/*- * Copyright (c) 1997, 1998-2003 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver * * Written by Bill Paul * Senior Networking Software Engineer * Wind River Systems */ /* * This driver is designed to support RealTek's next generation of * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S, * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E. * * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible * with the older 8139 family, however it also supports a special * C+ mode of operation that provides several new performance enhancing * features. These include: * * o Descriptor based DMA mechanism. Each descriptor represents * a single packet fragment. Data buffers may be aligned on * any byte boundary. * * o 64-bit DMA * * o TCP/IP checksum offload for both RX and TX * * o High and normal priority transmit DMA rings * * o VLAN tag insertion and extraction * * o TCP large send (segmentation offload) * * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+ * programming API is fairly straightforward. The RX filtering, EEPROM * access and PHY access is the same as it is on the older 8139 series * chips. * * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the * same programming API and feature set as the 8139C+ with the following * differences and additions: * * o 1000Mbps mode * * o Jumbo frames * * o GMII and TBI ports/registers for interfacing with copper * or fiber PHYs * * o RX and TX DMA rings can have up to 1024 descriptors * (the 8139C+ allows a maximum of 64) * * o Slight differences in register layout from the 8139C+ * * The TX start and timer interrupt registers are at different locations * on the 8169 than they are on the 8139C+. Also, the status word in the * RX descriptor has a slightly different bit layout. The 8169 does not * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska' * copper gigE PHY. * * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs * (the 'S' stands for 'single-chip'). These devices have the same * programming API as the older 8169, but also have some vendor-specific * registers for the on-board PHY. The 8110S is a LAN-on-motherboard * part designed to be pin-compatible with the RealTek 8100 10/100 chip. * * This driver takes advantage of the RX and TX checksum offload and * VLAN tag insertion/extraction features. It also implements TX * interrupt moderation using the timer interrupt registers, which * significantly reduces TX interrupt load. There is also support * for jumbo frames, however the 8169/8169S/8110S can not transmit * jumbo frames larger than 7440, so the max MTU possible with this * driver is 7422 bytes. */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_device_polling.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_DEPEND(re, pci, 1, 1, 1); MODULE_DEPEND(re, ether, 1, 1, 1); MODULE_DEPEND(re, miibus, 1, 1, 1); /* "device miibus" required. See GENERIC if you get errors here. */ #include "miibus_if.h" /* Tunables. */ static int msi_disable = 0; TUNABLE_INT("hw.re.msi_disable", &msi_disable); static int prefer_iomap = 0; TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap); #define RE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) /* * Various supported device vendors/types and their names. */ static struct rl_type re_devs[] = { { DLINK_VENDORID, DLINK_DEVICEID_528T, 0, "D-Link DGE-528(T) Gigabit Ethernet Adapter" }, { RT_VENDORID, RT_DEVICEID_8139, 0, "RealTek 8139C+ 10/100BaseTX" }, { RT_VENDORID, RT_DEVICEID_8101E, 0, "RealTek 8101E/8102E/8102EL PCIe 10/100baseTX" }, { RT_VENDORID, RT_DEVICEID_8168, 0, "RealTek 8168/8168B/8168C/8168CP/8168D/8111B/8111C/8111CP PCIe " "Gigabit Ethernet" }, { RT_VENDORID, RT_DEVICEID_8169, 0, "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" }, { RT_VENDORID, RT_DEVICEID_8169SC, 0, "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" }, { COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0, "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" }, { LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0, "Linksys EG1032 (RTL8169S) Gigabit Ethernet" }, { USR_VENDORID, USR_DEVICEID_997902, 0, "US Robotics 997902 (RTL8169S) Gigabit Ethernet" } }; static struct rl_hwrev re_hwrevs[] = { { RL_HWREV_8139, RL_8139, "" }, { RL_HWREV_8139A, RL_8139, "A" }, { RL_HWREV_8139AG, RL_8139, "A-G" }, { RL_HWREV_8139B, RL_8139, "B" }, { RL_HWREV_8130, RL_8139, "8130" }, { RL_HWREV_8139C, RL_8139, "C" }, { RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" }, { RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"}, { RL_HWREV_8168_SPIN1, RL_8169, "8168"}, { RL_HWREV_8169, RL_8169, "8169"}, { RL_HWREV_8169S, RL_8169, "8169S"}, { RL_HWREV_8110S, RL_8169, "8110S"}, { RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB"}, { RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC"}, { RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL"}, { RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC"}, { RL_HWREV_8100, RL_8139, "8100"}, { RL_HWREV_8101, RL_8139, "8101"}, { RL_HWREV_8100E, RL_8169, "8100E"}, { RL_HWREV_8101E, RL_8169, "8101E"}, { RL_HWREV_8102E, RL_8169, "8102E"}, { RL_HWREV_8102EL, RL_8169, "8102EL"}, { RL_HWREV_8168_SPIN2, RL_8169, "8168"}, { RL_HWREV_8168_SPIN3, RL_8169, "8168"}, { RL_HWREV_8168C, RL_8169, "8168C/8111C"}, { RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C"}, { RL_HWREV_8168CP, RL_8169, "8168CP/8111CP"}, { RL_HWREV_8168D, RL_8169, "8168D"}, { 0, 0, NULL } }; static int re_probe (device_t); static int re_attach (device_t); static int re_detach (device_t); static int re_encap (struct rl_softc *, struct mbuf **); static void re_dma_map_addr (void *, bus_dma_segment_t *, int, int); static int re_allocmem (device_t, struct rl_softc *); static __inline void re_discard_rxbuf (struct rl_softc *, int); static int re_newbuf (struct rl_softc *, int); static int re_rx_list_init (struct rl_softc *); static int re_tx_list_init (struct rl_softc *); #ifdef RE_FIXUP_RX static __inline void re_fixup_rx (struct mbuf *); #endif static int re_rxeof (struct rl_softc *, int *); static void re_txeof (struct rl_softc *); #ifdef DEVICE_POLLING static int re_poll (struct ifnet *, enum poll_cmd, int); static int re_poll_locked (struct ifnet *, enum poll_cmd, int); #endif static int re_intr (void *); static void re_tick (void *); static void re_tx_task (void *, int); static void re_int_task (void *, int); static void re_start (struct ifnet *); static int re_ioctl (struct ifnet *, u_long, caddr_t); static void re_init (void *); static void re_init_locked (struct rl_softc *); static void re_stop (struct rl_softc *); static void re_watchdog (struct rl_softc *); static int re_suspend (device_t); static int re_resume (device_t); static int re_shutdown (device_t); static int re_ifmedia_upd (struct ifnet *); static void re_ifmedia_sts (struct ifnet *, struct ifmediareq *); static void re_eeprom_putbyte (struct rl_softc *, int); static void re_eeprom_getword (struct rl_softc *, int, u_int16_t *); static void re_read_eeprom (struct rl_softc *, caddr_t, int, int); static int re_gmii_readreg (device_t, int, int); static int re_gmii_writereg (device_t, int, int, int); static int re_miibus_readreg (device_t, int, int); static int re_miibus_writereg (device_t, int, int, int); static void re_miibus_statchg (device_t); static void re_set_rxmode (struct rl_softc *); static void re_reset (struct rl_softc *); static void re_setwol (struct rl_softc *); static void re_clrwol (struct rl_softc *); #ifdef RE_DIAG static int re_diag (struct rl_softc *); #endif static device_method_t re_methods[] = { /* Device interface */ DEVMETHOD(device_probe, re_probe), DEVMETHOD(device_attach, re_attach), DEVMETHOD(device_detach, re_detach), DEVMETHOD(device_suspend, re_suspend), DEVMETHOD(device_resume, re_resume), DEVMETHOD(device_shutdown, re_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, re_miibus_readreg), DEVMETHOD(miibus_writereg, re_miibus_writereg), DEVMETHOD(miibus_statchg, re_miibus_statchg), { 0, 0 } }; static driver_t re_driver = { "re", re_methods, sizeof(struct rl_softc) }; static devclass_t re_devclass; DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0); DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0); #define EE_SET(x) \ CSR_WRITE_1(sc, RL_EECMD, \ CSR_READ_1(sc, RL_EECMD) | x) #define EE_CLR(x) \ CSR_WRITE_1(sc, RL_EECMD, \ CSR_READ_1(sc, RL_EECMD) & ~x) /* * Send a read command and address to the EEPROM, check for ACK. */ static void re_eeprom_putbyte(struct rl_softc *sc, int addr) { int d, i; d = addr | (RL_9346_READ << sc->rl_eewidth); /* * Feed in each bit and strobe the clock. */ for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) { if (d & i) { EE_SET(RL_EE_DATAIN); } else { EE_CLR(RL_EE_DATAIN); } DELAY(100); EE_SET(RL_EE_CLK); DELAY(150); EE_CLR(RL_EE_CLK); DELAY(100); } } /* * Read a word of data stored in the EEPROM at address 'addr.' */ static void re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest) { int i; u_int16_t word = 0; /* * Send address of word we want to read. */ re_eeprom_putbyte(sc, addr); /* * Start reading bits from EEPROM. */ for (i = 0x8000; i; i >>= 1) { EE_SET(RL_EE_CLK); DELAY(100); if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT) word |= i; EE_CLR(RL_EE_CLK); DELAY(100); } *dest = word; } /* * Read a sequence of words from the EEPROM. */ static void re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt) { int i; u_int16_t word = 0, *ptr; CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM); DELAY(100); for (i = 0; i < cnt; i++) { CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL); re_eeprom_getword(sc, off + i, &word); CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL); ptr = (u_int16_t *)(dest + (i * 2)); *ptr = word; } CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM); } static int re_gmii_readreg(device_t dev, int phy, int reg) { struct rl_softc *sc; u_int32_t rval; int i; if (phy != 1) return (0); sc = device_get_softc(dev); /* Let the rgephy driver read the GMEDIASTAT register */ if (reg == RL_GMEDIASTAT) { rval = CSR_READ_1(sc, RL_GMEDIASTAT); return (rval); } CSR_WRITE_4(sc, RL_PHYAR, reg << 16); DELAY(1000); for (i = 0; i < RL_PHY_TIMEOUT; i++) { rval = CSR_READ_4(sc, RL_PHYAR); if (rval & RL_PHYAR_BUSY) break; DELAY(100); } if (i == RL_PHY_TIMEOUT) { device_printf(sc->rl_dev, "PHY read failed\n"); return (0); } return (rval & RL_PHYAR_PHYDATA); } static int re_gmii_writereg(device_t dev, int phy, int reg, int data) { struct rl_softc *sc; u_int32_t rval; int i; sc = device_get_softc(dev); CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) | (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY); DELAY(1000); for (i = 0; i < RL_PHY_TIMEOUT; i++) { rval = CSR_READ_4(sc, RL_PHYAR); if (!(rval & RL_PHYAR_BUSY)) break; DELAY(100); } if (i == RL_PHY_TIMEOUT) { device_printf(sc->rl_dev, "PHY write failed\n"); return (0); } return (0); } static int re_miibus_readreg(device_t dev, int phy, int reg) { struct rl_softc *sc; u_int16_t rval = 0; u_int16_t re8139_reg = 0; sc = device_get_softc(dev); if (sc->rl_type == RL_8169) { rval = re_gmii_readreg(dev, phy, reg); return (rval); } /* Pretend the internal PHY is only at address 0 */ if (phy) { return (0); } switch (reg) { case MII_BMCR: re8139_reg = RL_BMCR; break; case MII_BMSR: re8139_reg = RL_BMSR; break; case MII_ANAR: re8139_reg = RL_ANAR; break; case MII_ANER: re8139_reg = RL_ANER; break; case MII_ANLPAR: re8139_reg = RL_LPAR; break; case MII_PHYIDR1: case MII_PHYIDR2: return (0); /* * Allow the rlphy driver to read the media status * register. If we have a link partner which does not * support NWAY, this is the register which will tell * us the results of parallel detection. */ case RL_MEDIASTAT: rval = CSR_READ_1(sc, RL_MEDIASTAT); return (rval); default: device_printf(sc->rl_dev, "bad phy register\n"); return (0); } rval = CSR_READ_2(sc, re8139_reg); if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) { /* 8139C+ has different bit layout. */ rval &= ~(BMCR_LOOP | BMCR_ISO); } return (rval); } static int re_miibus_writereg(device_t dev, int phy, int reg, int data) { struct rl_softc *sc; u_int16_t re8139_reg = 0; int rval = 0; sc = device_get_softc(dev); if (sc->rl_type == RL_8169) { rval = re_gmii_writereg(dev, phy, reg, data); return (rval); } /* Pretend the internal PHY is only at address 0 */ if (phy) return (0); switch (reg) { case MII_BMCR: re8139_reg = RL_BMCR; if (sc->rl_type == RL_8139CPLUS) { /* 8139C+ has different bit layout. */ data &= ~(BMCR_LOOP | BMCR_ISO); } break; case MII_BMSR: re8139_reg = RL_BMSR; break; case MII_ANAR: re8139_reg = RL_ANAR; break; case MII_ANER: re8139_reg = RL_ANER; break; case MII_ANLPAR: re8139_reg = RL_LPAR; break; case MII_PHYIDR1: case MII_PHYIDR2: return (0); break; default: device_printf(sc->rl_dev, "bad phy register\n"); return (0); } CSR_WRITE_2(sc, re8139_reg, data); return (0); } static void re_miibus_statchg(device_t dev) { struct rl_softc *sc; struct ifnet *ifp; struct mii_data *mii; sc = device_get_softc(dev); mii = device_get_softc(sc->rl_miibus); ifp = sc->rl_ifp; if (mii == NULL || ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; sc->rl_flags &= ~RL_FLAG_LINK; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: sc->rl_flags |= RL_FLAG_LINK; break; case IFM_1000_T: if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0) break; sc->rl_flags |= RL_FLAG_LINK; break; default: break; } } /* * RealTek controllers does not provide any interface to * Tx/Rx MACs for resolved speed, duplex and flow-control * parameters. */ } /* * Set the RX configuration and 64-bit multicast hash filter. */ static void re_set_rxmode(struct rl_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; uint32_t hashes[2] = { 0, 0 }; uint32_t h, rxfilt; RL_LOCK_ASSERT(sc); ifp = sc->rl_ifp; rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD; if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) { if (ifp->if_flags & IFF_PROMISC) rxfilt |= RL_RXCFG_RX_ALLPHYS; /* * Unlike other hardwares, we have to explicitly set * RL_RXCFG_RX_MULTI to receive multicast frames in * promiscuous mode. */ rxfilt |= RL_RXCFG_RX_MULTI; hashes[0] = hashes[1] = 0xffffffff; goto done; } if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); } if_maddr_runlock(ifp); if (hashes[0] != 0 || hashes[1] != 0) { /* * For some unfathomable reason, RealTek decided to * reverse the order of the multicast hash registers * in the PCI Express parts. This means we have to * write the hash pattern in reverse order for those * devices. */ if ((sc->rl_flags & RL_FLAG_PCIE) != 0) { h = bswap32(hashes[0]); hashes[0] = bswap32(hashes[1]); hashes[1] = h; } rxfilt |= RL_RXCFG_RX_MULTI; } done: CSR_WRITE_4(sc, RL_MAR0, hashes[0]); CSR_WRITE_4(sc, RL_MAR4, hashes[1]); CSR_WRITE_4(sc, RL_RXCFG, rxfilt); } static void re_reset(struct rl_softc *sc) { int i; RL_LOCK_ASSERT(sc); CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET); for (i = 0; i < RL_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET)) break; } if (i == RL_TIMEOUT) device_printf(sc->rl_dev, "reset never completed!\n"); if ((sc->rl_flags & RL_FLAG_MACRESET) != 0) CSR_WRITE_1(sc, 0x82, 1); if (sc->rl_hwrev == RL_HWREV_8169S) re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0); } #ifdef RE_DIAG /* * The following routine is designed to test for a defect on some * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64# * lines connected to the bus, however for a 32-bit only card, they * should be pulled high. The result of this defect is that the * NIC will not work right if you plug it into a 64-bit slot: DMA * operations will be done with 64-bit transfers, which will fail * because the 64-bit data lines aren't connected. * * There's no way to work around this (short of talking a soldering * iron to the board), however we can detect it. The method we use * here is to put the NIC into digital loopback mode, set the receiver * to promiscuous mode, and then try to send a frame. We then compare * the frame data we sent to what was received. If the data matches, * then the NIC is working correctly, otherwise we know the user has * a defective NIC which has been mistakenly plugged into a 64-bit PCI * slot. In the latter case, there's no way the NIC can work correctly, * so we print out a message on the console and abort the device attach. */ static int re_diag(struct rl_softc *sc) { struct ifnet *ifp = sc->rl_ifp; struct mbuf *m0; struct ether_header *eh; struct rl_desc *cur_rx; u_int16_t status; u_int32_t rxstat; int total_len, i, error = 0, phyaddr; u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' }; u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' }; /* Allocate a single mbuf */ MGETHDR(m0, M_DONTWAIT, MT_DATA); if (m0 == NULL) return (ENOBUFS); RL_LOCK(sc); /* * Initialize the NIC in test mode. This sets the chip up * so that it can send and receive frames, but performs the * following special functions: * - Puts receiver in promiscuous mode * - Enables digital loopback mode * - Leaves interrupts turned off */ ifp->if_flags |= IFF_PROMISC; sc->rl_testmode = 1; re_init_locked(sc); sc->rl_flags |= RL_FLAG_LINK; if (sc->rl_type == RL_8169) phyaddr = 1; else phyaddr = 0; re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET); for (i = 0; i < RL_TIMEOUT; i++) { status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR); if (!(status & BMCR_RESET)) break; } re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP); CSR_WRITE_2(sc, RL_ISR, RL_INTRS); DELAY(100000); /* Put some data in the mbuf */ eh = mtod(m0, struct ether_header *); bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN); bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN); eh->ether_type = htons(ETHERTYPE_IP); m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN; /* * Queue the packet, start transmission. * Note: IF_HANDOFF() ultimately calls re_start() for us. */ CSR_WRITE_2(sc, RL_ISR, 0xFFFF); RL_UNLOCK(sc); /* XXX: re_diag must not be called when in ALTQ mode */ IF_HANDOFF(&ifp->if_snd, m0, ifp); RL_LOCK(sc); m0 = NULL; /* Wait for it to propagate through the chip */ DELAY(100000); for (i = 0; i < RL_TIMEOUT; i++) { status = CSR_READ_2(sc, RL_ISR); CSR_WRITE_2(sc, RL_ISR, status); if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) == (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) break; DELAY(10); } if (i == RL_TIMEOUT) { device_printf(sc->rl_dev, "diagnostic failed, failed to receive packet in" " loopback mode\n"); error = EIO; goto done; } /* * The packet should have been dumped into the first * entry in the RX DMA ring. Grab it from there. */ bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, sc->rl_ldata.rl_rx_list_map, BUS_DMASYNC_POSTREAD); bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, sc->rl_ldata.rl_rx_desc[0].rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, sc->rl_ldata.rl_rx_desc[0].rx_dmamap); m0 = sc->rl_ldata.rl_rx_desc[0].rx_m; sc->rl_ldata.rl_rx_desc[0].rx_m = NULL; eh = mtod(m0, struct ether_header *); cur_rx = &sc->rl_ldata.rl_rx_list[0]; total_len = RL_RXBYTES(cur_rx); rxstat = le32toh(cur_rx->rl_cmdstat); if (total_len != ETHER_MIN_LEN) { device_printf(sc->rl_dev, "diagnostic failed, received short packet\n"); error = EIO; goto done; } /* Test that the received packet data matches what we sent. */ if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) || bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) || ntohs(eh->ether_type) != ETHERTYPE_IP) { device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n"); device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n", dst, ":", src, ":", ETHERTYPE_IP); device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n", eh->ether_dhost, ":", eh->ether_shost, ":", ntohs(eh->ether_type)); device_printf(sc->rl_dev, "You may have a defective 32-bit " "NIC plugged into a 64-bit PCI slot.\n"); device_printf(sc->rl_dev, "Please re-install the NIC in a " "32-bit slot for proper operation.\n"); device_printf(sc->rl_dev, "Read the re(4) man page for more " "details.\n"); error = EIO; } done: /* Turn interface off, release resources */ sc->rl_testmode = 0; sc->rl_flags &= ~RL_FLAG_LINK; ifp->if_flags &= ~IFF_PROMISC; re_stop(sc); if (m0 != NULL) m_freem(m0); RL_UNLOCK(sc); return (error); } #endif /* * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int re_probe(device_t dev) { struct rl_type *t; uint16_t devid, vendor; uint16_t revid, sdevid; int i; vendor = pci_get_vendor(dev); devid = pci_get_device(dev); revid = pci_get_revid(dev); sdevid = pci_get_subdevice(dev); if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) { if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) { /* * Only attach to rev. 3 of the Linksys EG1032 adapter. * Rev. 2 is supported by sk(4). */ return (ENXIO); } } if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) { if (revid != 0x20) { /* 8139, let rl(4) take care of this device. */ return (ENXIO); } } t = re_devs; for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) { if (vendor == t->rl_vid && devid == t->rl_did) { device_set_desc(dev, t->rl_name); return (BUS_PROBE_DEFAULT); } } return (ENXIO); } /* * Map a single buffer address. */ static void re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { bus_addr_t *addr; if (error) return; KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); addr = arg; *addr = segs->ds_addr; } static int re_allocmem(device_t dev, struct rl_softc *sc) { bus_size_t rx_list_size, tx_list_size; int error; int i; rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc); tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc); /* * Allocate the parent bus DMA tag appropriate for PCI. * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD * register should be set. However some RealTek chips are known * to be buggy on DAC handling, therefore disable DAC by limiting * DMA address space to 32bit. PCIe variants of RealTek chips * may not have the limitation but I took safer path. */ error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->rl_parent_tag); if (error) { device_printf(dev, "could not allocate parent DMA tag\n"); return (error); } /* * Allocate map for TX mbufs. */ error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0, NULL, NULL, &sc->rl_ldata.rl_tx_mtag); if (error) { device_printf(dev, "could not allocate TX DMA tag\n"); return (error); } /* * Allocate map for RX mbufs. */ error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag); if (error) { device_printf(dev, "could not allocate RX DMA tag\n"); return (error); } /* * Allocate map for TX descriptor list. */ error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, tx_list_size, 1, tx_list_size, 0, NULL, NULL, &sc->rl_ldata.rl_tx_list_tag); if (error) { device_printf(dev, "could not allocate TX DMA ring tag\n"); return (error); } /* Allocate DMA'able memory for the TX ring */ error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag, (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->rl_ldata.rl_tx_list_map); if (error) { device_printf(dev, "could not allocate TX DMA ring\n"); return (error); } /* Load the map for the TX ring. */ sc->rl_ldata.rl_tx_list_addr = 0; error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag, sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list, tx_list_size, re_dma_map_addr, &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT); if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) { device_printf(dev, "could not load TX DMA ring\n"); return (ENOMEM); } /* Create DMA maps for TX buffers */ for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) { error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0, &sc->rl_ldata.rl_tx_desc[i].tx_dmamap); if (error) { device_printf(dev, "could not create DMA map for TX\n"); return (error); } } /* * Allocate map for RX descriptor list. */ error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, rx_list_size, 1, rx_list_size, 0, NULL, NULL, &sc->rl_ldata.rl_rx_list_tag); if (error) { device_printf(dev, "could not create RX DMA ring tag\n"); return (error); } /* Allocate DMA'able memory for the RX ring */ error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag, (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->rl_ldata.rl_rx_list_map); if (error) { device_printf(dev, "could not allocate RX DMA ring\n"); return (error); } /* Load the map for the RX ring. */ sc->rl_ldata.rl_rx_list_addr = 0; error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag, sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list, rx_list_size, re_dma_map_addr, &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT); if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) { device_printf(dev, "could not load RX DMA ring\n"); return (ENOMEM); } /* Create DMA maps for RX buffers */ error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0, &sc->rl_ldata.rl_rx_sparemap); if (error) { device_printf(dev, "could not create spare DMA map for RX\n"); return (error); } for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0, &sc->rl_ldata.rl_rx_desc[i].rx_dmamap); if (error) { device_printf(dev, "could not create DMA map for RX\n"); return (error); } } return (0); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int re_attach(device_t dev) { u_char eaddr[ETHER_ADDR_LEN]; u_int16_t as[ETHER_ADDR_LEN / 2]; struct rl_softc *sc; struct ifnet *ifp; struct rl_hwrev *hw_rev; int hwrev; u_int16_t devid, re_did = 0; int error = 0, rid, i; int msic, reg; uint8_t cfg; sc = device_get_softc(dev); sc->rl_dev = dev; mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0); /* * Map control/status registers. */ pci_enable_busmaster(dev); devid = pci_get_device(dev); /* * Prefer memory space register mapping over IO space. * Because RTL8169SC does not seem to work when memory mapping * is used always activate io mapping. */ if (devid == RT_DEVICEID_8169SC) prefer_iomap = 1; if (prefer_iomap == 0) { sc->rl_res_id = PCIR_BAR(1); sc->rl_res_type = SYS_RES_MEMORY; /* RTL8168/8101E seems to use different BARs. */ if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E) sc->rl_res_id = PCIR_BAR(2); } else { sc->rl_res_id = PCIR_BAR(0); sc->rl_res_type = SYS_RES_IOPORT; } sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type, &sc->rl_res_id, RF_ACTIVE); if (sc->rl_res == NULL && prefer_iomap == 0) { sc->rl_res_id = PCIR_BAR(0); sc->rl_res_type = SYS_RES_IOPORT; sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type, &sc->rl_res_id, RF_ACTIVE); } if (sc->rl_res == NULL) { device_printf(dev, "couldn't map ports/memory\n"); error = ENXIO; goto fail; } sc->rl_btag = rman_get_bustag(sc->rl_res); sc->rl_bhandle = rman_get_bushandle(sc->rl_res); msic = 0; if (pci_find_extcap(dev, PCIY_EXPRESS, ®) == 0) { sc->rl_flags |= RL_FLAG_PCIE; msic = pci_msi_count(dev); if (bootverbose) device_printf(dev, "MSI count : %d\n", msic); } if (msic > 0 && msi_disable == 0) { msic = 1; if (pci_alloc_msi(dev, &msic) == 0) { if (msic == RL_MSI_MESSAGES) { device_printf(dev, "Using %d MSI messages\n", msic); sc->rl_flags |= RL_FLAG_MSI; /* Explicitly set MSI enable bit. */ CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); cfg = CSR_READ_1(sc, RL_CFG2); cfg |= RL_CFG2_MSI; CSR_WRITE_1(sc, RL_CFG2, cfg); CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); } else pci_release_msi(dev); } } /* Allocate interrupt */ if ((sc->rl_flags & RL_FLAG_MSI) == 0) { rid = 0; sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->rl_irq[0] == NULL) { device_printf(dev, "couldn't allocate IRQ resources\n"); error = ENXIO; goto fail; } } else { for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) { sc->rl_irq[i] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE); if (sc->rl_irq[i] == NULL) { device_printf(dev, "couldn't llocate IRQ resources for " "message %d\n", rid); error = ENXIO; goto fail; } } } if ((sc->rl_flags & RL_FLAG_MSI) == 0) { CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); cfg = CSR_READ_1(sc, RL_CFG2); if ((cfg & RL_CFG2_MSI) != 0) { device_printf(dev, "turning off MSI enable bit.\n"); cfg &= ~RL_CFG2_MSI; CSR_WRITE_1(sc, RL_CFG2, cfg); } CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); } /* Reset the adapter. */ RL_LOCK(sc); re_reset(sc); RL_UNLOCK(sc); hw_rev = re_hwrevs; hwrev = CSR_READ_4(sc, RL_TXCFG); switch (hwrev & 0x70000000) { case 0x00000000: case 0x10000000: device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000); hwrev &= (RL_TXCFG_HWREV | 0x80000000); break; default: device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000); hwrev &= RL_TXCFG_HWREV; break; } device_printf(dev, "MAC rev. 0x%08x\n", hwrev & 0x00700000); while (hw_rev->rl_desc != NULL) { if (hw_rev->rl_rev == hwrev) { sc->rl_type = hw_rev->rl_type; sc->rl_hwrev = hw_rev->rl_rev; break; } hw_rev++; } if (hw_rev->rl_desc == NULL) { device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev); error = ENXIO; goto fail; } switch (hw_rev->rl_rev) { case RL_HWREV_8139CPLUS: sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_FASTETHER | RL_FLAG_AUTOPAD; break; case RL_HWREV_8100E: case RL_HWREV_8101E: sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER; break; case RL_HWREV_8102E: case RL_HWREV_8102EL: sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD; break; case RL_HWREV_8168_SPIN1: case RL_HWREV_8168_SPIN2: sc->rl_flags |= RL_FLAG_WOLRXENB; /* FALLTHROUGH */ case RL_HWREV_8168_SPIN3: sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT; break; case RL_HWREV_8168C_SPIN2: sc->rl_flags |= RL_FLAG_MACSLEEP; /* FALLTHROUGH */ case RL_HWREV_8168C: if ((hwrev & 0x00700000) == 0x00200000) sc->rl_flags |= RL_FLAG_MACSLEEP; /* FALLTHROUGH */ case RL_HWREV_8168CP: case RL_HWREV_8168D: sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD; /* * These controllers support jumbo frame but it seems * that enabling it requires touching additional magic * registers. Depending on MAC revisions some * controllers need to disable checksum offload. So * disable jumbo frame until I have better idea what * it really requires to make it support. * RTL8168C/CP : supports up to 6KB jumbo frame. * RTL8111C/CP : supports up to 9KB jumbo frame. */ sc->rl_flags |= RL_FLAG_NOJUMBO; break; case RL_HWREV_8169_8110SB: case RL_HWREV_8169_8110SBL: case RL_HWREV_8169_8110SC: case RL_HWREV_8169_8110SCE: sc->rl_flags |= RL_FLAG_PHYWAKE; /* FALLTHROUGH */ case RL_HWREV_8169: case RL_HWREV_8169S: case RL_HWREV_8110S: sc->rl_flags |= RL_FLAG_MACRESET; break; default: break; } /* Enable PME. */ CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); cfg = CSR_READ_1(sc, RL_CFG1); cfg |= RL_CFG1_PME; CSR_WRITE_1(sc, RL_CFG1, cfg); cfg = CSR_READ_1(sc, RL_CFG5); cfg &= RL_CFG5_PME_STS; CSR_WRITE_1(sc, RL_CFG5, cfg); CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); if ((sc->rl_flags & RL_FLAG_PAR) != 0) { /* * XXX Should have a better way to extract station * address from EEPROM. */ for (i = 0; i < ETHER_ADDR_LEN; i++) eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i); } else { sc->rl_eewidth = RL_9356_ADDR_LEN; re_read_eeprom(sc, (caddr_t)&re_did, 0, 1); if (re_did != 0x8129) sc->rl_eewidth = RL_9346_ADDR_LEN; /* * Get station address from the EEPROM. */ re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3); for (i = 0; i < ETHER_ADDR_LEN / 2; i++) as[i] = le16toh(as[i]); bcopy(as, eaddr, sizeof(eaddr)); } if (sc->rl_type == RL_8169) { /* Set RX length mask and number of descriptors. */ sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN; sc->rl_txstart = RL_GTXSTART; sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT; sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT; } else { /* Set RX length mask and number of descriptors. */ sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN; sc->rl_txstart = RL_TXSTART; sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT; sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT; } error = re_allocmem(dev, sc); if (error) goto fail; ifp = sc->rl_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "can not if_alloc()\n"); error = ENOSPC; goto fail; } /* Take controller out of deep sleep mode. */ if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) { if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80) CSR_WRITE_1(sc, RL_GPIO, CSR_READ_1(sc, RL_GPIO) | 0x01); else CSR_WRITE_1(sc, RL_GPIO, CSR_READ_1(sc, RL_GPIO) & ~0x01); } /* Take PHY out of power down mode. */ if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) { re_gmii_writereg(dev, 1, 0x1f, 0); re_gmii_writereg(dev, 1, 0x0e, 0); } /* Do MII setup */ if (mii_phy_probe(dev, &sc->rl_miibus, re_ifmedia_upd, re_ifmedia_sts)) { device_printf(dev, "MII without any phy!\n"); error = ENXIO; goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = re_ioctl; ifp->if_start = re_start; ifp->if_hwassist = RE_CSUM_FEATURES; ifp->if_capabilities = IFCAP_HWCSUM; ifp->if_capenable = ifp->if_capabilities; ifp->if_init = re_init; IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN); ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN; IFQ_SET_READY(&ifp->if_snd); TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp); TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc); /* * XXX * Still have no idea how to make TSO work on 8168C, 8168CP, * 8111C and 8111CP. */ if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) { ifp->if_hwassist |= CSUM_TSO; ifp->if_capabilities |= IFCAP_TSO4; } /* * Call MI attach routine. */ ether_ifattach(ifp, eaddr); /* VLAN capability setup */ ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING; if (ifp->if_capabilities & IFCAP_HWCSUM) ifp->if_capabilities |= IFCAP_VLAN_HWCSUM; /* Enable WOL if PM is supported. */ if (pci_find_extcap(sc->rl_dev, PCIY_PMG, ®) == 0) ifp->if_capabilities |= IFCAP_WOL; ifp->if_capenable = ifp->if_capabilities; /* * Don't enable TSO by default. Under certain * circumtances the controller generated corrupted * packets in TSO size. */ ifp->if_hwassist &= ~CSUM_TSO; ifp->if_capenable &= ~IFCAP_TSO4; #ifdef DEVICE_POLLING ifp->if_capabilities |= IFCAP_POLLING; #endif /* * Tell the upper layer(s) we support long frames. * Must appear after the call to ether_ifattach() because * ether_ifattach() sets ifi_hdrlen to the default value. */ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); #ifdef RE_DIAG /* * Perform hardware diagnostic on the original RTL8169. * Some 32-bit cards were incorrectly wired and would * malfunction if plugged into a 64-bit slot. */ if (hwrev == RL_HWREV_8169) { error = re_diag(sc); if (error) { device_printf(dev, "attach aborted due to hardware diag failure\n"); ether_ifdetach(ifp); goto fail; } } #endif /* Hook interrupt last to avoid having to lock softc */ if ((sc->rl_flags & RL_FLAG_MSI) == 0) error = bus_setup_intr(dev, sc->rl_irq[0], INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc, &sc->rl_intrhand[0]); else { for (i = 0; i < RL_MSI_MESSAGES; i++) { error = bus_setup_intr(dev, sc->rl_irq[i], INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc, &sc->rl_intrhand[i]); if (error != 0) break; } } if (error) { device_printf(dev, "couldn't set up irq\n"); ether_ifdetach(ifp); } fail: if (error) re_detach(dev); return (error); } /* * Shutdown hardware and free up resources. This can be called any * time after the mutex has been initialized. It is called in both * the error case in attach and the normal detach case so it needs * to be careful about only freeing resources that have actually been * allocated. */ static int re_detach(device_t dev) { struct rl_softc *sc; struct ifnet *ifp; int i, rid; sc = device_get_softc(dev); ifp = sc->rl_ifp; KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized")); /* These should only be active if attach succeeded */ if (device_is_attached(dev)) { #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) ether_poll_deregister(ifp); #endif RL_LOCK(sc); #if 0 sc->suspended = 1; #endif re_stop(sc); RL_UNLOCK(sc); callout_drain(&sc->rl_stat_callout); taskqueue_drain(taskqueue_fast, &sc->rl_inttask); taskqueue_drain(taskqueue_fast, &sc->rl_txtask); /* * Force off the IFF_UP flag here, in case someone * still had a BPF descriptor attached to this * interface. If they do, ether_ifdetach() will cause * the BPF code to try and clear the promisc mode * flag, which will bubble down to re_ioctl(), * which will try to call re_init() again. This will * turn the NIC back on and restart the MII ticker, * which will panic the system when the kernel tries * to invoke the re_tick() function that isn't there * anymore. */ ifp->if_flags &= ~IFF_UP; ether_ifdetach(ifp); } if (sc->rl_miibus) device_delete_child(dev, sc->rl_miibus); bus_generic_detach(dev); /* * The rest is resource deallocation, so we should already be * stopped here. */ for (i = 0; i < RL_MSI_MESSAGES; i++) { if (sc->rl_intrhand[i] != NULL) { bus_teardown_intr(dev, sc->rl_irq[i], sc->rl_intrhand[i]); sc->rl_intrhand[i] = NULL; } } if (ifp != NULL) if_free(ifp); if ((sc->rl_flags & RL_FLAG_MSI) == 0) { if (sc->rl_irq[0] != NULL) { bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq[0]); sc->rl_irq[0] = NULL; } } else { for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) { if (sc->rl_irq[i] != NULL) { bus_release_resource(dev, SYS_RES_IRQ, rid, sc->rl_irq[i]); sc->rl_irq[i] = NULL; } } pci_release_msi(dev); } if (sc->rl_res) bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id, sc->rl_res); /* Unload and free the RX DMA ring memory and map */ if (sc->rl_ldata.rl_rx_list_tag) { bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag, sc->rl_ldata.rl_rx_list_map); bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag, sc->rl_ldata.rl_rx_list, sc->rl_ldata.rl_rx_list_map); bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag); } /* Unload and free the TX DMA ring memory and map */ if (sc->rl_ldata.rl_tx_list_tag) { bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag, sc->rl_ldata.rl_tx_list_map); bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag, sc->rl_ldata.rl_tx_list, sc->rl_ldata.rl_tx_list_map); bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag); } /* Destroy all the RX and TX buffer maps */ if (sc->rl_ldata.rl_tx_mtag) { for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag, sc->rl_ldata.rl_tx_desc[i].tx_dmamap); bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag); } if (sc->rl_ldata.rl_rx_mtag) { for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag, sc->rl_ldata.rl_rx_desc[i].rx_dmamap); if (sc->rl_ldata.rl_rx_sparemap) bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag, sc->rl_ldata.rl_rx_sparemap); bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag); } /* Unload and free the stats buffer and map */ if (sc->rl_ldata.rl_stag) { bus_dmamap_unload(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_rx_list_map); bus_dmamem_free(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap); bus_dma_tag_destroy(sc->rl_ldata.rl_stag); } if (sc->rl_parent_tag) bus_dma_tag_destroy(sc->rl_parent_tag); mtx_destroy(&sc->rl_mtx); return (0); } static __inline void re_discard_rxbuf(struct rl_softc *sc, int idx) { struct rl_desc *desc; struct rl_rxdesc *rxd; uint32_t cmdstat; rxd = &sc->rl_ldata.rl_rx_desc[idx]; desc = &sc->rl_ldata.rl_rx_list[idx]; desc->rl_vlanctl = 0; cmdstat = rxd->rx_size; if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1) cmdstat |= RL_RDESC_CMD_EOR; desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN); } static int re_newbuf(struct rl_softc *sc, int idx) { struct mbuf *m; struct rl_rxdesc *rxd; bus_dma_segment_t segs[1]; bus_dmamap_t map; struct rl_desc *desc; uint32_t cmdstat; int error, nsegs; m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = MCLBYTES; #ifdef RE_FIXUP_RX /* * This is part of an evil trick to deal with non-x86 platforms. * The RealTek chip requires RX buffers to be aligned on 64-bit * boundaries, but that will hose non-x86 machines. To get around * this, we leave some empty space at the start of each buffer * and for non-x86 hosts, we copy the buffer back six bytes * to achieve word alignment. This is slightly more efficient * than allocating a new buffer, copying the contents, and * discarding the old buffer. */ m_adj(m, RE_ETHER_ALIGN); #endif error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag, sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { m_freem(m); return (ENOBUFS); } KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs)); rxd = &sc->rl_ldata.rl_rx_desc[idx]; if (rxd->rx_m != NULL) { bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap); } rxd->rx_m = m; map = rxd->rx_dmamap; rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap; rxd->rx_size = segs[0].ds_len; sc->rl_ldata.rl_rx_sparemap = map; bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD); desc = &sc->rl_ldata.rl_rx_list[idx]; desc->rl_vlanctl = 0; desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr)); desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr)); cmdstat = segs[0].ds_len; if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1) cmdstat |= RL_RDESC_CMD_EOR; desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN); return (0); } #ifdef RE_FIXUP_RX static __inline void re_fixup_rx(struct mbuf *m) { int i; uint16_t *src, *dst; src = mtod(m, uint16_t *); dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src; for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) *dst++ = *src++; m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN; } #endif static int re_tx_list_init(struct rl_softc *sc) { struct rl_desc *desc; int i; RL_LOCK_ASSERT(sc); bzero(sc->rl_ldata.rl_tx_list, sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc)); for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) sc->rl_ldata.rl_tx_desc[i].tx_m = NULL; /* Set EOR. */ desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1]; desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR); bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); sc->rl_ldata.rl_tx_prodidx = 0; sc->rl_ldata.rl_tx_considx = 0; sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt; return (0); } static int re_rx_list_init(struct rl_softc *sc) { int error, i; bzero(sc->rl_ldata.rl_rx_list, sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc)); for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { sc->rl_ldata.rl_rx_desc[i].rx_m = NULL; if ((error = re_newbuf(sc, i)) != 0) return (error); } /* Flush the RX descriptors */ bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, sc->rl_ldata.rl_rx_list_map, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); sc->rl_ldata.rl_rx_prodidx = 0; sc->rl_head = sc->rl_tail = NULL; return (0); } /* * RX handler for C+ and 8169. For the gigE chips, we support * the reception of jumbo frames that have been fragmented * across multiple 2K mbuf cluster buffers. */ static int re_rxeof(struct rl_softc *sc, int *rx_npktsp) { struct mbuf *m; struct ifnet *ifp; int i, total_len; struct rl_desc *cur_rx; u_int32_t rxstat, rxvlan; int maxpkt = 16, rx_npkts = 0; RL_LOCK_ASSERT(sc); ifp = sc->rl_ifp; /* Invalidate the descriptor memory */ bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, sc->rl_ldata.rl_rx_list_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0; i = RL_RX_DESC_NXT(sc, i)) { cur_rx = &sc->rl_ldata.rl_rx_list[i]; rxstat = le32toh(cur_rx->rl_cmdstat); if ((rxstat & RL_RDESC_STAT_OWN) != 0) break; total_len = rxstat & sc->rl_rxlenmask; rxvlan = le32toh(cur_rx->rl_vlanctl); m = sc->rl_ldata.rl_rx_desc[i].rx_m; if (!(rxstat & RL_RDESC_STAT_EOF)) { if (re_newbuf(sc, i) != 0) { /* * If this is part of a multi-fragment packet, * discard all the pieces. */ if (sc->rl_head != NULL) { m_freem(sc->rl_head); sc->rl_head = sc->rl_tail = NULL; } re_discard_rxbuf(sc, i); continue; } m->m_len = RE_RX_DESC_BUFLEN; if (sc->rl_head == NULL) sc->rl_head = sc->rl_tail = m; else { m->m_flags &= ~M_PKTHDR; sc->rl_tail->m_next = m; sc->rl_tail = m; } continue; } /* * NOTE: for the 8139C+, the frame length field * is always 12 bits in size, but for the gigE chips, * it is 13 bits (since the max RX frame length is 16K). * Unfortunately, all 32 bits in the status word * were already used, so to make room for the extra * length bit, RealTek took out the 'frame alignment * error' bit and shifted the other status bits * over one slot. The OWN, EOR, FS and LS bits are * still in the same places. We have already extracted * the frame length and checked the OWN bit, so rather * than using an alternate bit mapping, we shift the * status bits one space to the right so we can evaluate * them using the 8169 status as though it was in the * same format as that of the 8139C+. */ if (sc->rl_type == RL_8169) rxstat >>= 1; /* * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be * set, but if CRC is clear, it will still be a valid frame. */ if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 && (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) { ifp->if_ierrors++; /* * If this is part of a multi-fragment packet, * discard all the pieces. */ if (sc->rl_head != NULL) { m_freem(sc->rl_head); sc->rl_head = sc->rl_tail = NULL; } re_discard_rxbuf(sc, i); continue; } /* * If allocating a replacement mbuf fails, * reload the current one. */ if (re_newbuf(sc, i) != 0) { ifp->if_iqdrops++; if (sc->rl_head != NULL) { m_freem(sc->rl_head); sc->rl_head = sc->rl_tail = NULL; } re_discard_rxbuf(sc, i); continue; } if (sc->rl_head != NULL) { m->m_len = total_len % RE_RX_DESC_BUFLEN; if (m->m_len == 0) m->m_len = RE_RX_DESC_BUFLEN; /* * Special case: if there's 4 bytes or less * in this buffer, the mbuf can be discarded: * the last 4 bytes is the CRC, which we don't * care about anyway. */ if (m->m_len <= ETHER_CRC_LEN) { sc->rl_tail->m_len -= (ETHER_CRC_LEN - m->m_len); m_freem(m); } else { m->m_len -= ETHER_CRC_LEN; m->m_flags &= ~M_PKTHDR; sc->rl_tail->m_next = m; } m = sc->rl_head; sc->rl_head = sc->rl_tail = NULL; m->m_pkthdr.len = total_len - ETHER_CRC_LEN; } else m->m_pkthdr.len = m->m_len = (total_len - ETHER_CRC_LEN); #ifdef RE_FIXUP_RX re_fixup_rx(m); #endif ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; /* Do RX checksumming if enabled */ if (ifp->if_capenable & IFCAP_RXCSUM) { if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) { /* Check IP header checksum */ if (rxstat & RL_RDESC_STAT_PROTOID) m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if (!(rxstat & RL_RDESC_STAT_IPSUMBAD)) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; /* Check TCP/UDP checksum */ if ((RL_TCPPKT(rxstat) && !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) || (RL_UDPPKT(rxstat) && !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID|CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } } else { /* * RTL8168C/RTL816CP/RTL8111C/RTL8111CP */ if ((rxstat & RL_RDESC_STAT_PROTOID) && (rxvlan & RL_RDESC_IPV4)) m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) && (rxvlan & RL_RDESC_IPV4)) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; if (((rxstat & RL_RDESC_STAT_TCP) && !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) || ((rxstat & RL_RDESC_STAT_UDP) && !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID|CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } } } maxpkt--; if (rxvlan & RL_RDESC_VLANCTL_TAG) { m->m_pkthdr.ether_vtag = bswap16((rxvlan & RL_RDESC_VLANCTL_DATA)); m->m_flags |= M_VLANTAG; } RL_UNLOCK(sc); (*ifp->if_input)(ifp, m); RL_LOCK(sc); rx_npkts++; } /* Flush the RX DMA ring */ bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, sc->rl_ldata.rl_rx_list_map, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); sc->rl_ldata.rl_rx_prodidx = i; if (rx_npktsp != NULL) *rx_npktsp = rx_npkts; if (maxpkt) return(EAGAIN); return(0); } static void re_txeof(struct rl_softc *sc) { struct ifnet *ifp; struct rl_txdesc *txd; u_int32_t txstat; int cons; cons = sc->rl_ldata.rl_tx_considx; if (cons == sc->rl_ldata.rl_tx_prodidx) return; ifp = sc->rl_ifp; /* Invalidate the TX descriptor list */ bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); for (; cons != sc->rl_ldata.rl_tx_prodidx; cons = RL_TX_DESC_NXT(sc, cons)) { txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat); if (txstat & RL_TDESC_STAT_OWN) break; /* * We only stash mbufs in the last descriptor * in a fragment chain, which also happens to * be the only place where the TX status bits * are valid. */ if (txstat & RL_TDESC_CMD_EOF) { txd = &sc->rl_ldata.rl_tx_desc[cons]; bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap); KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbufs!", __func__)); m_freem(txd->tx_m); txd->tx_m = NULL; if (txstat & (RL_TDESC_STAT_EXCESSCOL| RL_TDESC_STAT_COLCNT)) ifp->if_collisions++; if (txstat & RL_TDESC_STAT_TXERRSUM) ifp->if_oerrors++; else ifp->if_opackets++; } sc->rl_ldata.rl_tx_free++; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; } sc->rl_ldata.rl_tx_considx = cons; /* No changes made to the TX ring, so no flush needed */ if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) { #ifdef RE_TX_MODERATION /* * If not all descriptors have been reaped yet, reload * the timer so that we will eventually get another * interrupt that will cause us to re-enter this routine. * This is done in case the transmitter has gone idle. */ CSR_WRITE_4(sc, RL_TIMERCNT, 1); #endif } else sc->rl_watchdog_timer = 0; } static void re_tick(void *xsc) { struct rl_softc *sc; struct mii_data *mii; sc = xsc; RL_LOCK_ASSERT(sc); mii = device_get_softc(sc->rl_miibus); mii_tick(mii); if ((sc->rl_flags & RL_FLAG_LINK) == 0) re_miibus_statchg(sc->rl_dev); /* * Reclaim transmitted frames here. Technically it is not * necessary to do here but it ensures periodic reclamation * regardless of Tx completion interrupt which seems to be * lost on PCIe based controllers under certain situations. */ re_txeof(sc); re_watchdog(sc); callout_reset(&sc->rl_stat_callout, hz, re_tick, sc); } #ifdef DEVICE_POLLING static int re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) { struct rl_softc *sc = ifp->if_softc; int rx_npkts = 0; RL_LOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) rx_npkts = re_poll_locked(ifp, cmd, count); RL_UNLOCK(sc); return (rx_npkts); } static int re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count) { struct rl_softc *sc = ifp->if_softc; int rx_npkts; RL_LOCK_ASSERT(sc); sc->rxcycles = count; re_rxeof(sc, &rx_npkts); re_txeof(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask); if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ u_int16_t status; status = CSR_READ_2(sc, RL_ISR); if (status == 0xffff) return (rx_npkts); if (status) CSR_WRITE_2(sc, RL_ISR, status); if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) && (sc->rl_flags & RL_FLAG_PCIE)) CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); /* * XXX check behaviour on receiver stalls. */ if (status & RL_ISR_SYSTEM_ERR) re_init_locked(sc); } return (rx_npkts); } #endif /* DEVICE_POLLING */ static int re_intr(void *arg) { struct rl_softc *sc; uint16_t status; sc = arg; status = CSR_READ_2(sc, RL_ISR); if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0) return (FILTER_STRAY); CSR_WRITE_2(sc, RL_IMR, 0); taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask); return (FILTER_HANDLED); } static void re_int_task(void *arg, int npending) { struct rl_softc *sc; struct ifnet *ifp; u_int16_t status; int rval = 0; sc = arg; ifp = sc->rl_ifp; RL_LOCK(sc); status = CSR_READ_2(sc, RL_ISR); CSR_WRITE_2(sc, RL_ISR, status); if (sc->suspended || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { RL_UNLOCK(sc); return; } #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) { RL_UNLOCK(sc); return; } #endif if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW)) rval = re_rxeof(sc, NULL); /* * Some chips will ignore a second TX request issued * while an existing transmission is in progress. If * the transmitter goes idle but there are still * packets waiting to be sent, we need to restart the * channel here to flush them out. This only seems to * be required with the PCIe devices. */ if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) && (sc->rl_flags & RL_FLAG_PCIE)) CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); if (status & ( #ifdef RE_TX_MODERATION RL_ISR_TIMEOUT_EXPIRED| #else RL_ISR_TX_OK| #endif RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL)) re_txeof(sc); if (status & RL_ISR_SYSTEM_ERR) re_init_locked(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask); RL_UNLOCK(sc); if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) { taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask); return; } CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); } static int re_encap(struct rl_softc *sc, struct mbuf **m_head) { struct rl_txdesc *txd, *txd_last; bus_dma_segment_t segs[RL_NTXSEGS]; bus_dmamap_t map; struct mbuf *m_new; struct rl_desc *desc; int nsegs, prod; int i, error, ei, si; int padlen; uint32_t cmdstat, csum_flags, vlanctl; RL_LOCK_ASSERT(sc); M_ASSERTPKTHDR((*m_head)); /* * With some of the RealTek chips, using the checksum offload * support in conjunction with the autopadding feature results * in the transmission of corrupt frames. For example, if we * need to send a really small IP fragment that's less than 60 * bytes in size, and IP header checksumming is enabled, the * resulting ethernet frame that appears on the wire will * have garbled payload. To work around this, if TX IP checksum * offload is enabled, we always manually pad short frames out * to the minimum ethernet frame size. */ if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 && (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN && ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) { padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len; if (M_WRITABLE(*m_head) == 0) { /* Get a writable copy. */ m_new = m_dup(*m_head, M_DONTWAIT); m_freem(*m_head); if (m_new == NULL) { *m_head = NULL; return (ENOBUFS); } *m_head = m_new; } if ((*m_head)->m_next != NULL || M_TRAILINGSPACE(*m_head) < padlen) { m_new = m_defrag(*m_head, M_DONTWAIT); if (m_new == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOBUFS); } } else m_new = *m_head; /* * Manually pad short frames, and zero the pad space * to avoid leaking data. */ bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen); m_new->m_pkthdr.len += padlen; m_new->m_len = m_new->m_pkthdr.len; *m_head = m_new; } prod = sc->rl_ldata.rl_tx_prodidx; txd = &sc->rl_ldata.rl_tx_desc[prod]; error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT); if (error == EFBIG) { m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS); if (m_new == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOBUFS); } *m_head = m_new; error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { m_freem(*m_head); *m_head = NULL; return (error); } } else if (error != 0) return (error); if (nsegs == 0) { m_freem(*m_head); *m_head = NULL; return (EIO); } /* Check for number of available descriptors. */ if (sc->rl_ldata.rl_tx_free - nsegs <= 1) { bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap); return (ENOBUFS); } bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE); /* * Set up checksum offload. Note: checksum offload bits must * appear in all descriptors of a multi-descriptor transmit * attempt. This is according to testing done with an 8169 * chip. This is a requirement. */ vlanctl = 0; csum_flags = 0; if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) csum_flags = RL_TDESC_CMD_LGSEND | ((uint32_t)(*m_head)->m_pkthdr.tso_segsz << RL_TDESC_CMD_MSSVAL_SHIFT); else { /* * Unconditionally enable IP checksum if TCP or UDP * checksum is required. Otherwise, TCP/UDP checksum * does't make effects. */ if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) { if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) { csum_flags |= RL_TDESC_CMD_IPCSUM; if (((*m_head)->m_pkthdr.csum_flags & CSUM_TCP) != 0) csum_flags |= RL_TDESC_CMD_TCPCSUM; if (((*m_head)->m_pkthdr.csum_flags & CSUM_UDP) != 0) csum_flags |= RL_TDESC_CMD_UDPCSUM; } else { vlanctl |= RL_TDESC_CMD_IPCSUMV2; if (((*m_head)->m_pkthdr.csum_flags & CSUM_TCP) != 0) vlanctl |= RL_TDESC_CMD_TCPCSUMV2; if (((*m_head)->m_pkthdr.csum_flags & CSUM_UDP) != 0) vlanctl |= RL_TDESC_CMD_UDPCSUMV2; } } } /* * Set up hardware VLAN tagging. Note: vlan tag info must * appear in all descriptors of a multi-descriptor * transmission attempt. */ if ((*m_head)->m_flags & M_VLANTAG) vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) | RL_TDESC_VLANCTL_TAG; si = prod; for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) { desc = &sc->rl_ldata.rl_tx_list[prod]; desc->rl_vlanctl = htole32(vlanctl); desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr)); desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr)); cmdstat = segs[i].ds_len; if (i != 0) cmdstat |= RL_TDESC_CMD_OWN; if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1) cmdstat |= RL_TDESC_CMD_EOR; desc->rl_cmdstat = htole32(cmdstat | csum_flags); sc->rl_ldata.rl_tx_free--; } /* Update producer index. */ sc->rl_ldata.rl_tx_prodidx = prod; /* Set EOF on the last descriptor. */ ei = RL_TX_DESC_PRV(sc, prod); desc = &sc->rl_ldata.rl_tx_list[ei]; desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF); desc = &sc->rl_ldata.rl_tx_list[si]; /* Set SOF and transfer ownership of packet to the chip. */ desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF); /* * Insure that the map for this transmission * is placed at the array index of the last descriptor * in this chain. (Swap last and first dmamaps.) */ txd_last = &sc->rl_ldata.rl_tx_desc[ei]; map = txd->tx_dmamap; txd->tx_dmamap = txd_last->tx_dmamap; txd_last->tx_dmamap = map; txd_last->tx_m = *m_head; return (0); } static void re_tx_task(void *arg, int npending) { struct ifnet *ifp; ifp = arg; re_start(ifp); } /* * Main transmit routine for C+ and gigE NICs. */ static void re_start(struct ifnet *ifp) { struct rl_softc *sc; struct mbuf *m_head; int queued; sc = ifp->if_softc; RL_LOCK(sc); if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0) { RL_UNLOCK(sc); return; } for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->rl_ldata.rl_tx_free > 1;) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; if (re_encap(sc, &m_head) != 0) { if (m_head == NULL) break; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } /* * If there's a BPF listener, bounce a copy of this frame * to him. */ ETHER_BPF_MTAP(ifp, m_head); queued++; } if (queued == 0) { #ifdef RE_TX_MODERATION if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) CSR_WRITE_4(sc, RL_TIMERCNT, 1); #endif RL_UNLOCK(sc); return; } /* Flush the TX descriptors */ bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); #ifdef RE_TX_MODERATION /* * Use the countdown timer for interrupt moderation. * 'TX done' interrupts are disabled. Instead, we reset the * countdown timer, which will begin counting until it hits * the value in the TIMERINT register, and then trigger an * interrupt. Each time we write to the TIMERCNT register, * the timer count is reset to 0. */ CSR_WRITE_4(sc, RL_TIMERCNT, 1); #endif /* * Set a timeout in case the chip goes out to lunch. */ sc->rl_watchdog_timer = 5; RL_UNLOCK(sc); } static void re_init(void *xsc) { struct rl_softc *sc = xsc; RL_LOCK(sc); re_init_locked(sc); RL_UNLOCK(sc); } static void re_init_locked(struct rl_softc *sc) { struct ifnet *ifp = sc->rl_ifp; struct mii_data *mii; uint32_t reg; uint16_t cfg; union { uint32_t align_dummy; u_char eaddr[ETHER_ADDR_LEN]; } eaddr; RL_LOCK_ASSERT(sc); mii = device_get_softc(sc->rl_miibus); /* * Cancel pending I/O and free all RX/TX buffers. */ re_stop(sc); /* Put controller into known state. */ re_reset(sc); /* * Enable C+ RX and TX mode, as well as VLAN stripping and * RX checksum offload. We must configure the C+ register * before all others. */ cfg = RL_CPLUSCMD_PCI_MRW; if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) cfg |= RL_CPLUSCMD_RXCSUM_ENB; if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) cfg |= RL_CPLUSCMD_VLANSTRIP; if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) { cfg |= RL_CPLUSCMD_MACSTAT_DIS; /* XXX magic. */ cfg |= 0x0001; } else cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB; CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg); if (sc->rl_hwrev == RL_HWREV_8169_8110SC || sc->rl_hwrev == RL_HWREV_8169_8110SCE) { reg = 0x000fff00; if ((CSR_READ_1(sc, RL_CFG2) & RL_CFG2_PCI66MHZ) != 0) reg |= 0x000000ff; if (sc->rl_hwrev == RL_HWREV_8169_8110SCE) reg |= 0x00f00000; CSR_WRITE_4(sc, 0x7c, reg); /* Disable interrupt mitigation. */ CSR_WRITE_2(sc, 0xe2, 0); } /* * Disable TSO if interface MTU size is greater than MSS * allowed in controller. */ if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) { ifp->if_capenable &= ~IFCAP_TSO4; ifp->if_hwassist &= ~CSUM_TSO; } /* * Init our MAC address. Even though the chipset * documentation doesn't mention it, we need to enter "Config * register write enable" mode to modify the ID registers. */ /* Copy MAC address on stack to align. */ bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN); CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG); CSR_WRITE_4(sc, RL_IDR0, htole32(*(u_int32_t *)(&eaddr.eaddr[0]))); CSR_WRITE_4(sc, RL_IDR4, htole32(*(u_int32_t *)(&eaddr.eaddr[4]))); CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); /* * For C+ mode, initialize the RX descriptors and mbufs. */ re_rx_list_init(sc); re_tx_list_init(sc); /* * Load the addresses of the RX and TX lists into the chip. */ CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI, RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr)); CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO, RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr)); CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI, RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr)); CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO, RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr)); /* * Enable transmit and receive. */ CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); /* * Set the initial TX configuration. */ if (sc->rl_testmode) { if (sc->rl_type == RL_8169) CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG|RL_LOOPTEST_ON); else CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS); } else CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG); CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16); /* * Set the initial RX configuration. */ re_set_rxmode(sc); #ifdef DEVICE_POLLING /* * Disable interrupts if we are polling. */ if (ifp->if_capenable & IFCAP_POLLING) CSR_WRITE_2(sc, RL_IMR, 0); else /* otherwise ... */ #endif /* * Enable interrupts. */ if (sc->rl_testmode) CSR_WRITE_2(sc, RL_IMR, 0); else CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS); /* Set initial TX threshold */ sc->rl_txthresh = RL_TX_THRESH_INIT; /* Start RX/TX process. */ CSR_WRITE_4(sc, RL_MISSEDPKT, 0); #ifdef notdef /* Enable receiver and transmitter. */ CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); #endif #ifdef RE_TX_MODERATION /* * Initialize the timer interrupt register so that * a timer interrupt will be generated once the timer * reaches a certain number of ticks. The timer is * reloaded on each transmit. This gives us TX interrupt * moderation, which dramatically improves TX frame rate. */ if (sc->rl_type == RL_8169) CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800); else CSR_WRITE_4(sc, RL_TIMERINT, 0x400); #endif /* * For 8169 gigE NICs, set the max allowed RX packet * size so we can receive jumbo frames. */ if (sc->rl_type == RL_8169) CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383); if (sc->rl_testmode) return; mii_mediachg(mii); CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; sc->rl_flags &= ~RL_FLAG_LINK; sc->rl_watchdog_timer = 0; callout_reset(&sc->rl_stat_callout, hz, re_tick, sc); } /* * Set media options. */ static int re_ifmedia_upd(struct ifnet *ifp) { struct rl_softc *sc; struct mii_data *mii; int error; sc = ifp->if_softc; mii = device_get_softc(sc->rl_miibus); RL_LOCK(sc); error = mii_mediachg(mii); RL_UNLOCK(sc); return (error); } /* * Report current media status. */ static void re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct rl_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = device_get_softc(sc->rl_miibus); RL_LOCK(sc); mii_pollstat(mii); RL_UNLOCK(sc); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } static int re_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct rl_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int error = 0; switch (command) { case SIOCSIFMTU: if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > RL_JUMBO_MTU) { error = EINVAL; break; } if ((sc->rl_flags & RL_FLAG_NOJUMBO) != 0 && ifr->ifr_mtu > RL_MAX_FRAMELEN) { error = EINVAL; break; } RL_LOCK(sc); if (ifp->if_mtu != ifr->ifr_mtu) ifp->if_mtu = ifr->ifr_mtu; if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) { ifp->if_capenable &= ~IFCAP_TSO4; ifp->if_hwassist &= ~CSUM_TSO; } RL_UNLOCK(sc); break; case SIOCSIFFLAGS: RL_LOCK(sc); if ((ifp->if_flags & IFF_UP) != 0) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { if (((ifp->if_flags ^ sc->rl_if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) re_set_rxmode(sc); } else re_init_locked(sc); } else { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) re_stop(sc); } sc->rl_if_flags = ifp->if_flags; RL_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: RL_LOCK(sc); re_set_rxmode(sc); RL_UNLOCK(sc); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->rl_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; case SIOCSIFCAP: { int mask, reinit; mask = ifr->ifr_reqcap ^ ifp->if_capenable; reinit = 0; #ifdef DEVICE_POLLING if (mask & IFCAP_POLLING) { if (ifr->ifr_reqcap & IFCAP_POLLING) { error = ether_poll_register(re_poll, ifp); if (error) return(error); RL_LOCK(sc); /* Disable interrupts */ CSR_WRITE_2(sc, RL_IMR, 0x0000); ifp->if_capenable |= IFCAP_POLLING; RL_UNLOCK(sc); } else { error = ether_poll_deregister(ifp); /* Enable interrupts. */ RL_LOCK(sc); CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); ifp->if_capenable &= ~IFCAP_POLLING; RL_UNLOCK(sc); } } #endif /* DEVICE_POLLING */ if (mask & IFCAP_HWCSUM) { ifp->if_capenable ^= IFCAP_HWCSUM; if (ifp->if_capenable & IFCAP_TXCSUM) ifp->if_hwassist |= RE_CSUM_FEATURES; else ifp->if_hwassist &= ~RE_CSUM_FEATURES; reinit = 1; } if (mask & IFCAP_VLAN_HWTAGGING) { ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; reinit = 1; } if (mask & IFCAP_TSO4) { ifp->if_capenable ^= IFCAP_TSO4; if ((IFCAP_TSO4 & ifp->if_capenable) && (IFCAP_TSO4 & ifp->if_capabilities)) ifp->if_hwassist |= CSUM_TSO; else ifp->if_hwassist &= ~CSUM_TSO; if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) { ifp->if_capenable &= ~IFCAP_TSO4; ifp->if_hwassist &= ~CSUM_TSO; } } if ((mask & IFCAP_WOL) != 0 && (ifp->if_capabilities & IFCAP_WOL) != 0) { if ((mask & IFCAP_WOL_UCAST) != 0) ifp->if_capenable ^= IFCAP_WOL_UCAST; if ((mask & IFCAP_WOL_MCAST) != 0) ifp->if_capenable ^= IFCAP_WOL_MCAST; if ((mask & IFCAP_WOL_MAGIC) != 0) ifp->if_capenable ^= IFCAP_WOL_MAGIC; } if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) re_init(sc); VLAN_CAPABILITIES(ifp); } break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } static void re_watchdog(struct rl_softc *sc) { struct ifnet *ifp; RL_LOCK_ASSERT(sc); if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0) return; ifp = sc->rl_ifp; re_txeof(sc); if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) { if_printf(ifp, "watchdog timeout (missed Tx interrupts) " "-- recovering\n"); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask); return; } if_printf(ifp, "watchdog timeout\n"); ifp->if_oerrors++; re_rxeof(sc, NULL); re_init_locked(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void re_stop(struct rl_softc *sc) { int i; struct ifnet *ifp; struct rl_txdesc *txd; struct rl_rxdesc *rxd; RL_LOCK_ASSERT(sc); ifp = sc->rl_ifp; sc->rl_watchdog_timer = 0; callout_stop(&sc->rl_stat_callout); ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0) CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB | RL_CMD_RX_ENB); else CSR_WRITE_1(sc, RL_COMMAND, 0x00); DELAY(1000); CSR_WRITE_2(sc, RL_IMR, 0x0000); CSR_WRITE_2(sc, RL_ISR, 0xFFFF); if (sc->rl_head != NULL) { m_freem(sc->rl_head); sc->rl_head = sc->rl_tail = NULL; } /* Free the TX list buffers. */ for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) { txd = &sc->rl_ldata.rl_tx_desc[i]; if (txd->tx_m != NULL) { bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; } } /* Free the RX list buffers. */ for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { rxd = &sc->rl_ldata.rl_rx_desc[i]; if (rxd->rx_m != NULL) { bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap); m_freem(rxd->rx_m); rxd->rx_m = NULL; } } } /* * Device suspend routine. Stop the interface and save some PCI * settings in case the BIOS doesn't restore them properly on * resume. */ static int re_suspend(device_t dev) { struct rl_softc *sc; sc = device_get_softc(dev); RL_LOCK(sc); re_stop(sc); re_setwol(sc); sc->suspended = 1; RL_UNLOCK(sc); return (0); } /* * Device resume routine. Restore some PCI settings in case the BIOS * doesn't, re-enable busmastering, and restart the interface if * appropriate. */ static int re_resume(device_t dev) { struct rl_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); RL_LOCK(sc); ifp = sc->rl_ifp; /* Take controller out of sleep mode. */ if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) { if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80) CSR_WRITE_1(sc, RL_GPIO, CSR_READ_1(sc, RL_GPIO) | 0x01); } /* reinitialize interface if necessary */ if (ifp->if_flags & IFF_UP) re_init_locked(sc); /* * Clear WOL matching such that normal Rx filtering * wouldn't interfere with WOL patterns. */ re_clrwol(sc); sc->suspended = 0; RL_UNLOCK(sc); return (0); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static int re_shutdown(device_t dev) { struct rl_softc *sc; sc = device_get_softc(dev); RL_LOCK(sc); re_stop(sc); /* * Mark interface as down since otherwise we will panic if * interrupt comes in later on, which can happen in some * cases. */ sc->rl_ifp->if_flags &= ~IFF_UP; re_setwol(sc); RL_UNLOCK(sc); return (0); } static void re_setwol(struct rl_softc *sc) { struct ifnet *ifp; int pmc; uint16_t pmstat; uint8_t v; RL_LOCK_ASSERT(sc); if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0) return; ifp = sc->rl_ifp; /* Put controller into sleep mode. */ if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) { if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80) CSR_WRITE_1(sc, RL_GPIO, CSR_READ_1(sc, RL_GPIO) & ~0x01); } if ((ifp->if_capenable & IFCAP_WOL) != 0 && (sc->rl_flags & RL_FLAG_WOLRXENB) != 0) CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB); /* Enable config register write. */ CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); /* Enable PME. */ v = CSR_READ_1(sc, RL_CFG1); v &= ~RL_CFG1_PME; if ((ifp->if_capenable & IFCAP_WOL) != 0) v |= RL_CFG1_PME; CSR_WRITE_1(sc, RL_CFG1, v); v = CSR_READ_1(sc, RL_CFG3); v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC); if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) v |= RL_CFG3_WOL_MAGIC; CSR_WRITE_1(sc, RL_CFG3, v); /* Config register write done. */ CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); v = CSR_READ_1(sc, RL_CFG5); v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST); v &= ~RL_CFG5_WOL_LANWAKE; if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0) v |= RL_CFG5_WOL_UCAST; if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST; if ((ifp->if_capenable & IFCAP_WOL) != 0) v |= RL_CFG5_WOL_LANWAKE; CSR_WRITE_1(sc, RL_CFG5, v); /* * It seems that hardware resets its link speed to 100Mbps in * power down mode so switching to 100Mbps in driver is not * needed. */ /* Request PME if WOL is requested. */ pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2); pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); if ((ifp->if_capenable & IFCAP_WOL) != 0) pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); } static void re_clrwol(struct rl_softc *sc) { int pmc; uint8_t v; RL_LOCK_ASSERT(sc); if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0) return; /* Enable config register write. */ CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); v = CSR_READ_1(sc, RL_CFG3); v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC); CSR_WRITE_1(sc, RL_CFG3, v); /* Config register write done. */ CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); v = CSR_READ_1(sc, RL_CFG5); v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST); v &= ~RL_CFG5_WOL_LANWAKE; CSR_WRITE_1(sc, RL_CFG5, v); }