/*- * Copyright (c) 2004, 2005 * Damien Bergamini . All rights reserved. * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /*- * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define IWI_DEBUG #ifdef IWI_DEBUG #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0) int iwi_debug = 0; SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif MODULE_DEPEND(iwi, pci, 1, 1, 1); MODULE_DEPEND(iwi, wlan, 1, 1, 1); MODULE_DEPEND(iwi, firmware, 1, 1, 1); enum { IWI_LED_TX, IWI_LED_RX, IWI_LED_POLL, }; struct iwi_ident { uint16_t vendor; uint16_t device; const char *name; }; static const struct iwi_ident iwi_ident_table[] = { { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, { 0, 0, NULL } }; static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, int); static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, int, bus_addr_t, bus_addr_t); static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, int); static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); static struct ieee80211_node *iwi_node_alloc(struct ieee80211_node_table *); static void iwi_node_free(struct ieee80211_node *); static int iwi_media_change(struct ifnet *); static void iwi_media_status(struct ifnet *, struct ifmediareq *); static int iwi_newstate(struct ieee80211com *, enum ieee80211_state, int); static void iwi_wme_init(struct iwi_softc *); static void iwi_wme_setparams(void *, int); static int iwi_wme_update(struct ieee80211com *); static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, struct iwi_frame *); static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); static void iwi_rx_intr(struct iwi_softc *); static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); static void iwi_intr(void *); static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t); static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int); static int iwi_tx_start(struct ifnet *, struct mbuf *, struct ieee80211_node *, int); static void iwi_start(struct ifnet *); static void iwi_watchdog(struct ifnet *); static int iwi_ioctl(struct ifnet *, u_long, caddr_t); static void iwi_stop_master(struct iwi_softc *); static int iwi_reset(struct iwi_softc *); static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *); static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *); static int iwi_config(struct iwi_softc *); static int iwi_get_firmware(struct iwi_softc *); static void iwi_put_firmware(struct iwi_softc *); static void iwi_scanabort(void *, int); static void iwi_scandone(void *, int); static void iwi_scanstart(void *, int); static void iwi_scanchan(void *, int); static int iwi_auth_and_assoc(struct iwi_softc *); static int iwi_disassociate(struct iwi_softc *, int quiet); static void iwi_down(void *, int); static void iwi_init(void *); static void iwi_init_locked(void *, int); static void iwi_stop(void *); static void iwi_restart(void *, int); static int iwi_getrfkill(struct iwi_softc *); static void iwi_radio_on(void *, int); static void iwi_radio_off(void *, int); static void iwi_sysctlattach(struct iwi_softc *); static void iwi_led_event(struct iwi_softc *, int); static void iwi_ledattach(struct iwi_softc *); static int iwi_probe(device_t); static int iwi_attach(device_t); static int iwi_detach(device_t); static int iwi_shutdown(device_t); static int iwi_suspend(device_t); static int iwi_resume(device_t); static device_method_t iwi_methods[] = { /* Device interface */ DEVMETHOD(device_probe, iwi_probe), DEVMETHOD(device_attach, iwi_attach), DEVMETHOD(device_detach, iwi_detach), DEVMETHOD(device_shutdown, iwi_shutdown), DEVMETHOD(device_suspend, iwi_suspend), DEVMETHOD(device_resume, iwi_resume), { 0, 0 } }; static driver_t iwi_driver = { "iwi", iwi_methods, sizeof (struct iwi_softc) }; static devclass_t iwi_devclass; DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, 0, 0); /* * Supported rates for 802.11a/b/g modes (in 500Kbps unit). */ static const struct ieee80211_rateset iwi_rateset_11a = { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; static const struct ieee80211_rateset iwi_rateset_11b = { 4, { 2, 4, 11, 22 } }; static const struct ieee80211_rateset iwi_rateset_11g = { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; static __inline uint8_t MEM_READ_1(struct iwi_softc *sc, uint32_t addr) { CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); } static __inline uint32_t MEM_READ_4(struct iwi_softc *sc, uint32_t addr) { CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); } static int iwi_probe(device_t dev) { const struct iwi_ident *ident; for (ident = iwi_ident_table; ident->name != NULL; ident++) { if (pci_get_vendor(dev) == ident->vendor && pci_get_device(dev) == ident->device) { device_set_desc(dev, ident->name); return 0; } } return ENXIO; } /* Base Address Register */ #define IWI_PCI_BAR0 0x10 static int iwi_attach(device_t dev) { struct iwi_softc *sc = device_get_softc(dev); struct ifnet *ifp; struct ieee80211com *ic = &sc->sc_ic; uint16_t val; int error, i; sc->sc_dev = dev; mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx); #if __FreeBSD_version >= 700000 sc->sc_tq = taskqueue_create("iwi_taskq", M_NOWAIT, taskqueue_thread_enqueue, &sc->sc_tq); taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", device_get_nameunit(dev)); #else sc->sc_tq = taskqueue_create("iwi_taskq", M_NOWAIT, taskqueue_thread_enqueue, &sc->sc_tq, &sc->sc_tqproc); kthread_create(taskqueue_thread_loop, &sc->sc_tq, &sc->sc_tqproc, 0, 0, "%s taskq", device_get_nameunit(dev)); #endif TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc); TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc); TASK_INIT(&sc->sc_scanstarttask, 0, iwi_scanstart, sc); TASK_INIT(&sc->sc_scanaborttask, 0, iwi_scanabort, sc); TASK_INIT(&sc->sc_scandonetask, 0, iwi_scandone, sc); TASK_INIT(&sc->sc_scantask, 0, iwi_scanchan, sc); TASK_INIT(&sc->sc_setwmetask, 0, iwi_wme_setparams, sc); TASK_INIT(&sc->sc_downtask, 0, iwi_down, sc); TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc); if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { device_printf(dev, "chip is in D%d power mode " "-- setting to D0\n", pci_get_powerstate(dev)); pci_set_powerstate(dev, PCI_POWERSTATE_D0); } pci_write_config(dev, 0x41, 0, 1); /* enable bus-mastering */ pci_enable_busmaster(dev); sc->mem_rid = IWI_PCI_BAR0; sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, RF_ACTIVE); if (sc->mem == NULL) { device_printf(dev, "could not allocate memory resource\n"); goto fail; } sc->sc_st = rman_get_bustag(sc->mem); sc->sc_sh = rman_get_bushandle(sc->mem); sc->irq_rid = 0; sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, RF_ACTIVE | RF_SHAREABLE); if (sc->irq == NULL) { device_printf(dev, "could not allocate interrupt resource\n"); goto fail; } if (iwi_reset(sc) != 0) { device_printf(dev, "could not reset adapter\n"); goto fail; } /* * Allocate rings. */ if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { device_printf(dev, "could not allocate Cmd ring\n"); goto fail; } error = iwi_alloc_tx_ring(sc, &sc->txq[0], IWI_TX_RING_COUNT, IWI_CSR_TX1_RIDX, IWI_CSR_TX1_WIDX); if (error != 0) { device_printf(dev, "could not allocate Tx ring 1\n"); goto fail; } error = iwi_alloc_tx_ring(sc, &sc->txq[1], IWI_TX_RING_COUNT, IWI_CSR_TX2_RIDX, IWI_CSR_TX2_WIDX); if (error != 0) { device_printf(dev, "could not allocate Tx ring 2\n"); goto fail; } error = iwi_alloc_tx_ring(sc, &sc->txq[2], IWI_TX_RING_COUNT, IWI_CSR_TX3_RIDX, IWI_CSR_TX3_WIDX); if (error != 0) { device_printf(dev, "could not allocate Tx ring 3\n"); goto fail; } error = iwi_alloc_tx_ring(sc, &sc->txq[3], IWI_TX_RING_COUNT, IWI_CSR_TX4_RIDX, IWI_CSR_TX4_WIDX); if (error != 0) { device_printf(dev, "could not allocate Tx ring 4\n"); goto fail; } if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { device_printf(dev, "could not allocate Rx ring\n"); goto fail; } iwi_wme_init(sc); ifp = sc->sc_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "can not if_alloc()\n"); goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = iwi_init; ifp->if_ioctl = iwi_ioctl; ifp->if_start = iwi_start; ifp->if_watchdog = iwi_watchdog; IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; IFQ_SET_READY(&ifp->if_snd); ic->ic_ifp = ifp; ic->ic_wme.wme_update = iwi_wme_update; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_IBSS | /* IBSS mode supported */ IEEE80211_C_MONITOR | /* monitor mode supported */ IEEE80211_C_PMGT | /* power save supported */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_WPA | /* 802.11i */ IEEE80211_C_WME; /* 802.11e */ /* read MAC address from EEPROM */ val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); ic->ic_myaddr[0] = val & 0xff; ic->ic_myaddr[1] = val >> 8; val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); ic->ic_myaddr[2] = val & 0xff; ic->ic_myaddr[3] = val >> 8; val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); ic->ic_myaddr[4] = val & 0xff; ic->ic_myaddr[5] = val >> 8; if (pci_get_device(dev) >= 0x4223) { /* set supported .11a rates (2915ABG only) */ ic->ic_sup_rates[IEEE80211_MODE_11A] = iwi_rateset_11a; /* set supported .11a channels */ for (i = 36; i <= 64; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } for (i = 149; i <= 165; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } } /* set supported .11b and .11g rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = iwi_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = iwi_rateset_11g; /* set supported .11b and .11g channels (1 through 14) */ for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } ieee80211_ifattach(ic); /* override default methods */ ic->ic_node_alloc = iwi_node_alloc; sc->sc_node_free = ic->ic_node_free; ic->ic_node_free = iwi_node_free; /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = iwi_newstate; ieee80211_media_init(ic, iwi_media_change, iwi_media_status); bpfattach2(ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap), &sc->sc_drvbpf); sc->sc_rxtap_len = sizeof sc->sc_rxtap; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(IWI_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtap; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(IWI_TX_RADIOTAP_PRESENT); iwi_sysctlattach(sc); iwi_ledattach(sc); /* * Hook our interrupt after all initialization is complete. */ error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, iwi_intr, sc, &sc->sc_ih); if (error != 0) { device_printf(dev, "could not set up interrupt\n"); goto fail; } if (bootverbose) ieee80211_announce(ic); return 0; fail: iwi_detach(dev); return ENXIO; } static int iwi_detach(device_t dev) { struct iwi_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; iwi_stop(sc); iwi_put_firmware(sc); if (ifp != NULL) { bpfdetach(ifp); ieee80211_ifdetach(ic); } iwi_free_cmd_ring(sc, &sc->cmdq); iwi_free_tx_ring(sc, &sc->txq[0]); iwi_free_tx_ring(sc, &sc->txq[1]); iwi_free_tx_ring(sc, &sc->txq[2]); iwi_free_tx_ring(sc, &sc->txq[3]); iwi_free_rx_ring(sc, &sc->rxq); if (sc->irq != NULL) { bus_teardown_intr(dev, sc->irq, sc->sc_ih); bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); } if (sc->mem != NULL) bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); if (ifp != NULL) if_free(ifp); taskqueue_free(sc->sc_tq); if (sc->sc_unr != NULL) delete_unrhdr(sc->sc_unr); mtx_destroy(&sc->sc_mtx); return 0; } static void iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { if (error != 0) return; KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); *(bus_addr_t *)arg = segs[0].ds_addr; } static int iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) { int error; ring->count = count; ring->queued = 0; ring->cur = ring->next = 0; error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create desc DMA tag\n"); goto fail; } error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } return 0; fail: iwi_free_cmd_ring(sc, ring); return error; } static void iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) { ring->queued = 0; ring->cur = ring->next = 0; } static void iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) { if (ring->desc != NULL) { bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->desc_dmat, ring->desc_map); bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); } if (ring->desc_dmat != NULL) bus_dma_tag_destroy(ring->desc_dmat); } static int iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, bus_addr_t csr_ridx, bus_addr_t csr_widx) { int i, error; ring->count = count; ring->queued = 0; ring->cur = ring->next = 0; ring->csr_ridx = csr_ridx; ring->csr_widx = csr_widx; error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create desc DMA tag\n"); goto fail; } error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ring->data == NULL) { device_printf(sc->sc_dev, "could not allocate soft data\n"); error = ENOMEM; goto fail; } error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create data DMA tag\n"); goto fail; } for (i = 0; i < count; i++) { error = bus_dmamap_create(ring->data_dmat, 0, &ring->data[i].map); if (error != 0) { device_printf(sc->sc_dev, "could not create DMA map\n"); goto fail; } } return 0; fail: iwi_free_tx_ring(sc, ring); return error; } static void iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) { struct iwi_tx_data *data; int i; for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } } ring->queued = 0; ring->cur = ring->next = 0; } static void iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) { struct iwi_tx_data *data; int i; if (ring->desc != NULL) { bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->desc_dmat, ring->desc_map); bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); } if (ring->desc_dmat != NULL) bus_dma_tag_destroy(ring->desc_dmat); if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->ni != NULL) ieee80211_free_node(data->ni); if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } free(ring->data, M_DEVBUF); } if (ring->data_dmat != NULL) bus_dma_tag_destroy(ring->data_dmat); } static int iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) { struct iwi_rx_data *data; int i, error; ring->count = count; ring->cur = 0; ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ring->data == NULL) { device_printf(sc->sc_dev, "could not allocate soft data\n"); error = ENOMEM; goto fail; } error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create data DMA tag\n"); goto fail; } for (i = 0; i < count; i++) { data = &ring->data[i]; error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "could not create DMA map\n"); goto fail; } data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (data->m == NULL) { device_printf(sc->sc_dev, "could not allocate rx mbuf\n"); error = ENOMEM; goto fail; } error = bus_dmamap_load(ring->data_dmat, data->map, mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load rx buf DMA map"); goto fail; } data->reg = IWI_CSR_RX_BASE + i * 4; } return 0; fail: iwi_free_rx_ring(sc, ring); return error; } static void iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) { ring->cur = 0; } static void iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) { struct iwi_rx_data *data; int i; if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } free(ring->data, M_DEVBUF); } if (ring->data_dmat != NULL) bus_dma_tag_destroy(ring->data_dmat); } static int iwi_shutdown(device_t dev) { struct iwi_softc *sc = device_get_softc(dev); iwi_stop(sc); iwi_put_firmware(sc); /* ??? XXX */ return 0; } static int iwi_suspend(device_t dev) { struct iwi_softc *sc = device_get_softc(dev); iwi_stop(sc); return 0; } static int iwi_resume(device_t dev) { struct iwi_softc *sc = device_get_softc(dev); struct ifnet *ifp = sc->sc_ic.ic_ifp; IWI_LOCK_DECL; IWI_LOCK(sc); pci_write_config(dev, 0x41, 0, 1); if (ifp->if_flags & IFF_UP) { ifp->if_init(ifp->if_softc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) ifp->if_start(ifp); } IWI_UNLOCK(sc); return 0; } static struct ieee80211_node * iwi_node_alloc(struct ieee80211_node_table *nt) { struct iwi_node *in; in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO); if (in == NULL) return NULL; in->in_station = -1; return &in->in_node; } static void iwi_node_free(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; struct iwi_softc *sc = ic->ic_ifp->if_softc; struct iwi_node *in = (struct iwi_node *)ni; if (in->in_station != -1) { DPRINTF(("%s mac %6D station %u\n", __func__, ni->ni_macaddr, ":", in->in_station)); free_unr(sc->sc_unr, in->in_station); } sc->sc_node_free(ni); } static int iwi_media_change(struct ifnet *ifp) { struct iwi_softc *sc = ifp->if_softc; int error; IWI_LOCK_DECL; IWI_LOCK(sc); error = ieee80211_media_change(ifp); if (error == ENETRESET && (ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) iwi_init_locked(sc, 0); IWI_UNLOCK(sc); return error; } /* * Convert h/w rate code to IEEE rate code. */ static int iwi_cvtrate(int iwirate) { switch (iwirate) { case IWI_RATE_DS1: return 2; case IWI_RATE_DS2: return 4; case IWI_RATE_DS5: return 11; case IWI_RATE_DS11: return 22; case IWI_RATE_OFDM6: return 12; case IWI_RATE_OFDM9: return 18; case IWI_RATE_OFDM12: return 24; case IWI_RATE_OFDM18: return 36; case IWI_RATE_OFDM24: return 48; case IWI_RATE_OFDM36: return 72; case IWI_RATE_OFDM48: return 96; case IWI_RATE_OFDM54: return 108; } return 0; } /* * The firmware automatically adapts the transmit speed. We report its current * value here. */ static void iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int rate; imr->ifm_status = IFM_AVALID; imr->ifm_active = IFM_IEEE80211; if (ic->ic_state == IEEE80211_S_RUN) imr->ifm_status |= IFM_ACTIVE; /* read current transmission rate from adapter */ rate = iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE)); imr->ifm_active |= ieee80211_rate2media(ic, rate, ic->ic_curmode); if (ic->ic_opmode == IEEE80211_M_IBSS) imr->ifm_active |= IFM_IEEE80211_ADHOC; else if (ic->ic_opmode == IEEE80211_M_MONITOR) imr->ifm_active |= IFM_IEEE80211_MONITOR; } static int iwi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct ifnet *ifp = ic->ic_ifp; struct iwi_softc *sc = ifp->if_softc; DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, ieee80211_state_name[ic->ic_state], ieee80211_state_name[nstate], sc->flags)); /* XXX state change race with taskqueue */ switch (nstate) { case IEEE80211_S_SCAN: if (ic->ic_state == IEEE80211_S_RUN) { /* * Beacon miss, send disassoc and wait for a reply * from the card; we'll start a scan then. Note * this only happens with auto roaming; otherwise * just notify users and wait to be directed. */ /* notify directly as we bypass net80211 */ ieee80211_sta_leave(ic, ic->ic_bss); if (ic->ic_roaming == IEEE80211_ROAMING_AUTO) taskqueue_enqueue(sc->sc_tq, &sc->sc_downtask); break; } if ((sc->flags & IWI_FLAG_SCANNING) == 0) { sc->flags |= IWI_FLAG_SCANNING; taskqueue_enqueue(sc->sc_tq, &sc->sc_scanstarttask); } break; case IEEE80211_S_AUTH: iwi_auth_and_assoc(sc); break; case IEEE80211_S_RUN: if (ic->ic_opmode == IEEE80211_M_IBSS) { /* * XXX when joining an ibss network we are called * with a SCAN -> RUN transition on scan complete. * Use that to call iwi_auth_and_assoc. On completing * the join we are then called again with an * AUTH -> RUN transition and we want to do nothing. * This is all totally bogus and needs to be redone. */ if (ic->ic_state == IEEE80211_S_SCAN) iwi_auth_and_assoc(sc); } else if (ic->ic_opmode == IEEE80211_M_MONITOR) taskqueue_enqueue(sc->sc_tq, &sc->sc_scantask); /* XXX way wrong */ return sc->sc_newstate(ic, nstate, IEEE80211_FC0_SUBTYPE_ASSOC_RESP); case IEEE80211_S_ASSOC: break; case IEEE80211_S_INIT: /* * NB: don't try to do this if iwi_stop_master has * shutdown the firmware and disabled interrupts. */ if (ic->ic_state == IEEE80211_S_RUN && (sc->flags & IWI_FLAG_FW_INITED)) taskqueue_enqueue(sc->sc_tq, &sc->sc_downtask); break; } ic->ic_state = nstate; return 0; } /* * WME parameters coming from IEEE 802.11e specification. These values are * already declared in ieee80211_proto.c, but they are static so they can't * be reused here. */ static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ { 0, 2, 3, 4, 102 } /* WME_AC_VO */ }; static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ { 0, 2, 2, 3, 47 } /* WME_AC_VO */ }; #define IWI_EXP2(v) htole16((1 << (v)) - 1) #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) static void iwi_wme_init(struct iwi_softc *sc) { const struct wmeParams *wmep; int ac; memset(sc->wme, 0, sizeof sc->wme); for (ac = 0; ac < WME_NUM_AC; ac++) { /* set WME values for CCK modulation */ wmep = &iwi_wme_cck_params[ac]; sc->wme[1].aifsn[ac] = wmep->wmep_aifsn; sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); sc->wme[1].acm[ac] = wmep->wmep_acm; /* set WME values for OFDM modulation */ wmep = &iwi_wme_ofdm_params[ac]; sc->wme[2].aifsn[ac] = wmep->wmep_aifsn; sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); sc->wme[2].acm[ac] = wmep->wmep_acm; } } static int iwi_wme_setparams_locked(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; const struct wmeParams *wmep; int ac; for (ac = 0; ac < WME_NUM_AC; ac++) { /* set WME values for current operating mode */ wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; sc->wme[0].aifsn[ac] = wmep->wmep_aifsn; sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); sc->wme[0].acm[ac] = wmep->wmep_acm; } DPRINTF(("Setting WME parameters\n")); return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme); } static void iwi_wme_setparams(void *arg, int npending) { struct iwi_softc *sc = arg; IWI_LOCK_DECL; IWI_LOCK(sc); (void) iwi_wme_setparams_locked(sc); IWI_UNLOCK(sc); } #undef IWI_USEC #undef IWI_EXP2 static int iwi_wme_update(struct ieee80211com *ic) { struct iwi_softc *sc = ic->ic_ifp->if_softc; /* * We may be called to update the WME parameters in * the adapter at various places. If we're already * associated then initiate the request immediately * (via the taskqueue); otherwise we assume the params * will get sent down to the adapter as part of the * work iwi_auth_and_assoc does. */ if (ic->ic_state == IEEE80211_S_RUN) taskqueue_enqueue(sc->sc_tq, &sc->sc_setwmetask); return 0; } static int iwi_wme_setie(struct iwi_softc *sc) { struct ieee80211_wme_info wme; memset(&wme, 0, sizeof wme); wme.wme_id = IEEE80211_ELEMID_VENDOR; wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; wme.wme_oui[0] = 0x00; wme.wme_oui[1] = 0x50; wme.wme_oui[2] = 0xf2; wme.wme_type = WME_OUI_TYPE; wme.wme_subtype = WME_INFO_OUI_SUBTYPE; wme.wme_version = WME_VERSION; wme.wme_info = 0; DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme); } /* * Read 16 bits at address 'addr' from the serial EEPROM. */ static uint16_t iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) { uint32_t tmp; uint16_t val; int n; /* clock C once before the first command */ IWI_EEPROM_CTL(sc, 0); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); /* write start bit (1) */ IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); /* write READ opcode (10) */ IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); /* write address A7-A0 */ for (n = 7; n >= 0; n--) { IWI_EEPROM_CTL(sc, IWI_EEPROM_S | (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); } IWI_EEPROM_CTL(sc, IWI_EEPROM_S); /* read data Q15-Q0 */ val = 0; for (n = 15; n >= 0; n--) { IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; } IWI_EEPROM_CTL(sc, 0); /* clear Chip Select and clock C */ IWI_EEPROM_CTL(sc, IWI_EEPROM_S); IWI_EEPROM_CTL(sc, 0); IWI_EEPROM_CTL(sc, IWI_EEPROM_C); return val; } static void iwi_setcurchan(struct iwi_softc *sc, int chan) { struct ieee80211com *ic = &sc->sc_ic; ic->ic_curchan = &ic->ic_channels[chan]; sc->curchan = chan; sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = htole16(ic->ic_curchan->ic_freq); sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = htole16(ic->ic_curchan->ic_flags); } static void iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, struct iwi_frame *frame) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; struct mbuf *mnew, *m; struct ieee80211_node *ni; int type, error, framelen; framelen = le16toh(frame->len); if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) { /* * XXX >MCLBYTES is bogus as it means the h/w dma'd * out of bounds; need to figure out how to limit * frame size in the firmware */ /* XXX stat */ DPRINTFN(1, ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); return; } DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); if (frame->chan != sc->curchan) iwi_setcurchan(sc, frame->chan); /* * Try to allocate a new mbuf for this ring element and load it before * processing the current mbuf. If the ring element cannot be loaded, * drop the received packet and reuse the old mbuf. In the unlikely * case that the old mbuf can't be reloaded either, explicitly panic. */ mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (mnew == NULL) { ifp->if_ierrors++; return; } bus_dmamap_unload(sc->rxq.data_dmat, data->map); error = bus_dmamap_load(sc->rxq.data_dmat, data->map, mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 0); if (error != 0) { m_freem(mnew); /* try to reload the old mbuf */ error = bus_dmamap_load(sc->rxq.data_dmat, data->map, mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 0); if (error != 0) { /* very unlikely that it will fail... */ panic("%s: could not load old rx mbuf", device_get_name(sc->sc_dev)); } ifp->if_ierrors++; return; } /* * New mbuf successfully loaded, update Rx ring and continue * processing. */ m = data->m; data->m = mnew; CSR_WRITE_4(sc, data->reg, data->physaddr); /* finalize mbuf */ m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + sizeof (struct iwi_frame) + framelen; m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); if (sc->sc_drvbpf != NULL) { struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_rate = iwi_cvtrate(frame->rate); tap->wr_antsignal = frame->signal; tap->wr_antenna = frame->antenna; bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); } ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); /* send the frame to the 802.11 layer */ type = ieee80211_input(ic, m, ni, frame->rssi_dbm, 0); /* node is no longer needed */ ieee80211_free_node(ni); if (sc->sc_softled) { /* * Blink for any data frame. Otherwise do a * heartbeat-style blink when idle. The latter * is mainly for station mode where we depend on * periodic beacon frames to trigger the poll event. */ if (type == IEEE80211_FC0_TYPE_DATA) { sc->sc_rxrate = frame->rate; iwi_led_event(sc, IWI_LED_RX); } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) iwi_led_event(sc, IWI_LED_POLL); } } /* unaligned little endian access */ #define LE_READ_2(p) \ ((u_int16_t) \ ((((const u_int8_t *)(p))[0] ) | \ (((const u_int8_t *)(p))[1] << 8))) #define LE_READ_4(p) \ ((u_int32_t) \ ((((const u_int8_t *)(p))[0] ) | \ (((const u_int8_t *)(p))[1] << 8) | \ (((const u_int8_t *)(p))[2] << 16) | \ (((const u_int8_t *)(p))[3] << 24))) #define IEEE80211_VERIFY_LENGTH(_len, _minlen) do { \ if ((_len) < (_minlen)) { \ return; \ } \ } while (0) static int __inline iswmeoui(const u_int8_t *frm) { return frm[1] > 3 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI); } /* * Check for an association response frame to see if QoS * has been negotiated. We parse just enough to figure * out if we're supposed to use QoS. The proper solution * is to pass the frame up so ieee80211_input can do the * work but that's made hard by how things currently are * done in the driver. */ static void iwi_checkforqos(struct iwi_softc *sc, const struct ieee80211_frame *wh, int len) { #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) const uint8_t *frm, *efrm, *wme; struct ieee80211_node *ni; /* NB: +8 for capinfo, status, associd, and first ie */ if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) || SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP) return; /* * asresp frame format * [2] capability information * [2] status * [2] association ID * [tlv] supported rates * [tlv] extended supported rates * [tlv] WME */ frm = (const uint8_t *)&wh[1]; efrm = ((const uint8_t *) wh) + len; frm += 6; wme = NULL; while (frm < efrm) { IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1]); switch (*frm) { case IEEE80211_ELEMID_VENDOR: if (iswmeoui(frm)) wme = frm; break; } frm += frm[1] + 2; } ni = sc->sc_ic.ic_bss; if (wme != NULL) ni->ni_flags |= IEEE80211_NODE_QOS; else ni->ni_flags &= ~IEEE80211_NODE_QOS; #undef SUBTYPE } static void iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) { struct ieee80211com *ic = &sc->sc_ic; struct iwi_notif_scan_channel *chan; struct iwi_notif_scan_complete *scan; struct iwi_notif_authentication *auth; struct iwi_notif_association *assoc; struct iwi_notif_beacon_state *beacon; switch (notif->type) { case IWI_NOTIF_TYPE_SCAN_CHANNEL: chan = (struct iwi_notif_scan_channel *)(notif + 1); DPRINTFN(3, ("Scan of channel %u complete (%u)\n", ic->ic_channels[chan->nchan].ic_freq, chan->nchan)); break; case IWI_NOTIF_TYPE_SCAN_COMPLETE: scan = (struct iwi_notif_scan_complete *)(notif + 1); DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, scan->status)); sc->sc_scan_timer = 0; if (ic->ic_opmode == IEEE80211_M_MONITOR) { /* * Monitor mode works by doing a passive scan to set * the channel and enable rx. Because we don't want * to abort a scan lest the firmware crash we scan * for a short period of time and automatically restart * the scan when notified the sweep has completed. */ taskqueue_enqueue(sc->sc_tq, &sc->sc_scantask); } else { sc->flags &= ~IWI_FLAG_SCANNING; taskqueue_enqueue(sc->sc_tq, &sc->sc_scandonetask); } break; case IWI_NOTIF_TYPE_AUTHENTICATION: auth = (struct iwi_notif_authentication *)(notif + 1); switch (auth->state) { case IWI_AUTH_SUCCESS: DPRINTFN(2, ("Authentication succeeeded\n")); ieee80211_node_authorize(ic->ic_bss); ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1); break; case IWI_AUTH_FAIL: DPRINTFN(2, ("Authentication failed\n")); sc->flags &= ~IWI_FLAG_ASSOCIATED; /* XXX */ break; case IWI_AUTH_SENT_1: case IWI_AUTH_RECV_2: case IWI_AUTH_SEQ1_PASS: break; case IWI_AUTH_SEQ1_FAIL: DPRINTFN(2, ("Initial authentication handshake failed; " "you probably need shared key\n")); /* XXX retry shared key when in auto */ break; default: device_printf(sc->sc_dev, "unknown authentication state %u\n", auth->state); } break; case IWI_NOTIF_TYPE_ASSOCIATION: assoc = (struct iwi_notif_association *)(notif + 1); switch (assoc->state) { case IWI_AUTH_SUCCESS: /* re-association, do nothing */ break; case IWI_ASSOC_SUCCESS: DPRINTFN(2, ("Association succeeded\n")); sc->flags |= IWI_FLAG_ASSOCIATED; iwi_checkforqos(sc, (const struct ieee80211_frame *)(assoc+1), le16toh(notif->len) - sizeof(*assoc)); ieee80211_new_state(ic, IEEE80211_S_RUN, -1); break; case IWI_ASSOC_FAIL: DPRINTFN(2, ("Association failed\n")); sc->flags &= ~IWI_FLAG_ASSOCIATED; ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); break; default: device_printf(sc->sc_dev, "unknown association state %u\n", assoc->state); } break; case IWI_NOTIF_TYPE_BEACON: /* XXX check struct length */ beacon = (struct iwi_notif_beacon_state *)(notif + 1); DPRINTFN(5, ("Beacon state (%u, %u)\n", beacon->state, le32toh(beacon->number))); if (beacon->state == IWI_BEACON_MISS) { #if 0 if (sc->flags & IWI_FLAG_SCANNING) { /* XXX terminate scan, linux driver says fw can get stuck */ /* XXX should be handled in iwi_newstate */ taskqueue_enqueue(sc->sc_tq, &sc->sc_scanaborttask); } #endif /* * The firmware notifies us of every beacon miss * so we need to track the count against the * configured threshold before notifying the * 802.11 layer. * XXX try to roam, drop assoc only on much higher count */ if (le32toh(beacon->number) >= ic->ic_bmissthreshold) { DPRINTF(("Beacon miss: %u >= %u\n", le32toh(beacon->number), ic->ic_bmissthreshold)); ieee80211_beacon_miss(ic); } } break; case IWI_NOTIF_TYPE_CALIBRATION: case IWI_NOTIF_TYPE_NOISE: case IWI_NOTIF_TYPE_LINK_QUALITY: DPRINTFN(5, ("Notification (%u)\n", notif->type)); break; default: DPRINTF(("unknown notification type %u flags 0x%x len %u\n", notif->type, notif->flags, le16toh(notif->len))); } } static void iwi_rx_intr(struct iwi_softc *sc) { struct iwi_rx_data *data; struct iwi_hdr *hdr; uint32_t hw; hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); for (; sc->rxq.cur != hw;) { data = &sc->rxq.data[sc->rxq.cur]; bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); hdr = mtod(data->m, struct iwi_hdr *); switch (hdr->type) { case IWI_HDR_TYPE_FRAME: iwi_frame_intr(sc, data, sc->rxq.cur, (struct iwi_frame *)(hdr + 1)); break; case IWI_HDR_TYPE_NOTIF: iwi_notification_intr(sc, (struct iwi_notif *)(hdr + 1)); break; default: device_printf(sc->sc_dev, "unknown hdr type %u\n", hdr->type); } DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; } /* tell the firmware what we have processed */ hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); } static void iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; struct iwi_tx_data *data; uint32_t hw; hw = CSR_READ_4(sc, txq->csr_ridx); for (; txq->next != hw;) { data = &txq->data[txq->next]; bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txq->data_dmat, data->map); m_freem(data->m); data->m = NULL; ieee80211_free_node(data->ni); data->ni = NULL; DPRINTFN(15, ("tx done idx=%u\n", txq->next)); ifp->if_opackets++; txq->queued--; txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; } sc->sc_tx_timer = 0; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; if (sc->sc_softled) iwi_led_event(sc, IWI_LED_TX); iwi_start(ifp); } static void iwi_intr(void *arg) { struct iwi_softc *sc = arg; uint32_t r; IWI_LOCK_DECL; IWI_LOCK(sc); if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { IWI_UNLOCK(sc); return; } /* acknowledge interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR, r); if (r & IWI_INTR_FATAL_ERROR) { device_printf(sc->sc_dev, "firmware error\n"); taskqueue_enqueue(sc->sc_tq, &sc->sc_restarttask); } if (r & IWI_INTR_FW_INITED) { if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) wakeup(sc); } if (r & IWI_INTR_RADIO_OFF) taskqueue_enqueue(sc->sc_tq, &sc->sc_radiofftask); if (r & IWI_INTR_CMD_DONE) { sc->flags &= ~IWI_FLAG_BUSY; wakeup(sc); } if (r & IWI_INTR_TX1_DONE) iwi_tx_intr(sc, &sc->txq[0]); if (r & IWI_INTR_TX2_DONE) iwi_tx_intr(sc, &sc->txq[1]); if (r & IWI_INTR_TX3_DONE) iwi_tx_intr(sc, &sc->txq[2]); if (r & IWI_INTR_TX4_DONE) iwi_tx_intr(sc, &sc->txq[3]); if (r & IWI_INTR_RX_DONE) iwi_rx_intr(sc); if (r & IWI_INTR_PARITY_ERROR) { /* XXX rate-limit */ device_printf(sc->sc_dev, "parity error\n"); } IWI_UNLOCK(sc); } static int iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len) { struct iwi_cmd_desc *desc; if (sc->flags & IWI_FLAG_BUSY) { device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", __func__, type); return EAGAIN; } sc->flags |= IWI_FLAG_BUSY; desc = &sc->cmdq.desc[sc->cmdq.cur]; desc->hdr.type = IWI_HDR_TYPE_COMMAND; desc->hdr.flags = IWI_HDR_FLAG_IRQ; desc->type = type; desc->len = len; memcpy(desc->data, data, len); bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, type, len)); sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz); } static void iwi_write_ibssnode(struct iwi_softc *sc, const u_int8_t addr[IEEE80211_ADDR_LEN], int entry) { struct iwi_ibssnode node; /* write node information into NIC memory */ memset(&node, 0, sizeof node); IEEE80211_ADDR_COPY(node.bssid, addr); DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry)); CSR_WRITE_REGION_1(sc, IWI_CSR_NODE_BASE + entry * sizeof node, (uint8_t *)&node, sizeof node); } static int iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni, int ac) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct iwi_node *in = (struct iwi_node *)ni; const struct ieee80211_frame *wh; struct ieee80211_key *k; const struct chanAccParams *cap; struct iwi_tx_ring *txq = &sc->txq[ac]; struct iwi_tx_data *data; struct iwi_tx_desc *desc; struct mbuf *mnew; bus_dma_segment_t segs[IWI_MAX_NSEG]; int error, nsegs, hdrlen, i; int ismcast, flags, xflags, staid; wh = mtod(m0, const struct ieee80211_frame *); /* NB: only data frames use this path */ hdrlen = ieee80211_hdrsize(wh); ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); flags = xflags = 0; if (!ismcast) flags |= IWI_DATA_FLAG_NEED_ACK; if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) flags |= IWI_DATA_FLAG_SHPREAMBLE; if (IEEE80211_QOS_HAS_SEQ(wh)) { xflags |= IWI_DATA_XFLAG_QOS; cap = &ic->ic_wme.wme_chanParams; if (!cap->cap_wmeParams[ac].wmep_noackPolicy) flags &= ~IWI_DATA_FLAG_NEED_ACK; } /* * This is only used in IBSS mode where the firmware expect an index * in a h/w table instead of a destination address. */ if (ic->ic_opmode == IEEE80211_M_IBSS) { if (!ismcast) { if (in->in_station == -1) { in->in_station = alloc_unr(sc->sc_unr); if (in->in_station == -1) { /* h/w table is full */ m_freem(m0); ieee80211_free_node(ni); ifp->if_oerrors++; return 0; } iwi_write_ibssnode(sc, ni->ni_macaddr, in->in_station); } staid = in->in_station; } else { /* * Multicast addresses have no associated node * so there will be no station entry. We reserve * entry 0 for one mcast address and use that. * If there are many being used this will be * expensive and we'll need to do a better job * but for now this handles the broadcast case. */ if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) { IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1); iwi_write_ibssnode(sc, sc->sc_mcast, 0); } staid = 0; } } else staid = 0; if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ic, ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } if (sc->sc_drvbpf != NULL) { struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); } data = &txq->data[txq->cur]; desc = &txq->desc[txq->cur]; /* save and trim IEEE802.11 header */ m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); m_adj(m0, hdrlen); error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, &nsegs, 0); if (error != 0 && error != EFBIG) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (error != 0) { mnew = m_defrag(m0, M_DONTWAIT); if (mnew == NULL) { device_printf(sc->sc_dev, "could not defragment mbuf\n"); m_freem(m0); return ENOBUFS; } m0 = mnew; error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, &nsegs, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } } data->m = m0; data->ni = ni; desc->hdr.type = IWI_HDR_TYPE_DATA; desc->hdr.flags = IWI_HDR_FLAG_IRQ; desc->station = staid; desc->cmd = IWI_DATA_CMD_TX; desc->len = htole16(m0->m_pkthdr.len); desc->flags = flags; desc->xflags = xflags; #if 0 if (ic->ic_flags & IEEE80211_F_PRIVACY) desc->wep_txkey = ic->ic_crypto.cs_def_txkey; else #endif desc->flags |= IWI_DATA_FLAG_NO_WEP; desc->nseg = htole32(nsegs); for (i = 0; i < nsegs; i++) { desc->seg_addr[i] = htole32(segs[i].ds_addr); desc->seg_len[i] = htole16(segs[i].ds_len); } bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", ac, txq->cur, le16toh(desc->len), nsegs)); txq->queued++; txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; CSR_WRITE_4(sc, txq->csr_widx, txq->cur); return 0; } static void iwi_start(struct ifnet *ifp) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct mbuf *m0; struct ether_header *eh; struct ieee80211_node *ni; int ac; IWI_LOCK_DECL; IWI_LOCK(sc); if (ic->ic_state != IEEE80211_S_RUN) { IWI_UNLOCK(sc); return; } for (;;) { IF_DEQUEUE(&ic->ic_mgtq, m0); if (m0 == NULL) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) break; if (m0->m_len < sizeof (struct ether_header) && (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL) { ifp->if_oerrors++; continue; } eh = mtod(m0, struct ether_header *); ni = ieee80211_find_txnode(ic, eh->ether_dhost); if (ni == NULL) { m_freem(m0); ifp->if_oerrors++; continue; } /* classify mbuf so we can find which tx ring to use */ if (ieee80211_classify(ic, m0, ni) != 0) { m_freem(m0); ieee80211_free_node(ni); ifp->if_oerrors++; continue; } /* XXX does not belong here */ /* no QoS encapsulation for EAPOL frames */ ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? M_WME_GETAC(m0) : WME_AC_BE; if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) { /* there is no place left in this ring */ IFQ_DRV_PREPEND(&ifp->if_snd, m0); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } BPF_MTAP(ifp, m0); m0 = ieee80211_encap(ic, m0, ni); if (m0 == NULL) { ieee80211_free_node(ni); ifp->if_oerrors++; continue; } } else { ni = (struct ieee80211_node *) m0->m_pkthdr.rcvif; m0->m_pkthdr.rcvif = NULL; /* XXX no way to send mgt frames (yet), discard */ m_freem(m0); ieee80211_free_node(ni); continue; } if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0); if (iwi_tx_start(ifp, m0, ni, ac) != 0) { ieee80211_free_node(ni); ifp->if_oerrors++; break; } sc->sc_tx_timer = 5; ifp->if_timer = 1; } IWI_UNLOCK(sc); } static void iwi_watchdog(struct ifnet *ifp) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; IWI_LOCK_DECL; IWI_LOCK(sc); if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { if_printf(ifp, "device timeout\n"); ifp->if_oerrors++; taskqueue_enqueue(sc->sc_tq, &sc->sc_restarttask); } } if (sc->sc_rfkill_timer > 0) { if (--sc->sc_rfkill_timer == 0) { /* * Check for a change in rfkill state. We get an * interrupt when a radio is disabled but not when * it is enabled so we must poll for the latter. */ if (!iwi_getrfkill(sc)) taskqueue_enqueue(sc->sc_tq, &sc->sc_radiontask); else sc->sc_rfkill_timer = 2; } } if (sc->sc_scan_timer > 0) { if (--sc->sc_scan_timer == 0) { if (sc->flags & IWI_FLAG_SCANNING) { if_printf(ifp, "scan stuck\n"); taskqueue_enqueue(sc->sc_tq, &sc->sc_restarttask); } } } if (sc->sc_tx_timer || sc->sc_rfkill_timer || sc->sc_scan_timer) ifp->if_timer = 1; else ifp->if_timer = 0; ieee80211_watchdog(ic); IWI_UNLOCK(sc); } static int iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int error = 0; IWI_LOCK_DECL; IWI_LOCK(sc); switch (cmd) { case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) iwi_init_locked(sc, 0); } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) iwi_stop(sc); else { /* * If device was stopped due to rfkill then * marked down we'll have the polling thread * running; stop it explicitly. */ sc->sc_rfkill_timer = 0; } iwi_put_firmware(sc); } break; default: error = ieee80211_ioctl(ic, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING) && (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) iwi_init_locked(sc, 0); error = 0; } IWI_UNLOCK(sc); return error; } static void iwi_stop_master(struct iwi_softc *sc) { uint32_t tmp; int ntries; /* disable interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); for (ntries = 0; ntries < 5; ntries++) { if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) break; DELAY(10); } if (ntries == 5) device_printf(sc->sc_dev, "timeout waiting for master\n"); tmp = CSR_READ_4(sc, IWI_CSR_RST); CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); sc->flags &= ~IWI_FLAG_FW_INITED; } static int iwi_reset(struct iwi_softc *sc) { uint32_t tmp; int i, ntries; iwi_stop_master(sc); tmp = CSR_READ_4(sc, IWI_CSR_CTL); CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); /* wait for clock stabilization */ for (ntries = 0; ntries < 1000; ntries++) { if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) break; DELAY(200); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for clock stabilization\n"); return EIO; } tmp = CSR_READ_4(sc, IWI_CSR_RST); CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); DELAY(10); tmp = CSR_READ_4(sc, IWI_CSR_CTL); CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); /* clear NIC memory */ CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); for (i = 0; i < 0xc000; i++) CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); return 0; } static const struct iwi_firmware_ohdr * iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw) { struct firmware *fp = fw->fp; const struct iwi_firmware_ohdr *hdr; if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) { device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); return NULL; } hdr = (const struct iwi_firmware_ohdr *)fp->data; if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) || (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) { device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n", fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)), IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR, IWI_FW_REQ_MINOR); return NULL; } fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr); fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr); fw->name = fp->name; return hdr; } static const struct iwi_firmware_ohdr * iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw) { const struct iwi_firmware_ohdr *hdr; hdr = iwi_setup_ofw(sc, fw); if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) { device_printf(sc->sc_dev, "%s is not a ucode image\n", fw->name); hdr = NULL; } return hdr; } static void iwi_getfw(struct iwi_fw *fw, const char *fwname, struct iwi_fw *uc, const char *ucname) { if (fw->fp == NULL) fw->fp = firmware_get(fwname); /* NB: pre-3.0 ucode is packaged separately */ if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300) uc->fp = firmware_get(ucname); } /* * Get the required firmware images if not already loaded. * Note that we hold firmware images so long as the device * is marked up in case we need to reload them on device init. * This is necessary because we re-init the device sometimes * from a context where we cannot read from the filesystem * (e.g. from the taskqueue thread when rfkill is re-enabled). * * NB: the order of get'ing and put'ing images here is * intentional to support handling firmware images bundled * by operating mode and/or all together in one file with * the boot firmware as "master". */ static int iwi_get_firmware(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; const struct iwi_firmware_hdr *hdr; struct firmware *fp; /* invalidate cached firmware on mode change */ if (sc->fw_mode != ic->ic_opmode) iwi_put_firmware(sc); switch (ic->ic_opmode) { case IEEE80211_M_STA: iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss"); break; case IEEE80211_M_IBSS: iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss"); break; case IEEE80211_M_MONITOR: iwi_getfw(&sc->fw_fw, "iwi_monitor", &sc->fw_uc, "iwi_ucode_monitor"); break; default: break; } fp = sc->fw_fw.fp; if (fp == NULL) { device_printf(sc->sc_dev, "could not load firmware\n"); goto bad; } if (fp->version < 300) { /* * Firmware prior to 3.0 was packaged as separate * boot, firmware, and ucode images. Verify the * ucode image was read in, retrieve the boot image * if needed, and check version stamps for consistency. * The version stamps in the data are also checked * above; this is a bit paranoid but is a cheap * safeguard against mis-packaging. */ if (sc->fw_uc.fp == NULL) { device_printf(sc->sc_dev, "could not load ucode\n"); goto bad; } if (sc->fw_boot.fp == NULL) { sc->fw_boot.fp = firmware_get("iwi_boot"); if (sc->fw_boot.fp == NULL) { device_printf(sc->sc_dev, "could not load boot firmware\n"); goto bad; } } if (sc->fw_boot.fp->version != sc->fw_fw.fp->version || sc->fw_boot.fp->version != sc->fw_uc.fp->version) { device_printf(sc->sc_dev, "firmware version mismatch: " "'%s' is %d, '%s' is %d, '%s' is %d\n", sc->fw_boot.fp->name, sc->fw_boot.fp->version, sc->fw_uc.fp->name, sc->fw_uc.fp->version, sc->fw_fw.fp->name, sc->fw_fw.fp->version ); goto bad; } /* * Check and setup each image. */ if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL || iwi_setup_ofw(sc, &sc->fw_boot) == NULL || iwi_setup_ofw(sc, &sc->fw_fw) == NULL) goto bad; } else { /* * Check and setup combined image. */ if (fp->datasize < sizeof(hdr)) { device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); goto bad; } hdr = (const struct iwi_firmware_hdr *)fp->data; if (fp->datasize < sizeof(*hdr) + hdr->bsize + hdr->usize + hdr->fsize) { device_printf(sc->sc_dev, "image '%s' too small (2)\n", fp->name); goto bad; } sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr); sc->fw_boot.size = hdr->bsize; sc->fw_boot.name = fp->name; sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size; sc->fw_uc.size = hdr->usize; sc->fw_uc.name = fp->name; sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size; sc->fw_fw.size = hdr->fsize; sc->fw_fw.name = fp->name; } sc->fw_mode = ic->ic_opmode; return 1; bad: iwi_put_firmware(sc); return 0; } static void iwi_put_fw(struct iwi_fw *fw) { if (fw->fp != NULL) { firmware_put(fw->fp, FIRMWARE_UNLOAD); fw->fp = NULL; } fw->data = NULL; fw->size = 0; fw->name = NULL; } /* * Release any cached firmware images. */ static void iwi_put_firmware(struct iwi_softc *sc) { iwi_put_fw(&sc->fw_uc); iwi_put_fw(&sc->fw_fw); iwi_put_fw(&sc->fw_boot); } static int iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw) { uint32_t tmp; const uint16_t *w; const char *uc = fw->data; size_t size = fw->size; int i, ntries, error; error = 0; CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | IWI_RST_STOP_MASTER); for (ntries = 0; ntries < 5; ntries++) { if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) break; DELAY(10); } if (ntries == 5) { device_printf(sc->sc_dev, "timeout waiting for master\n"); error = EIO; goto fail; } MEM_WRITE_4(sc, 0x3000e0, 0x80000000); DELAY(5000); tmp = CSR_READ_4(sc, IWI_CSR_RST); tmp &= ~IWI_RST_PRINCETON_RESET; CSR_WRITE_4(sc, IWI_CSR_RST, tmp); DELAY(5000); MEM_WRITE_4(sc, 0x3000e0, 0); DELAY(1000); MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1); DELAY(1000); MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0); DELAY(1000); MEM_WRITE_1(sc, 0x200000, 0x00); MEM_WRITE_1(sc, 0x200000, 0x40); DELAY(1000); /* write microcode into adapter memory */ for (w = (const uint16_t *)uc; size > 0; w++, size -= 2) MEM_WRITE_2(sc, 0x200010, htole16(*w)); MEM_WRITE_1(sc, 0x200000, 0x00); MEM_WRITE_1(sc, 0x200000, 0x80); /* wait until we get an answer */ for (ntries = 0; ntries < 100; ntries++) { if (MEM_READ_1(sc, 0x200000) & 1) break; DELAY(100); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for ucode to initialize\n"); error = EIO; goto fail; } /* read the answer or the firmware will not initialize properly */ for (i = 0; i < 7; i++) MEM_READ_4(sc, 0x200004); MEM_WRITE_1(sc, 0x200000, 0x00); fail: return error; } /* macro to handle unaligned little endian data in firmware image */ #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) static int iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw) { u_char *p, *end; uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; int ntries, error; /* copy firmware image to DMA memory */ memcpy(sc->fw_virtaddr, fw->data, fw->size); /* make sure the adapter will get up-to-date values */ bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE); /* tell the adapter where the command blocks are stored */ MEM_WRITE_4(sc, 0x3000a0, 0x27000); /* * Store command blocks into adapter's internal memory using register * indirections. The adapter will read the firmware image through DMA * using information stored in command blocks. */ src = sc->fw_physaddr; p = sc->fw_virtaddr; end = p + fw->size; CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); while (p < end) { dst = GETLE32(p); p += 4; src += 4; len = GETLE32(p); p += 4; src += 4; p += len; while (len > 0) { mlen = min(len, IWI_CB_MAXDATALEN); ctl = IWI_CB_DEFAULT_CTL | mlen; sum = ctl ^ src ^ dst; /* write a command block */ CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); src += mlen; dst += mlen; len -= mlen; } } /* write a fictive final command block (sentinel) */ sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); tmp = CSR_READ_4(sc, IWI_CSR_RST); tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); CSR_WRITE_4(sc, IWI_CSR_RST, tmp); /* tell the adapter to start processing command blocks */ MEM_WRITE_4(sc, 0x3000a4, 0x540100); /* wait until the adapter reaches the sentinel */ for (ntries = 0; ntries < 400; ntries++) { if (MEM_READ_4(sc, 0x3000d0) >= sentinel) break; DELAY(100); } if (ntries == 400) { device_printf(sc->sc_dev, "timeout processing command blocks for %s firmware\n", fw->name); error = EIO; goto fail5; } /* we're done with command blocks processing */ MEM_WRITE_4(sc, 0x3000a4, 0x540c00); /* allow interrupts so we know when the firmware is ready */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); /* tell the adapter to initialize the firmware */ CSR_WRITE_4(sc, IWI_CSR_RST, 0); tmp = CSR_READ_4(sc, IWI_CSR_CTL); CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); /* wait at most one second for firmware initialization to complete */ if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) { device_printf(sc->sc_dev, "timeout waiting for %s firmware " "initialization to complete\n", fw->name); } fail5: return error; } static int iwi_setpowermode(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t data; if (ic->ic_flags & IEEE80211_F_PMGTON) { /* XXX set more fine-grained operation */ data = htole32(IWI_POWER_MODE_MAX); } else data = htole32(IWI_POWER_MODE_CAM); DPRINTF(("Setting power mode to %u\n", le32toh(data))); return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data); } static int iwi_setwepkeys(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct iwi_wep_key wepkey; struct ieee80211_key *wk; int error, i; for (i = 0; i < IEEE80211_WEP_NKID; i++) { wk = &ic->ic_crypto.cs_nw_keys[i]; wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; wepkey.idx = i; wepkey.len = wk->wk_keylen; memset(wepkey.key, 0, sizeof wepkey.key); memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, wepkey.len)); error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, sizeof wepkey); if (error != 0) return error; } return 0; } static int iwi_config(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; struct iwi_configuration config; struct iwi_rateset rs; struct iwi_txpower power; uint32_t data; int error, i; IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); DPRINTF(("Setting MAC address to %6D\n", ic->ic_myaddr, ":")); error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_myaddr, IEEE80211_ADDR_LEN); if (error != 0) return error; memset(&config, 0, sizeof config); config.bluetooth_coexistence = sc->bluetooth; config.silence_threshold = 0x1e; config.antenna = sc->antenna; config.multicast_enabled = 1; config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; config.disable_unicast_decryption = 1; config.disable_multicast_decryption = 1; DPRINTF(("Configuring adapter\n")); error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); if (error != 0) return error; error = iwi_setpowermode(sc); if (error != 0) return error; data = htole32(ic->ic_rtsthreshold); DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data); if (error != 0) return error; data = htole32(ic->ic_fragthreshold); DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); if (error != 0) return error; if (ic->ic_opmode == IEEE80211_M_IBSS) { power.mode = IWI_MODE_11B; power.nchan = 11; for (i = 0; i < 11; i++) { power.chan[i].chan = i + 1; power.chan[i].power = IWI_TXPOWER_MAX; } DPRINTF(("Setting .11b channels tx power\n")); error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); if (error != 0) return error; power.mode = IWI_MODE_11G; DPRINTF(("Setting .11g channels tx power\n")); error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); if (error != 0) return error; } rs.mode = IWI_MODE_11G; rs.type = IWI_RATESET_TYPE_SUPPORTED; rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates; memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates, rs.nrates); DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates)); error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); if (error != 0) return error; rs.mode = IWI_MODE_11A; rs.type = IWI_RATESET_TYPE_SUPPORTED; rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates; memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates, rs.nrates); DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates)); error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); if (error != 0) return error; /* if we have a desired ESSID, set it now */ if (ic->ic_des_esslen != 0) { #ifdef IWI_DEBUG if (iwi_debug > 0) { printf("Setting desired ESSID to "); ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen); printf("\n"); } #endif error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ic->ic_des_essid, ic->ic_des_esslen); if (error != 0) return error; } data = htole32(arc4random()); DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data); if (error != 0) return error; error = iwi_setwepkeys(sc); if (error != 0) return error; /* enable adapter */ DPRINTF(("Enabling adapter\n")); return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0); } static __inline void set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type) { uint8_t *st = &scan->scan_type[ix / 2]; if (ix % 2) *st = (*st & 0xf0) | ((scan_type & 0xf) << 0); else *st = (*st & 0x0f) | ((scan_type & 0xf) << 4); } static int iwi_scan(struct iwi_softc *sc) { #define IEEE80211_MODE_5GHZ (1<sc_ic; const struct ieee80211_channel *c; struct iwi_scan_ext scan; int i, ix, start, scan_type; memset(&scan, 0, sizeof scan); /* XXX different dwell times for different scan types */ scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(sc->dwelltime); scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(sc->dwelltime); scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(sc->dwelltime); scan.full_scan_index = htole32(ic->ic_scan.nt_scangen); scan_type = (ic->ic_des_esslen != 0) ? IWI_SCAN_TYPE_BDIRECTED : IWI_SCAN_TYPE_BROADCAST; ix = 0; if (ic->ic_modecaps & IEEE80211_MODE_5GHZ) { start = ix; for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { c = &ic->ic_channels[i]; /* * NB: ieee80211_next_scan clears curchan from the * channel list so we must explicitly check; this * will be fixed when the new scanning support arrives. */ if (!IEEE80211_IS_CHAN_5GHZ(c) || !(isset(ic->ic_chan_scan,i) || c == ic->ic_curchan)) continue; ix++; scan.channels[ix] = i; if (c->ic_flags & IEEE80211_CHAN_PASSIVE) set_scan_type(&scan, ix, IWI_SCAN_TYPE_PASSIVE); else set_scan_type(&scan, ix, scan_type); } if (start != ix) { scan.channels[start] = IWI_CHAN_5GHZ | (ix - start); ix++; } } if (ic->ic_modecaps & IEEE80211_MODE_2GHZ) { start = ix; for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { c = &ic->ic_channels[i]; /* NB: see above */ if (!IEEE80211_IS_CHAN_2GHZ(c) || !(isset(ic->ic_chan_scan,i) || c == ic->ic_curchan)) continue; ix++; scan.channels[ix] = i; if (c->ic_flags & IEEE80211_CHAN_PASSIVE) set_scan_type(&scan, ix, IWI_SCAN_TYPE_PASSIVE); else set_scan_type(&scan, ix, scan_type); } if (start != ix) scan.channels[start] = IWI_CHAN_2GHZ | (ix - start); } DPRINTF(("Start scanning\n")); /* * With 100ms/channel dwell time and a max of ~20 channels * 5 seconds may be too tight; leave a bit more slack. */ sc->sc_scan_timer = 7; /* seconds to complete */ sc->sc_ifp->if_timer = 1; sc->flags |= IWI_FLAG_SCANNING; return iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan); #undef IEEE80211_MODE_5GHZ #undef IEEE80211_MODE_2GHZ } static void iwi_scanabort(void *arg, int npending) { struct iwi_softc *sc = arg; IWI_LOCK_DECL; IWI_LOCK(sc); /* NB: make sure we're still scanning */ if (sc->flags & IWI_FLAG_SCANNING) iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0); IWI_UNLOCK(sc); } static void iwi_scanstart(void *arg, int npending) { struct iwi_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; IWI_LOCK_DECL; IWI_LOCK(sc); /* * Tell the card to kick off a scan. We guard this * by checking IWI_FLAG_SCANNING as otherwise we'll * do this twice because ieee80211_begin_scan will * immediately call us back to scan the first channel * in the list. */ if (sc->flags & IWI_FLAG_SCANNING) { ieee80211_begin_scan(ic, 1); if (iwi_scan(sc) != 0) { /* XXX should not happen */ sc->flags &= ~IWI_FLAG_SCANNING; ieee80211_new_state(ic, IEEE80211_S_INIT, 0); } } IWI_UNLOCK(sc); } static void iwi_scandone(void *arg, int npending) { struct iwi_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; IWI_LOCK_DECL; IWI_LOCK(sc); if (sc->flags & IWI_FLAG_ASSOCIATED) iwi_disassociate(sc, 0); ieee80211_end_scan(ic); IWI_UNLOCK(sc); } /* * Set the current channel by doing a passive scan. Note this * is explicitly for monitor mode operation; do not use it for * anything else (sigh). */ static void iwi_scanchan(void *arg, int npending) { struct iwi_softc *sc = arg; struct ieee80211com *ic; struct ieee80211_channel *chan; struct iwi_scan_ext scan; IWI_LOCK_DECL; IWI_LOCK(sc); ic = &sc->sc_ic; KASSERT(ic->ic_opmode == IEEE80211_M_MONITOR, ("opmode %u", ic->ic_opmode)); chan = ic->ic_ibss_chan; memset(&scan, 0, sizeof scan); /* * Set the dwell time to a fairly small value. The firmware * is prone to crash when aborting a scan so it's better to * let a scan complete before changing channels--such as when * channel hopping in monitor mode. */ scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(2000); scan.full_scan_index = htole32(ic->ic_scan.nt_scangen); if (IEEE80211_IS_CHAN_5GHZ(chan)) scan.channels[0] = 1 | IWI_CHAN_5GHZ; else scan.channels[0] = 1 | IWI_CHAN_2GHZ; scan.channels[1] = ieee80211_chan2ieee(ic, chan); set_scan_type(&scan, 1, IWI_SCAN_TYPE_PASSIVE); DPRINTF(("Setting channel to %u\n", ieee80211_chan2ieee(ic, chan))); sc->flags |= IWI_FLAG_SCANNING; (void) iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan); IWI_UNLOCK(sc); } static int iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm) { struct iwi_sensitivity sens; DPRINTF(("Setting sensitivity to %d\n", rssi_dbm)); memset(&sens, 0, sizeof sens); sens.rssi = htole16(rssi_dbm); return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens); } static int iwi_auth_and_assoc(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; struct ieee80211_node *ni = ic->ic_bss; struct iwi_configuration config; struct iwi_associate *assoc = &sc->assoc; struct iwi_rateset rs; uint16_t capinfo; int error; if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { memset(&config, 0, sizeof config); config.bluetooth_coexistence = sc->bluetooth; config.antenna = sc->antenna; config.multicast_enabled = 1; config.use_protection = 1; config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; config.disable_unicast_decryption = 1; config.disable_multicast_decryption = 1; DPRINTF(("Configuring adapter\n")); error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); if (error != 0) return error; } #ifdef IWI_DEBUG if (iwi_debug > 0) { printf("Setting ESSID to "); ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); printf("\n"); } #endif error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen); if (error != 0) return error; /* the rate set has already been "negotiated" */ rs.mode = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? IWI_MODE_11A : IWI_MODE_11G; rs.type = IWI_RATESET_TYPE_NEGOTIATED; rs.nrates = ni->ni_rates.rs_nrates; memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates); DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates)); error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); if (error != 0) return error; memset(assoc, 0, sizeof *assoc); if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) { /* NB: don't treat WME setup as failure */ if (iwi_wme_setparams_locked(sc) == 0 && iwi_wme_setie(sc) == 0) assoc->policy |= htole16(IWI_POLICY_WME); /* XXX complain on failure? */ } if (ic->ic_opt_ie != NULL) { DPRINTF(("Setting optional IE (len=%u)\n", ic->ic_opt_ie_len)); error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ic->ic_opt_ie, ic->ic_opt_ie_len); if (error != 0) return error; } error = iwi_set_sensitivity(sc, ni->ni_rssi); if (error != 0) return error; if (IEEE80211_IS_CHAN_A(ni->ni_chan)) assoc->mode = IWI_MODE_11A; else if (IEEE80211_IS_CHAN_G(ni->ni_chan)) assoc->mode = IWI_MODE_11G; else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) assoc->mode = IWI_MODE_11B; /* XXX else error */ assoc->chan = ieee80211_chan2ieee(ic, ni->ni_chan); /* * NB: do not arrange for shared key auth w/o privacy * (i.e. a wep key); it causes a firmware error. */ if ((ic->ic_flags & IEEE80211_F_PRIVACY) && ni->ni_authmode == IEEE80211_AUTH_SHARED) { assoc->auth = IWI_AUTH_SHARED; /* * It's possible to have privacy marked but no default * key setup. This typically is due to a user app bug * but if we blindly grab the key the firmware will * barf so avoid it for now. */ if (ic->ic_crypto.cs_def_txkey != IEEE80211_KEYIX_NONE) assoc->auth |= ic->ic_crypto.cs_def_txkey << 4; error = iwi_setwepkeys(sc); if (error != 0) return error; } if (ic->ic_flags & IEEE80211_F_WPA) assoc->policy |= htole16(IWI_POLICY_WPA); if (ic->ic_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0) assoc->type = IWI_HC_IBSS_START; else assoc->type = IWI_HC_ASSOC; memcpy(assoc->tstamp, ni->ni_tstamp.data, 8); if (ic->ic_opmode == IEEE80211_M_IBSS) capinfo = IEEE80211_CAPINFO_IBSS; else capinfo = IEEE80211_CAPINFO_ESS; if (ic->ic_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; assoc->capinfo = htole16(capinfo); assoc->lintval = htole16(ic->ic_lintval); assoc->intval = htole16(ni->ni_intval); IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid); if (ic->ic_opmode == IEEE80211_M_IBSS) IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr); else IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid); DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x " "auth %u capinfo 0x%x lintval %u bintval %u\n", assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", assoc->bssid, ":", assoc->dst, ":", assoc->chan, le16toh(assoc->policy), assoc->auth, le16toh(assoc->capinfo), le16toh(assoc->lintval), le16toh(assoc->intval))); return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); } static int iwi_disassociate(struct iwi_softc *sc, int quiet) { struct iwi_associate *assoc = &sc->assoc; if (quiet) assoc->type = IWI_HC_DISASSOC_QUIET; else assoc->type = IWI_HC_DISASSOC; DPRINTF(("Trying to disassociate from %6D channel %u\n", assoc->bssid, ":", assoc->chan)); return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); } static void iwi_down(void *arg, int npending) { struct iwi_softc *sc = arg; IWI_LOCK_DECL; IWI_LOCK(sc); iwi_disassociate(sc, 0); IWI_UNLOCK(sc); } static void iwi_init(void *priv) { struct iwi_softc *sc = priv; IWI_LOCK_DECL; IWI_LOCK(sc); iwi_init_locked(sc, 0); IWI_UNLOCK(sc); } static void iwi_init_locked(void *priv, int force) { struct iwi_softc *sc = priv; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; struct iwi_rx_data *data; int i; IWI_LOCK_DECL; if (sc->flags & IWI_FLAG_FW_LOADING) return; /* XXX: condvar? */ iwi_stop(sc); if (iwi_reset(sc) != 0) { device_printf(sc->sc_dev, "could not reset adapter\n"); goto fail; } sc->flags |= IWI_FLAG_FW_LOADING; IWI_UNLOCK(sc); if (!iwi_get_firmware(sc)) { IWI_LOCK(sc); goto fail; } /* allocate DMA memory for mapping firmware image */ if (sc->fw_boot.size > sc->fw_dma_size) sc->fw_dma_size = sc->fw_boot.size; if (sc->fw_fw.size > sc->fw_dma_size) sc->fw_dma_size = sc->fw_fw.size; if (sc->fw_uc.size > sc->fw_dma_size) sc->fw_dma_size = sc->fw_uc.size; if (bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, sc->fw_dma_size, 1, sc->fw_dma_size, 0, NULL, NULL, &sc->fw_dmat) != 0) { device_printf(sc->sc_dev, "could not create firmware DMA tag\n"); IWI_LOCK(sc); goto fail; } if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0, &sc->fw_map) != 0) { device_printf(sc->sc_dev, "could not allocate firmware DMA memory\n"); IWI_LOCK(sc); goto fail2; } if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr, sc->fw_dma_size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) { device_printf(sc->sc_dev, "could not load firmware DMA map\n"); IWI_LOCK(sc); goto fail3; } IWI_LOCK(sc); if (iwi_load_firmware(sc, &sc->fw_boot) != 0) { device_printf(sc->sc_dev, "could not load boot firmware %s\n", sc->fw_boot.name); goto fail4; } if (iwi_load_ucode(sc, &sc->fw_uc) != 0) { device_printf(sc->sc_dev, "could not load microcode %s\n", sc->fw_uc.name); goto fail4; } iwi_stop_master(sc); CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); for (i = 0; i < sc->rxq.count; i++) { data = &sc->rxq.data[i]; CSR_WRITE_4(sc, data->reg, data->physaddr); } CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); if (iwi_load_firmware(sc, &sc->fw_fw) != 0) { device_printf(sc->sc_dev, "could not load main firmware %s\n", sc->fw_fw.name); goto fail4; } sc->flags |= IWI_FLAG_FW_INITED; bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->fw_dmat, sc->fw_map); bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); bus_dma_tag_destroy(sc->fw_dmat); if (iwi_config(sc) != 0) { device_printf(sc->sc_dev, "device configuration failed\n"); goto fail; } if (ic->ic_opmode != IEEE80211_M_MONITOR) { /* * NB: When restarting the adapter clock the state * machine regardless of the roaming mode; otherwise * we need to notify user apps so they can manually * get us going again. */ if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL || force) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); } else ieee80211_new_state(ic, IEEE80211_S_RUN, -1); ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; ifp->if_drv_flags |= IFF_DRV_RUNNING; sc->flags &= ~IWI_FLAG_FW_LOADING; return; fail4: bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->fw_dmat, sc->fw_map); fail3: bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); fail2: bus_dma_tag_destroy(sc->fw_dmat); fail: ifp->if_flags &= ~IFF_UP; sc->flags &= ~IWI_FLAG_FW_LOADING; iwi_stop(sc); iwi_put_firmware(sc); } static void iwi_stop(void *priv) { struct iwi_softc *sc = priv; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; if (sc->sc_softled) { callout_stop(&sc->sc_ledtimer); sc->sc_blinking = 0; } iwi_stop_master(sc); CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); /* reset rings */ iwi_reset_cmd_ring(sc, &sc->cmdq); iwi_reset_tx_ring(sc, &sc->txq[0]); iwi_reset_tx_ring(sc, &sc->txq[1]); iwi_reset_tx_ring(sc, &sc->txq[2]); iwi_reset_tx_ring(sc, &sc->txq[3]); iwi_reset_rx_ring(sc, &sc->rxq); ifp->if_timer = 0; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->sc_tx_timer = 0; sc->sc_rfkill_timer = 0; sc->sc_scan_timer = 0; sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_SCANNING | IWI_FLAG_ASSOCIATED); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); } static void iwi_restart(void *arg, int npending) { struct iwi_softc *sc = arg; IWI_LOCK_DECL; IWI_LOCK(sc); iwi_init_locked(sc, 1); /* NB: force state machine */ IWI_UNLOCK(sc); } /* * Return whether or not the radio is enabled in hardware * (i.e. the rfkill switch is "off"). */ static int iwi_getrfkill(struct iwi_softc *sc) { return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; } static void iwi_radio_on(void *arg, int pending) { struct iwi_softc *sc = arg; device_printf(sc->sc_dev, "radio turned on\n"); iwi_init(sc); } static void iwi_radio_off(void *arg, int pending) { struct iwi_softc *sc = arg; device_printf(sc->sc_dev, "radio turned off\n"); iwi_stop(sc); sc->sc_rfkill_timer = 2; sc->sc_ifp->if_timer = 1; } static int iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) { struct iwi_softc *sc = arg1; uint32_t size, buf[128]; if (!(sc->flags & IWI_FLAG_FW_INITED)) { memset(buf, 0, sizeof buf); return SYSCTL_OUT(req, buf, sizeof buf); } size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); return SYSCTL_OUT(req, buf, sizeof buf); } static int iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) { struct iwi_softc *sc = arg1; int val = !iwi_getrfkill(sc); return SYSCTL_OUT(req, &val, sizeof val); } /* * Add sysctl knobs. */ static void iwi_sysctlattach(struct iwi_softc *sc) { struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio", CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I", "radio transmitter switch state (0=off, 1=on)"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats", CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S", "statistics"); sc->dwelltime = 100; SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "dwell", CTLFLAG_RW, &sc->dwelltime, 0, "channel dwell time (ms) for AP/station scanning"); sc->bluetooth = 0; SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth", CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); sc->antenna = IWI_ANTENNA_AUTO; SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna", CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); } /* * LED support. * * Different cards have different capabilities. Some have three * led's while others have only one. The linux ipw driver defines * led's for link state (associated or not), band (11a, 11g, 11b), * and for link activity. We use one led and vary the blink rate * according to the tx/rx traffic a la the ath driver. */ static __inline uint32_t iwi_toggle_event(uint32_t r) { return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA | IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA); } static uint32_t iwi_read_event(struct iwi_softc *sc) { return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT); } static void iwi_write_event(struct iwi_softc *sc, uint32_t v) { MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v); } static void iwi_led_done(void *arg) { struct iwi_softc *sc = arg; sc->sc_blinking = 0; } /* * Turn the activity LED off: flip the pin and then set a timer so no * update will happen for the specified duration. */ static void iwi_led_off(void *arg) { struct iwi_softc *sc = arg; uint32_t v; v = iwi_read_event(sc); v &= ~sc->sc_ledpin; iwi_write_event(sc, iwi_toggle_event(v)); callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc); } /* * Blink the LED according to the specified on/off times. */ static void iwi_led_blink(struct iwi_softc *sc, int on, int off) { uint32_t v; v = iwi_read_event(sc); v |= sc->sc_ledpin; iwi_write_event(sc, iwi_toggle_event(v)); sc->sc_blinking = 1; sc->sc_ledoff = off; callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc); } static void iwi_led_event(struct iwi_softc *sc, int event) { #define N(a) (sizeof(a)/sizeof(a[0])) /* NB: on/off times from the Atheros NDIS driver, w/ permission */ static const struct { u_int rate; /* tx/rx iwi rate */ u_int16_t timeOn; /* LED on time (ms) */ u_int16_t timeOff; /* LED off time (ms) */ } blinkrates[] = { { IWI_RATE_OFDM54, 40, 10 }, { IWI_RATE_OFDM48, 44, 11 }, { IWI_RATE_OFDM36, 50, 13 }, { IWI_RATE_OFDM24, 57, 14 }, { IWI_RATE_OFDM18, 67, 16 }, { IWI_RATE_OFDM12, 80, 20 }, { IWI_RATE_DS11, 100, 25 }, { IWI_RATE_OFDM9, 133, 34 }, { IWI_RATE_OFDM6, 160, 40 }, { IWI_RATE_DS5, 200, 50 }, { 6, 240, 58 }, /* XXX 3Mb/s if it existed */ { IWI_RATE_DS2, 267, 66 }, { IWI_RATE_DS1, 400, 100 }, { 0, 500, 130 }, /* unknown rate/polling */ }; uint32_t txrate; int j = 0; /* XXX silence compiler */ sc->sc_ledevent = ticks; /* time of last event */ if (sc->sc_blinking) /* don't interrupt active blink */ return; switch (event) { case IWI_LED_POLL: j = N(blinkrates)-1; break; case IWI_LED_TX: /* read current transmission rate from adapter */ txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); if (blinkrates[sc->sc_txrix].rate != txrate) { for (j = 0; j < N(blinkrates)-1; j++) if (blinkrates[j].rate == txrate) break; sc->sc_txrix = j; } else j = sc->sc_txrix; break; case IWI_LED_RX: if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) { for (j = 0; j < N(blinkrates)-1; j++) if (blinkrates[j].rate == sc->sc_rxrate) break; sc->sc_rxrix = j; } else j = sc->sc_rxrix; break; } /* XXX beware of overflow */ iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000, (blinkrates[j].timeOff * hz) / 1000); #undef N } static int iwi_sysctl_softled(SYSCTL_HANDLER_ARGS) { struct iwi_softc *sc = arg1; int softled = sc->sc_softled; int error; error = sysctl_handle_int(oidp, &softled, 0, req); if (error || !req->newptr) return error; softled = (softled != 0); if (softled != sc->sc_softled) { if (softled) { uint32_t v = iwi_read_event(sc); v &= ~sc->sc_ledpin; iwi_write_event(sc, iwi_toggle_event(v)); } sc->sc_softled = softled; } return 0; } static void iwi_ledattach(struct iwi_softc *sc) { struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); sc->sc_blinking = 0; sc->sc_ledstate = 1; sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, iwi_sysctl_softled, "I", "enable/disable software LED support"); SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, "pin setting to turn activity LED on"); SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, "idle time for inactivity LED (ticks)"); /* XXX for debugging */ SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "nictype", CTLFLAG_RD, &sc->sc_nictype, 0, "NIC type from EEPROM"); sc->sc_ledpin = IWI_RST_LED_ACTIVITY; sc->sc_softled = 1; sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff; if (sc->sc_nictype == 1) { /* * NB: led's are reversed. */ sc->sc_ledpin = IWI_RST_LED_ASSOCIATED; } }