sc->mfi_total_cmds != 0) { for (i = 0; i < sc->mfi_total_cmds; i++) { cm = &sc->mfi_commands[i]; bus_dmamap_destroy(sc->mfi_buffer_dmat, cm->cm_dmamap); } free(sc->mfi_commands, M_MFIBUF); } if (sc->mfi_intr) bus_teardown_intr(sc->mfi_dev, sc->mfi_irq, sc->mfi_intr); if (sc->mfi_irq != NULL) bus_release_resource(sc->mfi_dev, SYS_RES_IRQ, sc->mfi_irq_rid, sc->mfi_irq); if (sc->mfi_sense_busaddr != 0) bus_dmamap_unload(sc->mfi_sense_dmat, sc->mfi_sense_dmamap); if (sc->mfi_sense != NULL) bus_dmamem_free(sc->mfi_sense_dmat, sc->mfi_sense, sc->mfi_sense_dmamap); if (sc->mfi_sense_dmat != NULL) bus_dma_tag_destroy(sc->mfi_sense_dmat); if (sc->mfi_frames_busaddr != 0) bus_dmamap_unload(sc->mfi_frames_dmat, sc->mfi_frames_dmamap); if (sc->mfi_frames != NULL) bus_dmamem_free(sc->mfi_frames_dmat, sc->mfi_frames, sc->mfi_frames_dmamap); if (sc->mfi_frames_dmat != NULL) bus_dma_tag_destroy(sc->mfi_frames_dmat); if (sc->mfi_comms_busaddr != 0) bus_dmamap_unload(sc->mfi_comms_dmat, sc->mfi_comms_dmamap); if (sc->mfi_comms != NULL) bus_dmamem_free(sc->mfi_comms_dmat, sc->mfi_comms, sc->mfi_comms_dmamap); if (sc->mfi_comms_dmat != NULL) bus_dma_tag_destroy(sc->mfi_comms_dmat); /* ThunderBolt contiguous memory free here */ if (sc->mfi_flags & MFI_FLAGS_TBOLT) { if (sc->mfi_tb_busaddr != 0) bus_dmamap_unload(sc->mfi_tb_dmat, sc->mfi_tb_dmamap); if (sc->request_message_pool != NULL) bus_dmamem_free(sc->mfi_tb_dmat, sc->request_message_pool, sc->mfi_tb_dmamap); if (sc->mfi_tb_dmat != NULL) bus_dma_tag_destroy(sc->mfi_tb_dmat); /* Version buffer memory free */ /* Start LSIP200113393 */ if (sc->verbuf_h_busaddr != 0) bus_dmamap_unload(sc->verbuf_h_dmat, sc->verbuf_h_dmamap); if (sc->verbuf != NULL) bus_dmamem_free(sc->verbuf_h_dmat, sc->verbuf, sc->verbuf_h_dmamap); if (sc->verbuf_h_dmat != NULL) bus_dma_tag_destroy(sc->verbuf_h_dmat); /* End LSIP200113393 */ /* ThunderBolt INIT packet memory Free */ if (sc->mfi_tb_init_busaddr != 0) bus_dmamap_unload(sc->mfi_tb_init_dmat, sc->mfi_tb_init_dmamap); if (sc->mfi_tb_init != NULL) bus_dmamem_free(sc->mfi_tb_init_dmat, sc->mfi_tb_init, sc->mfi_tb_init_dmamap); if (sc->mfi_tb_init_dmat != NULL) bus_dma_tag_destroy(sc->mfi_tb_init_dmat); /* ThunderBolt IOC Init Desc memory free here */ if (sc->mfi_tb_ioc_init_busaddr != 0) bus_dmamap_unload(sc->mfi_tb_ioc_init_dmat, sc->mfi_tb_ioc_init_dmamap); if (sc->mfi_tb_ioc_init_desc != NULL) bus_dmamem_free(sc->mfi_tb_ioc_init_dmat, sc->mfi_tb_ioc_init_desc, sc->mfi_tb_ioc_init_dmamap); if (sc->mfi_tb_ioc_init_dmat != NULL) bus_dma_tag_destroy(sc->mfi_tb_ioc_init_dmat); for (int i = 0; i < sc->mfi_max_fw_cmds; i++) { if (sc->mfi_cmd_pool_tbolt != NULL) { if (sc->mfi_cmd_pool_tbolt[i] != NULL) { free(sc->mfi_cmd_pool_tbolt[i], M_MFIBUF); sc->mfi_cmd_pool_tbolt[i] = NULL; } } } if (sc->mfi_cmd_pool_tbolt != NULL) { free(sc->mfi_cmd_pool_tbolt, M_MFIBUF); sc->mfi_cmd_pool_tbolt = NULL; } if (sc->request_desc_pool != NULL) { free(sc->request_desc_pool, M_MFIBUF); sc->request_desc_pool = NULL; } } if (sc->mfi_buffer_dmat != NULL) bus_dma_tag_destroy(sc->mfi_buffer_dmat); if (sc->mfi_parent_dmat != NULL) bus_dma_tag_destroy(sc->mfi_parent_dmat); if (mtx_initialized(&sc->mfi_io_lock)) { mtx_destroy(&sc->mfi_io_lock); sx_destroy(&sc->mfi_config_lock); } return; } static void mfi_startup(void *arg) { struct mfi_softc *sc; sc = (struct mfi_softc *)arg; config_intrhook_disestablish(&sc->mfi_ich); sc->mfi_enable_intr(sc); sx_xlock(&sc->mfi_config_lock); mtx_lock(&sc->mfi_io_lock); mfi_ldprobe(sc); if (sc->mfi_flags & MFI_FLAGS_SKINNY) mfi_syspdprobe(sc); mtx_unlock(&sc->mfi_io_lock); sx_xunlock(&sc->mfi_config_lock); } static void mfi_intr(void *arg) { struct mfi_softc *sc; struct mfi_command *cm; uint32_t pi, ci, context; sc = (struct mfi_softc *)arg; if (sc->mfi_check_clear_intr(sc)) return; restart: pi = sc->mfi_comms->hw_pi; ci = sc->mfi_comms->hw_ci; mtx_lock(&sc->mfi_io_lock); while (ci != pi) { context = sc->mfi_comms->hw_reply_q[ci]; if (context < sc->mfi_max_fw_cmds) { cm = &sc->mfi_commands[context]; mfi_remove_busy(cm); cm->cm_error = 0; mfi_complete(sc, cm); } if (++ci == (sc->mfi_max_fw_cmds + 1)) { ci = 0; } } sc->mfi_comms->hw_ci = ci; /* Give defered I/O a chance to run */ if (sc->mfi_flags & MFI_FLAGS_QFRZN) sc->mfi_flags &= ~MFI_FLAGS_QFRZN; mfi_startio(sc); mtx_unlock(&sc->mfi_io_lock); /* * Dummy read to flush the bus; this ensures that the indexes are up * to date. Restart processing if more commands have come it. */ (void)sc->mfi_read_fw_status(sc); if (pi != sc->mfi_comms->hw_pi) goto restart; return; } int mfi_shutdown(struct mfi_softc *sc) { struct mfi_dcmd_frame *dcmd; struct mfi_command *cm; int error; mtx_lock(&sc->mfi_io_lock); error = mfi_dcmd_command(sc, &cm, MFI_DCMD_CTRL_SHUTDOWN, NULL, 0); if (error) { mtx_unlock(&sc->mfi_io_lock); return (error); } if (sc->mfi_aen_cm != NULL) mfi_abort(sc, sc->mfi_aen_cm); if (sc->mfi_map_sync_cm != NULL) mfi_abort(sc, sc->mfi_map_sync_cm); dcmd = &cm->cm_frame->dcmd; dcmd->header.flags = MFI_FRAME_DIR_NONE; cm->cm_flags = MFI_CMD_POLLED; cm->cm_data = NULL; if ((error = mfi_mapcmd(sc, cm)) != 0) { device_printf(sc->mfi_dev, "Failed to shutdown controller\n"); } mfi_release_command(cm); mtx_unlock(&sc->mfi_io_lock); return (error); } static void mfi_syspdprobe(struct mfi_softc *sc) { struct mfi_frame_header *hdr; struct mfi_command *cm = NULL; struct mfi_pd_list *pdlist = NULL; struct mfi_system_pd *syspd, *tmp; int error, i, found; sx_assert(&sc->mfi_config_lock, SA_XLOCKED); mtx_assert(&sc->mfi_io_lock, MA_OWNED); /* Add SYSTEM PD's */ error = mfi_dcmd_command(sc, &cm, MFI_DCMD_PD_LIST_QUERY, (void **)&pdlist, sizeof(*pdlist)); if (error) { device_printf(sc->mfi_dev, "Error while forming SYSTEM PD list\n"); goto out; } cm->cm_flags = MFI_CMD_DATAIN | MFI_CMD_POLLED; cm->cm_frame->dcmd.mbox[0] = MR_PD_QUERY_TYPE_EXPOSED_TO_HOST; cm->cm_frame->dcmd.mbox[1] = 0; if (mfi_mapcmd(sc, cm) != 0) { device_printf(sc->mfi_dev, "Failed to get syspd device listing\n"); goto out; } bus_dmamap_sync(sc->mfi_buffer_dmat,cm->cm_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap); hdr = &cm->cm_frame->header; if (hdr->cmd_status != MFI_STAT_OK) { device_printf(sc->mfi_dev, "MFI_DCMD_PD_LIST_QUERY failed %x\n", hdr->cmd_status); goto out; } /* Get each PD and add it to the system */ for (i = 0; i < pdlist->count; i++) { if (pdlist->addr[i].device_id == pdlist->addr[i].encl_device_id) continue; found = 0; TAILQ_FOREACH(syspd, &sc->mfi_syspd_tqh, pd_link) { if (syspd->pd_id == pdlist->addr[i].device_id) found = 1; } if (found == 0) mfi_add_sys_pd(sc, pdlist->addr[i].device_id); } /* Delete SYSPD's whose state has been changed */ TAILQ_FOREACH_SAFE(syspd, &sc->mfi_syspd_tqh, pd_link, tmp) { found = 0; for (i = 0; i < pdlist->count; i++) { if (syspd->pd_id == pdlist->addr[i].device_id) found = 1; } if (found == 0) { printf("DELETE\n"); mtx_unlock(&sc->mfi_io_lock); mtx_lock(&Giant); device_delete_child(sc->mfi_dev, syspd->pd_dev); mtx_unlock(&Giant); mtx_lock(&sc->mfi_io_lock); } } out: if (pdlist) free(pdlist, M_MFIBUF); if (cm) mfi_release_command(cm); return; } static void mfi_ldprobe(struct mfi_softc *sc) { struct mfi_frame_header *hdr; struct mfi_command *cm = NULL; struct mfi_ld_list *list = NULL; struct mfi_disk *ld; int error, i; sx_assert(&sc->mfi_config_lock, SA_XLOCKED); mtx_assert(&sc->mfi_io_lock, MA_OWNED); error = mfi_dcmd_command(sc, &cm, MFI_DCMD_LD_GET_LIST, (void **)&list, sizeof(*list)); if (error) goto out; cm->cm_flags = MFI_CMD_DATAIN; if (mfi_wait_command(sc, cm) != 0) { device_printf(sc->mfi_dev, "Failed to get device listing\n"); goto out; } hdr = &cm->cm_frame->header; if (hdr->cmd_status != MFI_STAT_OK) { device_printf(sc->mfi_dev, "MFI_DCMD_LD_GET_LIST failed %x\n", hdr->cmd_status); goto out; } for (i = 0; i < list->ld_count; i++) { TAILQ_FOREACH(ld, &sc->mfi_ld_tqh, ld_link) { if (ld->ld_id == list->ld_list[i].ld.v.target_id) goto skip_add; } mfi_add_ld(sc, list->ld_list[i].ld.v.target_id); skip_add:; } out: if (list) free(list, M_MFIBUF); if (cm) mfi_release_command(cm); return; } /* * The timestamp is the number of seconds since 00:00 Jan 1, 2000. If * the bits in 24-31 are all set, then it is the number of seconds since * boot. */ static const char * format_timestamp(uint32_t timestamp) { static char buffer[32]; if ((timestamp & 0xff000000) == 0xff000000) snprintf(buffer, sizeof(buffer), "boot + %us", timestamp & 0x00ffffff); else snprintf(buffer, sizeof(buffer), "%us", timestamp); return (buffer); } static const char * format_class(int8_t class) { static char buffer[6]; switch (class) { case MFI_EVT_CLASS_DEBUG: return ("debug"); case MFI_EVT_CLASS_PROGRESS: return ("progress"); case MFI_EVT_CLASS_INFO: return ("info"); case MFI_EVT_CLASS_WARNING: return ("WARN"); case MFI_EVT_CLASS_CRITICAL: return ("CRIT"); case MFI_EVT_CLASS_FATAL: return ("FATAL"); case MFI_EVT_CLASS_DEAD: return ("DEAD"); default: snprintf(buffer, sizeof(buffer), "%d", class); return (buffer); } } static void mfi_decode_evt(struct mfi_softc *sc, struct mfi_evt_detail *detail) { struct mfi_system_pd *syspd = NULL; device_printf(sc->mfi_dev, "%d (%s/0x%04x/%s) - %s\n", detail->seq, format_timestamp(detail->time), detail->evt_class.members.locale, format_class(detail->evt_class.members.evt_class), detail->description); /* Don't act on old AEN's or while shutting down */ if (detail->seq < sc->mfi_boot_seq_num || sc->mfi_detaching) return; switch (detail->arg_type) { case MR_EVT_ARGS_NONE: if (detail->code == MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED) { device_printf(sc->mfi_dev, "HostBus scan raised\n"); if (mfi_detect_jbod_change) { /* * Probe for new SYSPD's and Delete * invalid SYSPD's */ sx_xlock(&sc->mfi_config_lock); mtx_lock(&sc->mfi_io_lock); mfi_syspdprobe(sc); mtx_unlock(&sc->mfi_io_lock); sx_xunlock(&sc->mfi_config_lock); } } break; case MR_EVT_ARGS_LD_STATE: /* During load time driver reads all the events starting * from the one that has been logged after shutdown. Avoid * these old events. */ if (detail->args.ld_state.new_state == MFI_LD_STATE_OFFLINE ) { /* Remove the LD */ struct mfi_disk *ld; TAILQ_FOREACH(ld, &sc->mfi_ld_tqh, ld_link) { if (ld->ld_id == detail->args.ld_state.ld.target_id) break; } /* Fix: for kernel panics when SSCD is removed KASSERT(ld != NULL, ("volume dissappeared")); */ if (ld != NULL) { mtx_lock(&Giant); device_delete_child(sc->mfi_dev, ld->ld_dev); mtx_unlock(&Giant); } } break; case MR_EVT_ARGS_PD: if (detail->code == MR_EVT_PD_REMOVED) { if (mfi_detect_jbod_change) { /* * If the removed device is a SYSPD then * delete it */ TAILQ_FOREACH(syspd, &sc->mfi_syspd_tqh, pd_link) { if (syspd->pd_id == detail->args.pd.device_id) { mtx_lock(&Giant); device_delete_child( sc->mfi_dev, syspd->pd_dev); mtx_unlock(&Giant); break; } } } } if (detail->code == MR_EVT_PD_INSERTED) { if (mfi_detect_jbod_change) { /* Probe for new SYSPD's */ sx_xlock(&sc->mfi_config_lock); mtx_lock(&sc->mfi_io_lock); mfi_syspdprobe(sc); mtx_unlock(&sc->mfi_io_lock); sx_xunlock(&sc->mfi_config_lock); } } break; } } static void mfi_queue_evt(struct mfi_softc *sc, struct mfi_evt_detail *detail) { struct mfi_evt_queue_elm *elm; mtx_assert(&sc->mfi_io_lock, MA_OWNED); elm = malloc(sizeof(*elm), M_MFIBUF, M_NOWAIT|M_ZERO); if (elm == NULL) return; memcpy(&elm->detail, detail, sizeof(*detail)); TAILQ_INSERT_TAIL(&sc->mfi_evt_queue, elm, link); taskqueue_enqueue(taskqueue_swi, &sc->mfi_evt_task); } static void mfi_handle_evt(void *context, int pending) { TAILQ_HEAD(,mfi_evt_queue_elm) queue; struct mfi_softc *sc; struct mfi_evt_queue_elm *elm; sc = context; TAILQ_INIT(&queue); mtx_lock(&sc->mfi_io_lock); TAILQ_CONCAT(&queue, &sc->mfi_evt_queue, link); mtx_unlock(&sc->mfi_io_lock); while ((elm = TAILQ_FIRST(&queue)) != NULL) { TAILQ_REMOVE(&queue, elm, link); mfi_decode_evt(sc, &elm->detail); free(elm, M_MFIBUF); } } static int mfi_aen_register(struct mfi_softc *sc, int seq, int locale) { struct mfi_command *cm; struct mfi_dcmd_frame *dcmd; union mfi_evt current_aen, prior_aen; struct mfi_evt_detail *ed = NULL; int error = 0; current_aen.word = locale; if (sc->mfi_aen_cm != NULL) { prior_aen.word = ((uint32_t *)&sc->mfi_aen_cm->cm_frame->dcmd.mbox)[1]; if (prior_aen.members.evt_class <= current_aen.members.evt_class && !((prior_aen.members.locale & current_aen.members.locale) ^current_aen.members.locale)) { return (0); } else { prior_aen.members.locale |= current_aen.members.locale; if (prior_aen.members.evt_class < current_aen.members.evt_class) current_aen.members.evt_class = prior_aen.members.evt_class; mtx_lock(&sc->mfi_io_lock); mfi_abort(sc, sc->mfi_aen_cm); mtx_unlock(&sc->mfi_io_lock); } } mtx_lock(&sc->mfi_io_lock); error = mfi_dcmd_command(sc, &cm, MFI_DCMD_CTRL_EVENT_WAIT, (void **)&ed, sizeof(*ed)); mtx_unlock(&sc->mfi_io_lock); if (error) { goto out; } dcmd = &cm->cm_frame->dcmd; ((uint32_t *)&dcmd->mbox)[0] = seq; ((uint32_t *)&dcmd->mbox)[1] = locale; cm->cm_flags = MFI_CMD_DATAIN; cm->cm_complete = mfi_aen_complete; sc->last_seq_num = seq; sc->mfi_aen_cm = cm; mtx_lock(&sc->mfi_io_lock); mfi_enqueue_ready(cm); mfi_startio(sc); mtx_unlock(&sc->mfi_io_lock); out: return (error); } static void mfi_aen_complete(struct mfi_command *cm) { struct mfi_frame_header *hdr; struct mfi_softc *sc; struct mfi_evt_detail *detail; struct mfi_aen *mfi_aen_entry, *tmp; int seq = 0, aborted = 0; sc = cm->cm_sc; mtx_assert(&sc->mfi_io_lock, MA_OWNED); hdr = &cm->cm_frame->header; if (sc->mfi_aen_cm == NULL) return; if (sc->cm_aen_abort || hdr->cmd_status == MFI_STAT_INVALID_STATUS) { sc->cm_aen_abort = 0; aborted = 1; } else { sc->mfi_aen_triggered = 1; if (sc->mfi_poll_waiting) { sc->mfi_poll_waiting = 0; selwakeup(&sc->mfi_select); } detail = cm->cm_data; mfi_queue_evt(sc, detail); seq = detail->seq + 1; TAILQ_FOREACH_SAFE(mfi_aen_entry, &sc->mfi_aen_pids, aen_link, tmp) { TAILQ_REMOVE(&sc->mfi_aen_pids, mfi_aen_entry, aen_link); PROC_LOCK(mfi_aen_entry->p); kern_psignal(mfi_aen_entry->p, SIGIO); PROC_UNLOCK(mfi_aen_entry->p); free(mfi_aen_entry, M_MFIBUF); } } free(cm->cm_data, M_MFIBUF); sc->mfi_aen_cm = NULL; wakeup(&sc->mfi_aen_cm); mfi_release_command(cm); /* set it up again so the driver can catch more events */ if (!aborted) { mtx_unlock(&sc->mfi_io_lock); mfi_aen_setup(sc, seq); mtx_lock(&sc->mfi_io_lock); } } #define MAX_EVENTS 15 static int mfi_parse_entries(struct mfi_softc *sc, int start_seq, int stop_seq) { struct mfi_command *cm; struct mfi_dcmd_frame *dcmd; struct mfi_evt_list *el; union mfi_evt class_locale; int error, i, seq, size; class_locale.members.reserved = 0; class_locale.members.locale = mfi_event_locale; class_locale.members.evt_class = mfi_event_class; size = sizeof(struct mfi_evt_list) + sizeof(struct mfi_evt_detail) * (MAX_EVENTS - 1); el = malloc(size, M_MFIBUF, M_NOWAIT | M_ZERO); if (el == NULL) return (ENOMEM); for (seq = start_seq;;) { mtx_lock(&sc->mfi_io_lock); if ((cm = mfi_dequeue_free(sc)) == NULL) { free(el, M_MFIBUF); mtx_unlock(&sc->mfi_io_lock); return (EBUSY); } mtx_unlock(&sc->mfi_io_lock); dcmd = &cm->cm_frame->dcmd; bzero(dcmd->mbox, MFI_MBOX_SIZE); dcmd->header.cmd = MFI_CMD_DCMD; dcmd->header.timeout = 0; dcmd->header.data_len = size; dcmd->opcode = MFI_DCMD_CTRL_EVENT_GET; ((uint32_t *)&dcmd->mbox)[0] = seq; ((uint32_t *)&dcmd->mbox)[1] = class_locale.word; cm->cm_sg = &dcmd->sgl; cm->cm_total_frame_size = MFI_DCMD_FRAME_SIZE; cm->cm_flags = MFI_CMD_DATAIN | MFI_CMD_POLLED; cm->cm_data = el; cm->cm_len = size; mtx_lock(&sc->mfi_io_lock); if ((error = mfi_mapcmd(sc, cm)) != 0) { device_printf(sc->mfi_dev, "Failed to get controller entries\n"); mfi_release_command(cm); mtx_unlock(&sc->mfi_io_lock); break; } mtx_unlock(&sc->mfi_io_lock); bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap); if (dcmd->header.cmd_status == MFI_STAT_NOT_FOUND) { mtx_lock(&sc->mfi_io_lock); mfi_release_command(cm); mtx_unlock(&sc->mfi_io_lock); break; } if (dcmd->header.cmd_status != MFI_STAT_OK) { device_printf(sc->mfi_dev, "Error %d fetching controller entries\n", dcmd->header.cmd_status); mtx_lock(&sc->mfi_io_lock); mfi_release_command(cm); mtx_unlock(&sc->mfi_io_lock); break; } mtx_lock(&sc->mfi_io_lock); mfi_release_command(cm); mtx_unlock(&sc->mfi_io_lock); for (i = 0; i < el->count; i++) { /* * If this event is newer than 'stop_seq' then * break out of the loop. Note that the log * is a circular buffer so we have to handle * the case that our stop point is earlier in * the buffer than our start point. */ if (el->event[i].seq >= stop_seq) { if (start_seq <= stop_seq) break; else if (el->event[i].seq < start_seq) break; } mtx_lock(&sc->mfi_io_lock); mfi_queue_evt(sc, &el->event[i]); mtx_unlock(&sc->mfi_io_lock); } seq = el->event[el->count - 1].seq + 1; } free(el, M_MFIBUF); return (0); } static int mfi_add_ld(struct mfi_softc *sc, int id) { struct mfi_command *cm; struct mfi_dcmd_frame *dcmd = NULL; struct mfi_ld_info *ld_info = NULL; int error; mtx_assert(&sc->mfi_io_lock, MA_OWNED); error = mfi_dcmd_command(sc, &cm, MFI_DCMD_LD_GET_INFO, (void **)&ld_info, sizeof(*ld_info)); if (error) { device_printf(sc->mfi_dev, "Failed to allocate for MFI_DCMD_LD_GET_INFO %d\n", error); if (ld_info) free(ld_info, M_MFIBUF); return (error); } cm->cm_flags = MFI_CMD_DATAIN; dcmd = &cm->cm_frame->dcmd; dcmd->mbox[0] = id; if (mfi_wait_command(sc, cm) != 0) { device_printf(sc->mfi_dev, "Failed to get logical drive: %d\n", id); free(ld_info, M_MFIBUF); return (0); } if (ld_info->ld_config.params.isSSCD != 1) mfi_add_ld_complete(cm); else { mfi_release_command(cm); if (ld_info) /* SSCD drives ld_info free here */ free(ld_info, M_MFIBUF); } return (0); } static void mfi_add_ld_complete(struct mfi_command *cm) { struct mfi_frame_header *hdr; struct mfi_ld_info *ld_info; struct mfi_softc *sc; device_t child; sc = cm->cm_sc; hdr = &cm->cm_frame->header; ld_info = cm->cm_private; if (hdr->cmd_status != MFI_STAT_OK) { free(ld_info, M_MFIBUF); mfi_release_command(cm); return; } mfi_release_command(cm); mtx_unlock(&sc->mfi_io_lock); mtx_lock(&Giant); if ((child = device_add_child(sc->mfi_dev, "mfid", -1)) == NULL) { device_printf(sc->mfi_dev, "Failed to add logical disk\n"); free(ld_info, M_MFIBUF); mtx_unlock(&Giant); mtx_lock(&sc->mfi_io_lock); return; } device_set_ivars(child, ld_info); device_set_desc(child, "MFI Logical Disk"); bus_generic_attach(sc->mfi_dev); mtx_unlock(&Giant); mtx_lock(&sc->mfi_io_lock); } static int mfi_add_sys_pd(struct mfi_softc *sc, int id) { struct mfi_command *cm; struct mfi_dcmd_frame *dcmd = NULL; struct mfi_pd_info *pd_info = NULL; int error; mtx_assert(&sc->mfi_io_lock, MA_OWNED); error = mfi_dcmd_command(sc, &cm, MFI_DCMD_PD_GET_INFO, (void **)&pd_info, sizeof(*pd_info)); if (error) { device_printf(sc->mfi_dev, "Failed to allocated for MFI_DCMD_PD_GET_INFO %d\n", error); if (pd_info) free(pd_info, M_MFIBUF); return (error); } cm->cm_flags = MFI_CMD_DATAIN | MFI_CMD_POLLED; dcmd = &cm->cm_frame->dcmd; dcmd->mbox[0]=id; dcmd->header.scsi_status = 0; dcmd->header.pad0 = 0; if (mfi_mapcmd(sc, cm) != 0) { device_printf(sc->mfi_dev, "Failed to get physical drive info %d\n", id); free(pd_info, M_MFIBUF); return (0); } bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap); mfi_add_sys_pd_complete(cm); return (0); } static void mfi_add_sys_pd_complete(struct mfi_command *cm) { struct mfi_frame_header *hdr; struct mfi_pd_info *pd_info; struct mfi_softc *sc; device_t child; sc = cm->cm_sc; hdr = &cm->cm_frame->header; pd_info = cm->cm_private; if (hdr->cmd_status != MFI_STAT_OK) { free(pd_info, M_MFIBUF); mfi_release_command(cm); return; } if (pd_info->fw_state != MFI_PD_STATE_SYSTEM) { device_printf(sc->mfi_dev, "PD=%x is not SYSTEM PD\n", pd_info->ref.v.device_id); free(pd_info, M_MFIBUF); mfi_release_command(cm); return; } mfi_release_command(cm); mtx_unlock(&sc->mfi_io_lock); mtx_lock(&Giant); if ((child = device_add_child(sc->mfi_dev, "mfisyspd", -1)) == NULL) { device_printf(sc->mfi_dev, "Failed to add system pd\n"); free(pd_info, M_MFIBUF); mtx_unlock(&Giant); mtx_lock(&sc->mfi_io_lock); return; } device_set_ivars(child, pd_info); device_set_desc(child, "MFI System PD"); bus_generic_attach(sc->mfi_dev); mtx_unlock(&Giant); mtx_lock(&sc->mfi_io_lock); } static struct mfi_command * mfi_bio_command(struct mfi_softc *sc) { struct bio *bio; struct mfi_command *cm = NULL; /*reserving two commands to avoid starvation for IOCTL*/ if (sc->mfi_qstat[MFIQ_FREE].q_length < 2) { return (NULL); } if ((bio = mfi_dequeue_bio(sc)) == NULL) { return (NULL); } if ((uintptr_t)bio->bio_driver2 == MFI_LD_IO) { cm = mfi_build_ldio(sc, bio); } else if ((uintptr_t) bio->bio_driver2 == MFI_SYS_PD_IO) { cm = mfi_build_syspdio(sc, bio); } if (!cm) mfi_enqueue_bio(sc, bio); return cm; } static struct mfi_command * mfi_build_syspdio(struct mfi_softc *sc, struct bio *bio) { struct mfi_command *cm; struct mfi_pass_frame *pass; int flags = 0, blkcount = 0; uint32_t context = 0; if ((cm = mfi_dequeue_free(sc)) == NULL) return (NULL); /* Zero out the MFI frame */ context = cm->cm_frame->header.context; bzero(cm->cm_frame, sizeof(union mfi_frame)); cm->cm_frame->header.context = context; pass = &cm->cm_frame->pass; bzero(pass->cdb, 16); pass->header.cmd = MFI_CMD_PD_SCSI_IO; switch (bio->bio_cmd & 0x03) { case BIO_READ: #define SCSI_READ 0x28 pass->cdb[0] = SCSI_READ; flags = MFI_CMD_DATAIN; break; case BIO_WRITE: #define SCSI_WRITE 0x2a pass->cdb[0] = SCSI_WRITE; flags = MFI_CMD_DATAOUT; break; default: panic("Invalid bio command"); } /* Cheat with the sector length to avoid a non-constant division */ blkcount = (bio->bio_bcount + MFI_SECTOR_LEN - 1) / MFI_SECTOR_LEN; /* Fill the LBA and Transfer length in CDB */ pass->cdb[2] = (bio->bio_pblkno & 0xff000000) >> 24; pass->cdb[3] = (bio->bio_pblkno & 0x00ff0000) >> 16; pass->cdb[4] = (bio->bio_pblkno & 0x0000ff00) >> 8; pass->cdb[5] = bio->bio_pblkno & 0x000000ff; pass->cdb[7] = (blkcount & 0xff00) >> 8; pass->cdb[8] = (blkcount & 0x00ff); pass->header.target_id = (uintptr_t)bio->bio_driver1; pass->header.timeout = 0; pass->header.flags = 0; pass->header.scsi_status = 0; pass->header.sense_len = MFI_SENSE_LEN; pass->header.data_len = bio->bio_bcount; pass->header.cdb_len = 10; pass->sense_addr_lo = (uint32_t)cm->cm_sense_busaddr; pass->sense_addr_hi = (uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32); cm->cm_complete = mfi_bio_complete; cm->cm_private = bio; cm->cm_data = bio->bio_data; cm->cm_len = bio->bio_bcount; cm->cm_sg = &pass->sgl; cm->cm_total_frame_size = MFI_PASS_FRAME_SIZE; cm->cm_flags = flags; return (cm); } static struct mfi_command * mfi_build_ldio(struct mfi_softc *sc, struct bio *bio) { struct mfi_io_frame *io; struct mfi_command *cm; int flags, blkcount; uint32_t context = 0; if ((cm = mfi_dequeue_free(sc)) == NULL) return (NULL); /* Zero out the MFI frame */ context = cm->cm_frame->header.context; bzero(cm->cm_frame, sizeof(union mfi_frame)); cm->cm_frame->header.context = context; io = &cm->cm_frame->io; switch (bio->bio_cmd & 0x03) { case BIO_READ: io->header.cmd = MFI_CMD_LD_READ; flags = MFI_CMD_DATAIN; break; case BIO_WRITE: io->header.cmd = MFI_CMD_LD_WRITE; flags = MFI_CMD_DATAOUT; break; default: panic("Invalid bio command"); } /* Cheat with the sector length to avoid a non-constant division */ blkcount = (bio->bio_bcount + MFI_SECTOR_LEN - 1) / MFI_SECTOR_LEN; io->header.target_id = (uintptr_t)bio->bio_driver1; io->header.timeout = 0; io->header.flags = 0; io->header.scsi_status = 0; io->header.sense_len = MFI_SENSE_LEN; io->header.data_len = blkcount; io->sense_addr_lo = (uint32_t)cm->cm_sense_busaddr; io->sense_addr_hi = (uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32); io->lba_hi = (bio->bio_pblkno & 0xffffffff00000000) >> 32; io->lba_lo = bio->bio_pblkno & 0xffffffff; cm->cm_complete = mfi_bio_complete; cm->cm_private = bio; cm->cm_data = bio->bio_data; cm->cm_len = bio->bio_bcount; cm->cm_sg = &io->sgl; cm->cm_total_frame_size = MFI_IO_FRAME_SIZE; cm->cm_flags = flags; return (cm); } static void mfi_bio_complete(struct mfi_command *cm) { struct bio *bio; struct mfi_frame_header *hdr; struct mfi_softc *sc; bio = cm->cm_private; hdr = &cm->cm_frame->header; sc = cm->cm_sc; if ((hdr->cmd_status != MFI_STAT_OK) || (hdr->scsi_status != 0)) { bio->bio_flags |= BIO_ERROR; bio->bio_error = EIO; device_printf(sc->mfi_dev, "I/O error, status= %d " "scsi_status= %d\n", hdr->cmd_status, hdr->scsi_status); mfi_print_sense(cm->cm_sc, cm->cm_sense); } else if (cm->cm_error != 0) { bio->bio_flags |= BIO_ERROR; } mfi_release_command(cm); mfi_disk_complete(bio); } void mfi_startio(struct mfi_softc *sc) { struct mfi_command *cm; struct ccb_hdr *ccbh; for (;;) { /* Don't bother if we're short on resources */ if (sc->mfi_flags & MFI_FLAGS_QFRZN) break; /* Try a command that has already been prepared */ cm = mfi_dequeue_ready(sc); if (cm == NULL) { if ((ccbh = TAILQ_FIRST(&sc->mfi_cam_ccbq)) != NULL) cm = sc->mfi_cam_start(ccbh); } /* Nope, so look for work on the bioq */ if (cm == NULL) cm = mfi_bio_command(sc); /* No work available, so exit */ if (cm == NULL) break; /* Send the command to the controller */ if (mfi_mapcmd(sc, cm) != 0) { mfi_requeue_ready(cm); break; } } } int mfi_mapcmd(struct mfi_softc *sc, struct mfi_command *cm) { int error, polled; mtx_assert(&sc->mfi_io_lock, MA_OWNED); if ((cm->cm_data != NULL) && (cm->cm_frame->header.cmd != MFI_CMD_STP )) { polled = (cm->cm_flags & MFI_CMD_POLLED) ? BUS_DMA_NOWAIT : 0; error = bus_dmamap_load(sc->mfi_buffer_dmat, cm->cm_dmamap, cm->cm_data, cm->cm_len, mfi_data_cb, cm, polled); if (error == EINPROGRESS) { sc->mfi_flags |= MFI_FLAGS_QFRZN; return (0); } } else { if (sc->MFA_enabled) error = mfi_tbolt_send_frame(sc, cm); else error = mfi_send_frame(sc, cm); } return (error); } static void mfi_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { struct mfi_frame_header *hdr; struct mfi_command *cm; union mfi_sgl *sgl; struct mfi_softc *sc; int i, j, first, dir; int sge_size; cm = (struct mfi_command *)arg; sc = cm->cm_sc; hdr = &cm->cm_frame->header; sgl = cm->cm_sg; if (error) { printf("error %d in callback\n", error); cm->cm_error = error; mfi_complete(sc, cm); return; } /* Use IEEE sgl only for IO's on a SKINNY controller * For other commands on a SKINNY controller use either * sg32 or sg64 based on the sizeof(bus_addr_t). * Also calculate the total frame size based on the type * of SGL used. */ if (((cm->cm_frame->header.cmd == MFI_CMD_PD_SCSI_IO) || (cm->cm_frame->header.cmd == MFI_CMD_LD_READ) || (cm->cm_frame->header.cmd == MFI_CMD_LD_WRITE)) && (sc->mfi_flags & MFI_FLAGS_SKINNY)) { for (i = 0; i < nsegs; i++) { sgl->sg_skinny[i].addr = segs[i].ds_addr; sgl->sg_skinny[i].len = segs[i].ds_len; sgl->sg_skinny[i].flag = 0; } hdr->flags |= MFI_FRAME_IEEE_SGL | MFI_FRAME_SGL64; sge_size = sizeof(struct mfi_sg_skinny); hdr->sg_count = nsegs; } else { j = 0; if (cm->cm_frame->header.cmd == MFI_CMD_STP) { first = cm->cm_stp_len; if ((sc->mfi_flags & MFI_FLAGS_SG64) == 0) { sgl->sg32[j].addr = segs[0].ds_addr; sgl->sg32[j++].len = first; } else { sgl->sg64[j].addr = segs[0].ds_addr; sgl->sg64[j++].len = first; } } else first = 0; if ((sc->mfi_flags & MFI_FLAGS_SG64) == 0) { for (i = 0; i < nsegs; i++) { sgl->sg32[j].addr = segs[i].ds_addr + first; sgl->sg32[j++].len = segs[i].ds_len - first; first = 0; } } else { for (i = 0; i < nsegs; i++) { sgl->sg64[j].addr = segs[i].ds_addr + first; sgl->sg64[j++].len = segs[i].ds_len - first; first = 0; } hdr->flags |= MFI_FRAME_SGL64; } hdr->sg_count = j; sge_size = sc->mfi_sge_size; } dir = 0; if (cm->cm_flags & MFI_CMD_DATAIN) { dir |= BUS_DMASYNC_PREREAD; hdr->flags |= MFI_FRAME_DIR_READ; } if (cm->cm_flags & MFI_CMD_DATAOUT) { dir |= BUS_DMASYNC_PREWRITE; hdr->flags |= MFI_FRAME_DIR_WRITE; } bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap, dir); cm->cm_flags |= MFI_CMD_MAPPED; /* * Instead of calculating the total number of frames in the * compound frame, it's already assumed that there will be at * least 1 frame, so don't compensate for the modulo of the * following division. */ cm->cm_total_frame_size += (sc->mfi_sge_size * nsegs); cm->cm_extra_frames = (cm->cm_total_frame_size - 1) / MFI_FRAME_SIZE; if (sc->MFA_enabled) mfi_tbolt_send_frame(sc, cm); else mfi_send_frame(sc, cm); return; } static int mfi_send_frame(struct mfi_softc *sc, struct mfi_command *cm) { struct mfi_frame_header *hdr; int tm = MFI_POLL_TIMEOUT_SECS * 1000; hdr = &cm->cm_frame->header; if ((cm->cm_flags & MFI_CMD_POLLED) == 0) { cm->cm_timestamp = time_uptime; mfi_enqueue_busy(cm); } else { hdr->cmd_status = MFI_STAT_INVALID_STATUS; hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE; } /* * The bus address of the command is aligned on a 64 byte boundary, * leaving the least 6 bits as zero. For whatever reason, the * hardware wants the address shifted right by three, leaving just * 3 zero bits. These three bits are then used as a prefetching * hint for the hardware to predict how many frames need to be * fetched across the bus. If a command has more than 8 frames * then the 3 bits are set to 0x7 and the firmware uses other * information in the command to determine the total amount to fetch. * However, FreeBSD doesn't support I/O larger than 128K, so 8 frames * is enough for both 32bit and 64bit systems. */ if (cm->cm_extra_frames > 7) cm->cm_extra_frames = 7; sc->mfi_issue_cmd(sc, cm->cm_frame_busaddr, cm->cm_extra_frames); if ((cm->cm_flags & MFI_CMD_POLLED) == 0) return (0); /* This is a polled command, so busy-wait for it to complete. */ while (hdr->cmd_status == MFI_STAT_INVALID_STATUS) { DELAY(1000); tm -= 1; if (tm <= 0) break; } if (hdr->cmd_status == MFI_STAT_INVALID_STATUS) { device_printf(sc->mfi_dev, "Frame %p timed out " "command 0x%X\n", hdr, cm->cm_frame->dcmd.opcode); return (ETIMEDOUT); } return (0); } void mfi_complete(struct mfi_softc *sc, struct mfi_command *cm) { int dir; if ((cm->cm_flags & MFI_CMD_MAPPED) != 0) { dir = 0; if ((cm->cm_flags & MFI_CMD_DATAIN) || (cm->cm_frame->header.cmd == MFI_CMD_STP)) dir |= BUS_DMASYNC_POSTREAD; if (cm->cm_flags & MFI_CMD_DATAOUT) dir |= BUS_DMASYNC_POSTWRITE; bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap, dir); bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap); cm->cm_flags &= ~MFI_CMD_MAPPED; } cm->cm_flags |= MFI_CMD_COMPLETED; if (cm->cm_complete != NULL) cm->cm_complete(cm); else wakeup(cm); } static int mfi_abort(struct mfi_softc *sc, struct mfi_command *cm_abort) { struct mfi_command *cm; struct mfi_abort_frame *abort; int i = 0; uint32_t context = 0; mtx_assert(&sc->mfi_io_lock, MA_OWNED); if ((cm = mfi_dequeue_free(sc)) == NULL) { return (EBUSY); } /* Zero out the MFI frame */ context = cm->cm_frame->header.context; bzero(cm->cm_frame, sizeof(union mfi_frame)); cm->cm_frame->header.context = context; abort = &cm->cm_frame->abort; abort->header.cmd = MFI_CMD_ABORT; abort->header.flags = 0; abort->header.scsi_status = 0; abort->abort_context = cm_abort->cm_frame->header.context; abort->abort_mfi_addr_lo = (uint32_t)cm_abort->cm_frame_busaddr; abort->abort_mfi_addr_hi = (uint32_t)((uint64_t)cm_abort->cm_frame_busaddr >> 32); cm->cm_data = NULL; cm->cm_flags = MFI_CMD_POLLED; if (sc->mfi_aen_cm) sc->cm_aen_abort = 1; if (sc->mfi_map_sync_cm) sc->cm_map_abort = 1; mfi_mapcmd(sc, cm); mfi_release_command(cm); while (i < 5 && sc->mfi_aen_cm != NULL) { msleep(&sc->mfi_aen_cm, &sc->mfi_io_lock, 0, "mfiabort", 5 * hz); i++; } while (i < 5 && sc->mfi_map_sync_cm != NULL) { msleep(&sc->mfi_map_sync_cm, &sc->mfi_io_lock, 0, "mfiabort", 5 * hz); i++; } return (0); } int mfi_dump_blocks(struct mfi_softc *sc, int id, uint64_t lba, void *virt, int len) { struct mfi_command *cm; struct mfi_io_frame *io; int error; uint32_t context = 0; if ((cm = mfi_dequeue_free(sc)) == NULL) return (EBUSY); /* Zero out the MFI frame */ context = cm->cm_frame->header.context; bzero(cm->cm_frame, sizeof(union mfi_frame)); cm->cm_frame->header.context = context; io = &cm->cm_frame->io; io->header.cmd = MFI_CMD_LD_WRITE; io->header.target_id = id; io->header.timeout = 0; io->header.flags = 0; io->header.scsi_status = 0; io->header.sense_len = MFI_SENSE_LEN; io->header.data_len = (len + MFI_SECTOR_LEN - 1) / MFI_SECTOR_LEN; io->sense_addr_lo = (uint32_t)cm->cm_sense_busaddr; io->sense_addr_hi = (uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32); io->lba_hi = (lba & 0xffffffff00000000) >> 32; io->lba_lo = lba & 0xffffffff; cm->cm_data = virt; cm->cm_len = len; cm->cm_sg = &io->sgl; cm->cm_total_frame_size = MFI_IO_FRAME_SIZE; cm->cm_flags = MFI_CMD_POLLED | MFI_CMD_DATAOUT; error = mfi_mapcmd(sc, cm); bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap); mfi_release_command(cm); return (error); } int mfi_dump_syspd_blocks(struct mfi_softc *sc, int id, uint64_t lba, void *virt, int len) { struct mfi_command *cm; struct mfi_pass_frame *pass; int error; int blkcount = 0; if ((cm = mfi_dequeue_free(sc)) == NULL) return (EBUSY); pass = &cm->cm_frame->pass; bzero(pass->cdb, 16); pass->header.cmd = MFI_CMD_PD_SCSI_IO; pass->cdb[0] = SCSI_WRITE; pass->cdb[2] = (lba & 0xff000000) >> 24; pass->cdb[3] = (lba & 0x00ff0000) >> 16; pass->cdb[4] = (lba & 0x0000ff00) >> 8; pass->cdb[5] = (lba & 0x000000ff); blkcount = (len + MFI_SECTOR_LEN - 1) / MFI_SECTOR_LEN; pass->cdb[7] = (blkcount & 0xff00) >> 8; pass->cdb[8] = (blkcount & 0x00ff); pass->header.target_id = id; pass->header.timeout = 0; pass->header.flags = 0; pass->header.scsi_status = 0; pass->header.sense_len = MFI_SENSE_LEN; pass->header.data_len = len; pass->header.cdb_len = 10; pass->sense_addr_lo = (uint32_t)cm->cm_sense_busaddr; pass->sense_addr_hi = (uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32); cm->cm_data = virt; cm->cm_len = len; cm->cm_sg = &pass->sgl; cm->cm_total_frame_size = MFI_PASS_FRAME_SIZE; cm->cm_flags = MFI_CMD_POLLED | MFI_CMD_DATAOUT; error = mfi_mapcmd(sc, cm); bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap); mfi_release_command(cm); return (error); } static int mfi_open(struct cdev *dev, int flags, int fmt, struct thread *td) { struct mfi_softc *sc; int error; sc = dev->si_drv1; mtx_lock(&sc->mfi_io_lock); if (sc->mfi_detaching) error = ENXIO; else { sc->mfi_flags |= MFI_FLAGS_OPEN; error = 0; } mtx_unlock(&sc->mfi_io_lock); return (error); } static int mfi_close(struct cdev *dev, int flags, int fmt, struct thread *td) { struct mfi_softc *sc; struct mfi_aen *mfi_aen_entry, *tmp; sc = dev->si_drv1; mtx_lock(&sc->mfi_io_lock); sc->mfi_flags &= ~MFI_FLAGS_OPEN; TAILQ_FOREACH_SAFE(mfi_aen_entry, &sc->mfi_aen_pids, aen_link, tmp) { if (mfi_aen_entry->p == curproc) { TAILQ_REMOVE(&sc->mfi_aen_pids, mfi_aen_entry, aen_link); free(mfi_aen_entry, M_MFIBUF); } } mtx_unlock(&sc->mfi_io_lock); return (0); } static int mfi_config_lock(struct mfi_softc *sc, uint32_t opcode) { switch (opcode) { case MFI_DCMD_LD_DELETE: case MFI_DCMD_CFG_ADD: case MFI_DCMD_CFG_CLEAR: case MFI_DCMD_CFG_FOREIGN_IMPORT: sx_xlock(&sc->mfi_config_lock); return (1); default: return (0); } } static void mfi_config_unlock(struct mfi_softc *sc, int locked) { if (locked) sx_xunlock(&sc->mfi_config_lock); } /* * Perform pre-issue checks on commands from userland and possibly veto * them. */ static int mfi_check_command_pre(struct mfi_softc *sc, struct mfi_command *cm) { struct mfi_disk *ld, *ld2; int error; struct mfi_system_pd *syspd = NULL; uint16_t syspd_id; uint16_t *mbox; mtx_assert(&sc->mfi_io_lock, MA_OWNED); error = 0; switch (cm->cm_frame->dcmd.opcode) { case MFI_DCMD_LD_DELETE: TAILQ_FOREACH(ld, &sc->mfi_ld_tqh, ld_link) { if (ld->ld_id == cm->cm_frame->dcmd.mbox[0]) break; } if (ld == NULL) error = ENOENT; else error = mfi_disk_disable(ld); break; case MFI_DCMD_CFG_CLEAR: TAILQ_FOREACH(ld, &sc->mfi_ld_tqh, ld_link) { error = mfi_disk_disable(ld); if (error) break; } if (error) { TAILQ_FOREACH(ld2, &sc->mfi_ld_tqh, ld_link) { if (ld2 == ld) break; mfi_disk_enable(ld2); } } break; case MFI_DCMD_PD_STATE_SET: mbox = (uint16_t *) cm->cm_frame->dcmd.mbox; syspd_id = mbox[0]; if (mbox[2] == MFI_PD_STATE_UNCONFIGURED_GOOD) { TAILQ_FOREACH(syspd, &sc->mfi_syspd_tqh, pd_link) { if (syspd->pd_id == syspd_id) break; } } else break; if (syspd) error = mfi_syspd_disable(syspd); break; default: break; } return (error); } /* Perform post-issue checks on commands from userland. */ static void mfi_check_command_post(struct mfi_softc *sc, struct mfi_command *cm) { struct mfi_disk *ld, *ldn; struct mfi_system_pd *syspd = NULL; uint16_t syspd_id; uint16_t *mbox; switch (cm->cm_frame->dcmd.opcode) { case MFI_DCMD_LD_DELETE: TAILQ_FOREACH(ld, &sc->mfi_ld_tqh, ld_link) { if (ld->ld_id == cm->cm_frame->dcmd.mbox[0]) break; } KASSERT(ld != NULL, ("volume dissappeared")); if (cm->cm_frame->header.cmd_status == MFI_STAT_OK) { mtx_unlock(&sc->mfi_io_lock); mtx_lock(&Giant); device_delete_child(sc->mfi_dev, ld->ld_dev); mtx_unlock(&Giant); mtx_lock(&sc->mfi_io_lock); } else mfi_disk_enable(ld); break; case MFI_DCMD_CFG_CLEAR: if (cm->cm_frame->header.cmd_status == MFI_STAT_OK) { mtx_unlock(&sc->mfi_io_lock); mtx_lock(&Giant); TAILQ_FOREACH_SAFE(ld, &sc->mfi_ld_tqh, ld_link, ldn) { device_delete_child(sc->mfi_dev, ld->ld_dev); } mtx_unlock(&Giant); mtx_lock(&sc->mfi_io_lock); } else { TAILQ_FOREACH(ld, &sc->mfi_ld_tqh, ld_link) mfi_disk_enable(ld); } break; case MFI_DCMD_CFG_ADD: mfi_ldprobe(sc); break; case MFI_DCMD_CFG_FOREIGN_IMPORT: mfi_ldprobe(sc); break; case MFI_DCMD_PD_STATE_SET: mbox = (uint16_t *) cm->cm_frame->dcmd.mbox; syspd_id = mbox[0]; if (mbox[2] == MFI_PD_STATE_UNCONFIGURED_GOOD) { TAILQ_FOREACH(syspd, &sc->mfi_syspd_tqh,pd_link) { if (syspd->pd_id == syspd_id) break; } } else break; /* If the transition fails then enable the syspd again */ if (syspd && cm->cm_frame->header.cmd_status != MFI_STAT_OK) mfi_syspd_enable(syspd); break; } } static int mfi_check_for_sscd(struct mfi_softc *sc, struct mfi_command *cm) { struct mfi_config_data *conf_data=(struct mfi_config_data *)cm->cm_data; struct mfi_command *ld_cm = NULL; struct mfi_ld_info *ld_info = NULL; int error = 0; if ((cm->cm_frame->dcmd.opcode == MFI_DCMD_CFG_ADD) && (conf_data->ld[0].params.isSSCD == 1)) { error = 1; } else if (cm->cm_frame->dcmd.opcode == MFI_DCMD_LD_DELETE) { error = mfi_dcmd_command (sc, &ld_cm, MFI_DCMD_LD_GET_INFO, (void **)&ld_info, sizeof(*ld_info)); if (error) { device_printf(sc->mfi_dev, "Failed to allocate" "MFI_DCMD_LD_GET_INFO %d", error); if (ld_info) free(ld_info, M_MFIBUF); return 0; } ld_cm->cm_flags = MFI_CMD_DATAIN; ld_cm->cm_frame->dcmd.mbox[0]= cm->cm_frame->dcmd.mbox[0]; ld_cm->cm_frame->header.target_id = cm->cm_frame->dcmd.mbox[0]; if (mfi_wait_command(sc, ld_cm) != 0) { device_printf(sc->mfi_dev, "failed to get log drv\n"); mfi_release_command(ld_cm); free(ld_info, M_MFIBUF); return 0; } if (ld_cm->cm_frame->header.cmd_status != MFI_STAT_OK) { free(ld_info, M_MFIBUF); mfi_release_command(ld_cm); return 0; } else ld_info = (struct mfi_ld_info *)ld_cm->cm_private; if (ld_info->ld_config.params.isSSCD == 1) error = 1; mfi_release_command(ld_cm); free(ld_info, M_MFIBUF); } return error; } static int mfi_stp_cmd(struct mfi_softc *sc, struct mfi_command *cm,caddr_t arg) { uint8_t i; struct mfi_ioc_packet *ioc; ioc = (struct mfi_ioc_packet *)arg; int sge_size, error; struct megasas_sge *kern_sge; memset(sc->kbuff_arr, 0, sizeof(sc->kbuff_arr)); kern_sge =(struct megasas_sge *) ((uintptr_t)cm->cm_frame + ioc->mfi_sgl_off); cm->cm_frame->header.sg_count = ioc->mfi_sge_count; if (sizeof(bus_addr_t) == 8) { cm->cm_frame->header.flags |= MFI_FRAME_SGL64; cm->cm_extra_frames = 2; sge_size = sizeof(struct mfi_sg64); } else { cm->cm_extra_frames = (cm->cm_total_frame_size - 1) / MFI_FRAME_SIZE; sge_size = sizeof(struct mfi_sg32); } cm->cm_total_frame_size += (sge_size * ioc->mfi_sge_count); for (i = 0; i < ioc->mfi_sge_count; i++) { if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */ 1, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ ioc->mfi_sgl[i].iov_len,/* maxsize */ 2, /* nsegments */ ioc->mfi_sgl[i].iov_len,/* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->mfi_kbuff_arr_dmat[i])) { device_printf(sc->mfi_dev, "Cannot allocate mfi_kbuff_arr_dmat tag\n"); return (ENOMEM); } if (bus_dmamem_alloc(sc->mfi_kbuff_arr_dmat[i], (void **)&sc->kbuff_arr[i], BUS_DMA_NOWAIT, &sc->mfi_kbuff_arr_dmamap[i])) { device_printf(sc->mfi_dev, "Cannot allocate mfi_kbuff_arr_dmamap memory\n"); return (ENOMEM); } bus_dmamap_load(sc->mfi_kbuff_arr_dmat[i], sc->mfi_kbuff_arr_dmamap[i], sc->kbuff_arr[i], ioc->mfi_sgl[i].iov_len, mfi_addr_cb, &sc->mfi_kbuff_arr_busaddr[i], 0); if (!sc->kbuff_arr[i]) { device_printf(sc->mfi_dev, "Could not allocate memory for kbuff_arr info\n"); return -1; } kern_sge[i].phys_addr = sc->mfi_kbuff_arr_busaddr[i]; kern_sge[i].length = ioc->mfi_sgl[i].iov_len; if (sizeof(bus_addr_t) == 8) { cm->cm_frame->stp.sgl.sg64[i].addr = kern_sge[i].phys_addr; cm->cm_frame->stp.sgl.sg64[i].len = ioc->mfi_sgl[i].iov_len; } else { cm->cm_frame->stp.sgl.sg32[i].len = kern_sge[i].phys_addr; cm->cm_frame->stp.sgl.sg32[i].len = ioc->mfi_sgl[i].iov_len; } error = copyin(ioc->mfi_sgl[i].iov_base, sc->kbuff_arr[i], ioc->mfi_sgl[i].iov_len); if (error != 0) { device_printf(sc->mfi_dev, "Copy in failed\n"); return error; } } cm->cm_flags |=MFI_CMD_MAPPED; return 0; } static int mfi_user_command(struct mfi_softc *sc, struct mfi_ioc_passthru *ioc) { struct mfi_command *cm; struct mfi_dcmd_frame *dcmd; void *ioc_buf = NULL; uint32_t context; int error = 0, locked; if (ioc->buf_size > 0) { if (ioc->buf_size > 1024 * 1024) return (ENOMEM); ioc_buf = malloc(ioc->buf_size, M_MFIBUF, M_WAITOK); error = copyin(ioc->buf, ioc_buf, ioc->buf_size); if (error) { device_printf(sc->mfi_dev, "failed to copyin\n"); free(ioc_buf, M_MFIBUF); return (error); } } locked = mfi_config_lock(sc, ioc->ioc_frame.opcode); mtx_lock(&sc->mfi_io_lock); while ((cm = mfi_dequeue_free(sc)) == NULL) msleep(mfi_user_command, &sc->mfi_io_lock, 0, "mfiioc", hz); /* Save context for later */ context = cm->cm_frame->header.context; dcmd = &cm->cm_frame->dcmd; bcopy(&ioc->ioc_frame, dcmd, sizeof(struct mfi_dcmd_frame)); cm->cm_sg = &dcmd->sgl; cm->cm_total_frame_size = MFI_DCMD_FRAME_SIZE; cm->cm_data = ioc_buf; cm->cm_len = ioc->buf_size; /* restore context */ cm->cm_frame->header.context = context; /* Cheat since we don't know if we're writing or reading */ cm->cm_flags = MFI_CMD_DATAIN | MFI_CMD_DATAOUT; error = mfi_check_command_pre(sc, cm); if (error) goto out; error = mfi_wait_command(sc, cm); if (error) { device_printf(sc->mfi_dev, "ioctl failed %d\n", error); goto out; } bcopy(dcmd, &ioc->ioc_frame, sizeof(struct mfi_dcmd_frame)); mfi_check_command_post(sc, cm); out: mfi_release_command(cm); mtx_unlock(&sc->mfi_io_lock); mfi_config_unlock(sc, locked); if (ioc->buf_size > 0) error = copyout(ioc_buf, ioc->buf, ioc->buf_size); if (ioc_buf) free(ioc_buf, M_MFIBUF); return (error); } #define PTRIN(p) ((void *)(uintptr_t)(p)) static int mfi_ioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag, struct thread *td) { struct mfi_softc *sc; union mfi_statrequest *ms; struct mfi_ioc_packet *ioc; #ifdef COMPAT_FREEBSD32 struct mfi_ioc_packet32 *ioc32; #endif struct mfi_ioc_aen *aen; struct mfi_command *cm = NULL; uint32_t context = 0; union mfi_sense_ptr sense_ptr; uint8_t *data = NULL, *temp, *addr, skip_pre_post = 0; size_t len; int i, res; struct mfi_ioc_passthru *iop = (struct mfi_ioc_passthru *)arg; #ifdef COMPAT_FREEBSD32 struct mfi_ioc_passthru32 *iop32 = (struct mfi_ioc_passthru32 *)arg; struct mfi_ioc_passthru iop_swab; #endif int error, locked; union mfi_sgl *sgl; sc = dev->si_drv1; error = 0; if (sc->adpreset) return EBUSY; if (sc->hw_crit_error) return EBUSY; if (sc->issuepend_done == 0) return EBUSY; switch (cmd) { case MFIIO_STATS: ms = (union mfi_statrequest *)arg; switch (ms->ms_item) { case MFIQ_FREE: case MFIQ_BIO: case MFIQ_READY: case MFIQ_BUSY: bcopy(&sc->mfi_qstat[ms->ms_item], &ms->ms_qstat, sizeof(struct mfi_qstat)); break; default: error = ENOIOCTL; break; } break; case MFIIO_QUERY_DISK: { struct mfi_query_disk *qd; struct mfi_disk *ld; qd = (struct mfi_query_disk *)arg; mtx_lock(&sc->mfi_io_lock); TAILQ_FOREACH(ld, &sc->mfi_ld_tqh, ld_link) { if (ld->ld_id == qd->array_id) break; } if (ld == NULL) { qd->present = 0; mtx_unlock(&sc->mfi_io_lock); return (0); } qd->present = 1; if (ld->ld_flags & MFI_DISK_FLAGS_OPEN) qd->open = 1; bzero(qd->devname, SPECNAMELEN + 1); snprintf(qd->devname, SPECNAMELEN, "mfid%d", ld->ld_unit); mtx_unlock(&sc->mfi_io_lock); break; } case MFI_CMD: #ifdef COMPAT_FREEBSD32 case MFI_CMD32: #endif { devclass_t devclass; ioc = (struct mfi_ioc_packet *)arg; int adapter; adapter = ioc->mfi_adapter_no; if (device_get_unit(sc->mfi_dev) == 0 && adapter != 0) { devclass = devclass_find("mfi"); sc = devclass_get_softc(devclass, adapter); } mtx_lock(&sc->mfi_io_lock); if ((cm = mfi_dequeue_free(sc)) == NULL) { mtx_unlock(&sc->mfi_io_lock); return (EBUSY); } mtx_unlock(&sc->mfi_io_lock); locked = 0; /* * save off original context since copying from user * will clobber some data */ context = cm->cm_frame->header.context; cm->cm_frame->header.context = cm->cm_index; bcopy(ioc->mfi_frame.raw, cm->cm_frame, 2 * MEGAMFI_FRAME_SIZE); cm->cm_total_frame_size = (sizeof(union mfi_sgl) * ioc->mfi_sge_count) + ioc->mfi_sgl_off; cm->cm_frame->header.scsi_status = 0; cm->cm_frame->header.pad0 = 0; if (ioc->mfi_sge_count) { cm->cm_sg = (union mfi_sgl *)&cm->cm_frame->bytes[ioc->mfi_sgl_off]; } sgl = cm->cm_sg; cm->cm_flags = 0; if (cm->cm_frame->header.flags & MFI_FRAME_DATAIN) cm->cm_flags |= MFI_CMD_DATAIN; if (cm->cm_frame->header.flags & MFI_FRAME_DATAOUT) cm->cm_flags |= MFI_CMD_DATAOUT; /* Legacy app shim */ if (cm->cm_flags == 0) cm->cm_flags |= MFI_CMD_DATAIN | MFI_CMD_DATAOUT; cm->cm_len = cm->cm_frame->header.data_len; if (cm->cm_frame->header.cmd == MFI_CMD_STP) { #ifdef COMPAT_FREEBSD32 if (cmd == MFI_CMD) { #endif /* Native */ cm->cm_stp_len = ioc->mfi_sgl[0].iov_len; #ifdef COMPAT_FREEBSD32 } else { /* 32bit on 64bit */ ioc32 = (struct mfi_ioc_packet32 *)ioc; cm->cm_stp_len = ioc32->mfi_sgl[0].iov_len; } #endif cm->cm_len += cm->cm_stp_len; } if (cm->cm_len && (cm->cm_flags & (MFI_CMD_DATAIN | MFI_CMD_DATAOUT))) { cm->cm_data = data = malloc(cm->cm_len, M_MFIBUF, M_WAITOK | M_ZERO); if (cm->cm_data == NULL) { device_printf(sc->mfi_dev, "Malloc failed\n"); goto out; } } else { cm->cm_data = 0; } /* restore header context */ cm->cm_frame->header.context = context; if (cm->cm_frame->header.cmd == MFI_CMD_STP) { res = mfi_stp_cmd(sc, cm, arg); if (res != 0) goto out; } else { temp = data; if ((cm->cm_flags & MFI_CMD_DATAOUT) || (cm->cm_frame->header.cmd == MFI_CMD_STP)) { for (i = 0; i < ioc->mfi_sge_count; i++) { #ifdef COMPAT_FREEBSD32 if (cmd == MFI_CMD) { #endif /* Native */ addr = ioc->mfi_sgl[i].iov_base; len = ioc->mfi_sgl[i].iov_len; #ifdef COMPAT_FREEBSD32 } else { /* 32bit on 64bit */ ioc32 = (struct mfi_ioc_packet32 *)ioc; addr = PTRIN(ioc32->mfi_sgl[i].iov_base); len = ioc32->mfi_sgl[i].iov_len; } #endif error = copyin(addr, temp, len); if (error != 0) { device_printf(sc->mfi_dev, "Copy in failed\n"); goto out; } temp = &temp[len]; } } } if (cm->cm_frame->header.cmd == MFI_CMD_DCMD) locked = mfi_config_lock(sc, cm->cm_frame->dcmd.opcode); if (cm->cm_frame->header.cmd == MFI_CMD_PD_SCSI_IO) { cm->cm_frame->pass.sense_addr_lo = (uint32_t)cm->cm_sense_busaddr; cm->cm_frame->pass.sense_addr_hi = (uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32); } mtx_lock(&sc->mfi_io_lock); skip_pre_post = mfi_check_for_sscd (sc, cm); if (!skip_pre_post) { error = mfi_check_command_pre(sc, cm); if (error) { mtx_unlock(&sc->mfi_io_lock); goto out; } } if ((error = mfi_wait_command(sc, cm)) != 0) { device_printf(sc->mfi_dev, "Controller polled failed\n"); mtx_unlock(&sc->mfi_io_lock); goto out; } if (!skip_pre_post) { mfi_check_command_post(sc, cm); } mtx_unlock(&sc->mfi_io_lock); if (cm->cm_frame->header.cmd != MFI_CMD_STP) { temp = data; if ((cm->cm_flags & MFI_CMD_DATAIN) || (cm->cm_frame->header.cmd == MFI_CMD_STP)) { for (i = 0; i < ioc->mfi_sge_count; i++) { #ifdef COMPAT_FREEBSD32 if (cmd == MFI_CMD) { #endif /* Native */ addr = ioc->mfi_sgl[i].iov_base; len = ioc->mfi_sgl[i].iov_len; #ifdef COMPAT_FREEBSD32 } else { /* 32bit on 64bit */ ioc32 = (struct mfi_ioc_packet32 *)ioc; addr = PTRIN(ioc32->mfi_sgl[i].iov_base); len = ioc32->mfi_sgl[i].iov_len; } #endif error = copyout(temp, addr, len); if (error != 0) { device_printf(sc->mfi_dev, "Copy out failed\n"); goto out; } temp = &temp[len]; } } } if (ioc->mfi_sense_len) { /* get user-space sense ptr then copy out sense */ bcopy(&ioc->mfi_frame.raw[ioc->mfi_sense_off], &sense_ptr.sense_ptr_data[0], sizeof(sense_ptr.sense_ptr_data)); #ifdef COMPAT_FREEBSD32 if (cmd != MFI_CMD) { /* * not 64bit native so zero out any address * over 32bit */ sense_ptr.addr.high = 0; } #endif error = copyout(cm->cm_sense, sense_ptr.user_space, ioc->mfi_sense_len); if (error != 0) { device_printf(sc->mfi_dev, "Copy out failed\n"); goto out; } } ioc->mfi_frame.hdr.cmd_status = cm->cm_frame->header.cmd_status; out: mfi_config_unlock(sc, locked); if (data) free(data, M_MFIBUF); if (cm->cm_frame->header.cmd == MFI_CMD_STP) { for (i = 0; i < 2; i++) { if (sc->kbuff_arr[i]) { if (sc->mfi_kbuff_arr_busaddr != 0) bus_dmamap_unload( sc->mfi_kbuff_arr_dmat[i], sc->mfi_kbuff_arr_dmamap[i] ); if (sc->kbuff_arr[i] != NULL) bus_dmamem_free( sc->mfi_kbuff_arr_dmat[i], sc->kbuff_arr[i], sc->mfi_kbuff_arr_dmamap[i] ); if (sc->mfi_kbuff_arr_dmat[i] != NULL) bus_dma_tag_destroy( sc->mfi_kbuff_arr_dmat[i]); } } } if (cm) { mtx_lock(&sc->mfi_io_lock); mfi_release_command(cm); mtx_unlock(&sc->mfi_io_lock); } break; } case MFI_SET_AEN: aen = (struct mfi_ioc_aen *)arg; error = mfi_aen_register(sc, aen->aen_seq_num, aen->aen_class_locale); break; case MFI_LINUX_CMD_2: /* Firmware Linux ioctl shim */ { devclass_t devclass; struct mfi_linux_ioc_packet l_ioc; int adapter; devclass = devclass_find("mfi"); if (devclass == NULL) return (ENOENT); error = copyin(arg, &l_ioc, sizeof(l_ioc)); if (error) return (error); adapter = l_ioc.lioc_adapter_no; sc = devclass_get_softc(devclass, adapter); if (sc == NULL) return (ENOENT); return (mfi_linux_ioctl_int(sc->mfi_cdev, cmd, arg, flag, td)); break; } case MFI_LINUX_SET_AEN_2: /* AEN Linux ioctl shim */ { devclass_t devclass; struct mfi_linux_ioc_aen l_aen; int adapter; devclass = devclass_find("mfi"); if (devclass == NULL) return (ENOENT); error = copyin(arg, &l_aen, sizeof(l_aen)); if (error) return (error); adapter = l_aen.laen_adapter_no; sc = devclass_get_softc(devclass, adapter); if (sc == NULL) return (ENOENT); return (mfi_linux_ioctl_int(sc->mfi_cdev, cmd, arg, flag, td)); break; } #ifdef COMPAT_FREEBSD32 case MFIIO_PASSTHRU32: if (!SV_CURPROC_FLAG(SV_ILP32)) { error = ENOTTY; break; } iop_swab.ioc_frame = iop32->ioc_frame; iop_swab.buf_size = iop32->buf_size; iop_swab.buf = PTRIN(iop32->buf); iop = &iop_swab; /* FALLTHROUGH */ #endif case MFIIO_PASSTHRU: error = mfi_user_command(sc, iop); #ifdef COMPAT_FREEBSD32 if (cmd == MFIIO_PASSTHRU32) iop32->ioc_frame = iop_swab.ioc_frame; #endif break; default: device_printf(sc->mfi_dev, "IOCTL 0x%lx not handled\n", cmd); error = ENOTTY; break; } return (error); } static int mfi_linux_ioctl_int(struct cdev *dev, u_long cmd, caddr_t arg, int flag, struct thread *td) { struct mfi_softc *sc; struct mfi_linux_ioc_packet l_ioc; struct mfi_linux_ioc_aen l_aen; struct mfi_command *cm = NULL; struct mfi_aen *mfi_aen_entry; union mfi_sense_ptr sense_ptr; uint32_t context = 0; uint8_t *data = NULL, *temp; int i; int error, locked; sc = dev->si_drv1; error = 0; switch (cmd) { case MFI_LINUX_CMD_2: /* Firmware Linux ioctl shim */ error = copyin(arg, &l_ioc, sizeof(l_ioc)); if (error != 0) return (error); if (l_ioc.lioc_sge_count > MAX_LINUX_IOCTL_SGE) { return (EINVAL); } mtx_lock(&sc->mfi_io_lock); if ((cm = mfi_dequeue_free(sc)) == NULL) { mtx_unlock(&sc->mfi_io_lock); return (EBUSY); } mtx_unlock(&sc->mfi_io_lock); locked = 0; /* * save off original context since copying from user * will clobber some data */ context = cm->cm_frame->header.context; bcopy(l_ioc.lioc_frame.raw, cm->cm_frame, 2 * MFI_DCMD_FRAME_SIZE); /* this isn't quite right */ cm->cm_total_frame_size = (sizeof(union mfi_sgl) * l_ioc.lioc_sge_count) + l_ioc.lioc_sgl_off; cm->cm_frame->header.scsi_status = 0; cm->cm_frame->header.pad0 = 0; if (l_ioc.lioc_sge_count) cm->cm_sg = (union mfi_sgl *)&cm->cm_frame->bytes[l_ioc.lioc_sgl_off]; cm->cm_flags = 0; if (cm->cm_frame->header.flags & MFI_FRAME_DATAIN) cm->cm_flags |= MFI_CMD_DATAIN; if (cm->cm_frame->header.flags & MFI_FRAME_DATAOUT) cm->cm_flags |= MFI_CMD_DATAOUT; cm->cm_len = cm->cm_frame->header.data_len; if (cm->cm_len && (cm->cm_flags & (MFI_CMD_DATAIN | MFI_CMD_DATAOUT))) { cm->cm_data = data = malloc(cm->cm_len, M_MFIBUF, M_WAITOK | M_ZERO); if (cm->cm_data == NULL) { device_printf(sc->mfi_dev, "Malloc failed\n"); goto out; } } else { cm->cm_data = 0; } /* restore header context */ cm->cm_frame->header.context = context; temp = data; if (cm->cm_flags & MFI_CMD_DATAOUT) { for (i = 0; i < l_ioc.lioc_sge_count; i++) { error = copyin(PTRIN(l_ioc.lioc_sgl[i].iov_base), temp, l_ioc.lioc_sgl[i].iov_len); if (error != 0) { device_printf(sc->mfi_dev, "Copy in failed\n"); goto out; } temp = &temp[l_ioc.lioc_sgl[i].iov_len]; } } if (cm->cm_frame->header.cmd == MFI_CMD_DCMD) locked = mfi_config_lock(sc, cm->cm_frame->dcmd.opcode); if (cm->cm_frame->header.cmd == MFI_CMD_PD_SCSI_IO) { cm->cm_frame->pass.sense_addr_lo = (uint32_t)cm->cm_sense_busaddr; cm->cm_frame->pass.sense_addr_hi = (uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32); } mtx_lock(&sc->mfi_io_lock); error = mfi_check_command_pre(sc, cm); if (error) { mtx_unlock(&sc->mfi_io_lock); goto out; } if ((error = mfi_wait_command(sc, cm)) != 0) { device_printf(sc->mfi_dev, "Controller polled failed\n"); mtx_unlock(&sc->mfi_io_lock); goto out; } mfi_check_command_post(sc, cm); mtx_unlock(&sc->mfi_io_lock); temp = data; if (cm->cm_flags & MFI_CMD_DATAIN) { for (i = 0; i < l_ioc.lioc_sge_count; i++) { error = copyout(temp, PTRIN(l_ioc.lioc_sgl[i].iov_base), l_ioc.lioc_sgl[i].iov_len); if (error != 0) { device_printf(sc->mfi_dev, "Copy out failed\n"); goto out; } temp = &temp[l_ioc.lioc_sgl[i].iov_len]; } } if (l_ioc.lioc_sense_len) { /* get user-space sense ptr then copy out sense */ bcopy(&((struct mfi_linux_ioc_packet*)arg) ->lioc_frame.raw[l_ioc.lioc_sense_off], &sense_ptr.sense_ptr_data[0], sizeof(sense_ptr.sense_ptr_data)); #ifdef __amd64__ /* * only 32bit Linux support so zero out any * address over 32bit */ sense_ptr.addr.high = 0; #endif error = copyout(cm->cm_sense, sense_ptr.user_space, l_ioc.lioc_sense_len); if (error != 0) { device_printf(sc->mfi_dev, "Copy out failed\n"); goto out; } } error = copyout(&cm->cm_frame->header.cmd_status, &((struct mfi_linux_ioc_packet*)arg) ->lioc_frame.hdr.cmd_status, 1); if (error != 0) { device_printf(sc->mfi_dev, "Copy out failed\n"); goto out; } out: mfi_config_unlock(sc, locked); if (data) free(data, M_MFIBUF); if (cm) { mtx_lock(&sc->mfi_io_lock); mfi_release_command(cm); mtx_unlock(&sc->mfi_io_lock); } return (error); case MFI_LINUX_SET_AEN_2: /* AEN Linux ioctl shim */ error = copyin(arg, &l_aen, sizeof(l_aen)); if (error != 0) return (error); printf("AEN IMPLEMENTED for pid %d\n", curproc->p_pid); mfi_aen_entry = malloc(sizeof(struct mfi_aen), M_MFIBUF, M_WAITOK); mtx_lock(&sc->mfi_io_lock); if (mfi_aen_entry != NULL) { mfi_aen_entry->p = curproc; TAILQ_INSERT_TAIL(&sc->mfi_aen_pids, mfi_aen_entry, aen_link); } error = mfi_aen_register(sc, l_aen.laen_seq_num, l_aen.laen_class_locale); if (error != 0) { TAILQ_REMOVE(&sc->mfi_aen_pids, mfi_aen_entry, aen_link); free(mfi_aen_entry, M_MFIBUF); } mtx_unlock(&sc->mfi_io_lock); return (error); default: device_printf(sc->mfi_dev, "IOCTL 0x%lx not handled\n", cmd); error = ENOENT; break; } return (error); } static int mfi_poll(struct cdev *dev, int poll_events, struct thread *td) { struct mfi_softc *sc; int revents = 0; sc = dev->si_drv1; if (poll_events & (POLLIN | POLLRDNORM)) { if (sc->mfi_aen_triggered != 0) { revents |= poll_events & (POLLIN | POLLRDNORM); sc->mfi_aen_triggered = 0; } if (sc->mfi_aen_triggered == 0 && sc->mfi_aen_cm == NULL) { revents |= POLLERR; } } if (revents == 0) { if (poll_events & (POLLIN | POLLRDNORM)) { sc->mfi_poll_waiting = 1; selrecord(td, &sc->mfi_select); } } return revents; } static void mfi_dump_all(void) { struct mfi_softc *sc; struct mfi_command *cm; devclass_t dc; time_t deadline; int timedout; int i; dc = devclass_find("mfi"); if (dc == NULL) { printf("No mfi dev class\n"); return; } for (i = 0; ; i++) { sc = devclass_get_softc(dc, i); if (sc == NULL) break; device_printf(sc->mfi_dev, "Dumping\n\n"); timedout = 0; deadline = time_uptime - MFI_CMD_TIMEOUT; mtx_lock(&sc->mfi_io_lock); TAILQ_FOREACH(cm, &sc->mfi_busy, cm_link) { if (cm->cm_timestamp < deadline) { device_printf(sc->mfi_dev, "COMMAND %p TIMEOUT AFTER %d SECONDS\n", cm, (int)(time_uptime - cm->cm_timestamp)); MFI_PRINT_CMD(cm); timedout++; } } #if 0 if (timedout) MFI_DUMP_CMDS(SC); #endif mtx_unlock(&sc->mfi_io_lock); } return; } static void mfi_timeout(void *data) { struct mfi_softc *sc = (struct mfi_softc *)data; struct mfi_command *cm; time_t deadline; int timedout = 0; deadline = time_uptime - MFI_CMD_TIMEOUT; if (sc->adpreset == 0) { if (!mfi_tbolt_reset(sc)) { callout_reset(&sc->mfi_watchdog_callout, MFI_CMD_TIMEOUT * hz, mfi_timeout, sc); return; } } mtx_lock(&sc->mfi_io_lock); TAILQ_FOREACH(cm, &sc->mfi_busy, cm_link) { if (sc->mfi_aen_cm == cm || sc->mfi_map_sync_cm == cm) continue; if (cm->cm_timestamp < deadline) { if (sc->adpreset != 0 && sc->issuepend_done == 0) { cm->cm_timestamp = time_uptime; } else { device_printf(sc->mfi_dev, "COMMAND %p TIMEOUT AFTER %d SECONDS\n", cm, (int)(time_uptime - cm->cm_timestamp) ); MFI_PRINT_CMD(cm); MFI_VALIDATE_CMD(sc, cm); timedout++; } } } #if 0 if (timedout) MFI_DUMP_CMDS(SC); #endif mtx_unlock(&sc->mfi_io_lock); callout_reset(&sc->mfi_watchdog_callout, MFI_CMD_TIMEOUT * hz, mfi_timeout, sc); if (0) mfi_dump_all(); return; }