/*- * Copyright (c) 2006 Wojciech A. Koszek * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #if defined(__mips_n64) #define MAX_APP_DESC_ADDR 0xffffffffafffffff #else #define MAX_APP_DESC_ADDR 0xafffffff #endif /* * Perform a board-level soft-reset. * Note that this is not emulated by gxemul. */ void octeon_reset (void) { void (*reset_func)(void) = (void (*)(void) )0x1fc00000; reset_func(); } static inline uint32_t octeon_disable_interrupts (void) { uint32_t status_bits; status_bits = mips_rd_status(); mips_wr_status(status_bits & ~MIPS_SR_INT_IE); return (status_bits); } static inline void octeon_set_interrupts (uint32_t status_bits) { mips_wr_status(status_bits); } void octeon_led_write_char (int char_position, char val) { uint64_t ptr = (OCTEON_CHAR_LED_BASE_ADDR | 0xf8); if (!octeon_board_real()) return; char_position &= 0x7; /* only 8 chars */ ptr += char_position; oct_write8_x8(ptr, val); } void octeon_led_write_char0 (char val) { uint64_t ptr = (OCTEON_CHAR_LED_BASE_ADDR | 0xf8); if (!octeon_board_real()) return; oct_write8_x8(ptr, val); } void octeon_led_write_hexchar (int char_position, char hexval) { uint64_t ptr = (OCTEON_CHAR_LED_BASE_ADDR | 0xf8); char char1, char2; if (!octeon_board_real()) return; char1 = (hexval >> 4) & 0x0f; char1 = (char1 < 10)?char1+'0':char1+'7'; char2 = (hexval & 0x0f); char2 = (char2 < 10)?char2+'0':char2+'7'; char_position &= 0x7; /* only 8 chars */ if (char_position > 6) char_position = 6; ptr += char_position; oct_write8_x8(ptr, char1); ptr++; oct_write8_x8(ptr, char2); } void octeon_led_write_string (const char *str) { uint64_t ptr = (OCTEON_CHAR_LED_BASE_ADDR | 0xf8); int i; if (!octeon_board_real()) return; for (i=0; i<8; i++, ptr++) { if (str && *str) { oct_write8_x8(ptr, *str++); } else { oct_write8_x8(ptr, ' '); } oct_read64(OCTEON_MIO_BOOT_BIST_STAT); } } static char progress[8] = { '-', '/', '|', '\\', '-', '/', '|', '\\'}; void octeon_led_run_wheel (/*int count, */int *prog_count, int led_position) { if (!octeon_board_real()) return; octeon_led_write_char(led_position, progress[*prog_count]); *prog_count += 1; *prog_count &= 0x7; } #define LSR_DATAREADY 0x01 /* Data ready */ #define LSR_THRE 0x20 /* Transmit holding register empty */ #define LSR_TEMT 0x40 /* Transmitter Empty. THR, TSR & FIFO */ #define USR_TXFIFO_NOTFULL 0x02 /* Uart TX FIFO Not full */ /* * octeon_uart_write_byte * * Put out a single byte off of uart port. */ void octeon_uart_write_byte (int uart_index, uint8_t ch) { uint64_t val, val2; if ((uart_index < 0) || (uart_index > 1)) { return; } while (1) { val = oct_read64(OCTEON_MIO_UART0_LSR + (uart_index * 0x400)); val2 = oct_read64(OCTEON_MIO_UART0_USR + (uart_index * 0x400)); if ((((uint8_t) val) & LSR_THRE) || (((uint8_t) val2) & USR_TXFIFO_NOTFULL)) { break; } } /* Write the byte */ oct_write8(OCTEON_MIO_UART0_THR + (uart_index * 0x400), (uint64_t) ch); /* Force Flush the IOBus */ oct_read64(OCTEON_MIO_BOOT_BIST_STAT); } void octeon_uart_write_byte0 (uint8_t ch) { uint64_t val, val2; while (1) { val = oct_read64(OCTEON_MIO_UART0_LSR); val2 = oct_read64(OCTEON_MIO_UART0_USR); if ((((uint8_t) val) & LSR_THRE) || (((uint8_t) val2) & USR_TXFIFO_NOTFULL)) { break; } } /* Write the byte */ oct_write8(OCTEON_MIO_UART0_THR, (uint64_t) ch); /* Force Flush the IOBus */ oct_read64(OCTEON_MIO_BOOT_BIST_STAT); } /* * octeon_uart_write_string * */ void octeon_uart_write_string (int uart_index, const char *str) { /* Just loop writing one byte at a time */ while (*str) { octeon_uart_write_byte(uart_index, *str); if (*str == '\n') { octeon_uart_write_byte(uart_index, '\r'); } str++; } } static char wstr[30]; void octeon_led_write_hex (uint32_t wl) { char nbuf[80]; sprintf(nbuf, "%X", wl); octeon_led_write_string(nbuf); } void octeon_uart_write_hex2 (uint32_t wl, uint32_t wh) { sprintf(wstr, "0x%X-0x%X ", wh, wl); octeon_uart_write_string(0, wstr); } void octeon_uart_write_hex (uint32_t wl) { sprintf(wstr, " 0x%X ", wl); octeon_uart_write_string(0, wstr); } #define OCT_CONS_BUFLEN 200 static char console_str_buff0[OCT_CONS_BUFLEN + 1]; #include //#define USE_KERN_SUBR_PRINTF #ifndef USE_KERN_SUBR_PRINTF static int oct_printf (const char *fmt, va_list ap); #endif int kern_cons_printf (const char *fmt, ...) { va_list ap; va_start(ap, fmt); #ifndef USE_KERN_SUBR_PRINTF oct_printf(fmt, ap); #else ker_printf(fmt, ap); #endif va_end(ap); return (0); } #ifndef USE_KERN_SUBR_PRINTF static int oct_printf (const char *fmt, va_list ap) { snprintf(console_str_buff0, OCT_CONS_BUFLEN, fmt, ap); octeon_uart_write_string(0, console_str_buff0); return (0); } #endif int console_printf (const char *fmt, ...) { va_list ap; va_start(ap, fmt); sprintf(console_str_buff0, fmt, ap); va_end(ap); octeon_uart_write_string(0, console_str_buff0); return (0); } /* * octeon_wait_uart_flush */ void octeon_wait_uart_flush (int uart_index, uint8_t ch) { uint64_t val; int64_t val3; uint32_t cpu_status_bits; if ((uart_index < 0) || (uart_index > 1)) { return; } cpu_status_bits = octeon_disable_interrupts(); /* Force Flush the IOBus */ oct_read64(OCTEON_MIO_BOOT_BIST_STAT); for (val3 = 0xfffffffff; val3 > 0; val3--) { val = oct_read64(OCTEON_MIO_UART0_LSR + (uart_index * 0x400)); if (((uint8_t) val) & LSR_TEMT) { break; } } octeon_set_interrupts(cpu_status_bits); } /* * octeon_debug_symbol * * Does nothing. * Used to mark the point for simulator to begin tracing */ void octeon_debug_symbol (void) { } void octeon_ciu_stop_gtimer (int timer) { oct_write64(OCTEON_CIU_GENTIMER_ADDR(timer), 0ll); } void octeon_ciu_start_gtimer (int timer, u_int one_shot, uint64_t time_cycles) { octeon_ciu_gentimer gentimer; gentimer.word64 = 0; gentimer.bits.one_shot = one_shot; gentimer.bits.len = time_cycles - 1; oct_write64(OCTEON_CIU_GENTIMER_ADDR(timer), gentimer.word64); } /* * octeon_ciu_reset * * Shutdown all CIU to IP2, IP3 mappings */ void octeon_ciu_reset (void) { octeon_ciu_stop_gtimer(CIU_GENTIMER_NUM_0); octeon_ciu_stop_gtimer(CIU_GENTIMER_NUM_1); octeon_ciu_stop_gtimer(CIU_GENTIMER_NUM_2); octeon_ciu_stop_gtimer(CIU_GENTIMER_NUM_3); ciu_disable_intr(CIU_THIS_CORE, CIU_INT_0, CIU_EN_0); ciu_disable_intr(CIU_THIS_CORE, CIU_INT_0, CIU_EN_1); ciu_disable_intr(CIU_THIS_CORE, CIU_INT_1, CIU_EN_0); ciu_disable_intr(CIU_THIS_CORE, CIU_INT_1, CIU_EN_1); ciu_clear_int_summary(CIU_THIS_CORE, CIU_INT_0, CIU_EN_0, 0ll); ciu_clear_int_summary(CIU_THIS_CORE, CIU_INT_1, CIU_EN_0, 0ll); ciu_clear_int_summary(CIU_THIS_CORE, CIU_INT_1, CIU_EN_1, 0ll); } /* * mips_disable_interrupt_controllers * * Disable interrupts in the CPU controller */ void mips_disable_interrupt_controls (void) { /* * Disable interrupts in CIU. */ octeon_ciu_reset(); } static uint64_t ciu_get_intr_sum_reg_addr(int core_num, int intx, int enx); /* * ciu_get_intr_sum_reg_addr */ static uint64_t ciu_get_intr_sum_reg_addr (int core_num, int intx, int enx) { uint64_t ciu_intr_sum_reg_addr; if (enx == CIU_EN_0) { ciu_intr_sum_reg_addr = OCTEON_CIU_SUMMARY_BASE_ADDR + (core_num * 0x10) + (intx * 0x8); } else { ciu_intr_sum_reg_addr = OCTEON_CIU_SUMMARY_INT1_ADDR; } return (ciu_intr_sum_reg_addr); } static uint64_t ciu_get_intr_en_reg_addr(int core_num, int intx, int enx); /* * ciu_get_intr_en_reg_addr */ static uint64_t ciu_get_intr_en_reg_addr (int core_num, int intx, int enx) { uint64_t ciu_intr_reg_addr; ciu_intr_reg_addr = OCTEON_CIU_ENABLE_BASE_ADDR + ((enx == 0) ? 0x0 : 0x8) + (intx * 0x10) + (core_num * 0x20); return (ciu_intr_reg_addr); } uint64_t ciu_get_en_reg_addr_new (int corenum, int intx, int enx, int ciu_ip); /* * ciu_get_intr_reg_addr * * 200 ---int0,en0 ip2 * 208 ---int0,en1 ip2 ----> this is wrong... this is watchdog * * 210 ---int0,en0 ip3 -- * 218 ---int0,en1 ip3 ----> same here.. .this is watchdog... right? * * 220 ---int1,en0 ip2 * 228 ---int1,en1 ip2 * 230 ---int1,en0 ip3 -- * 238 ---int1,en1 ip3 * */ uint64_t ciu_get_en_reg_addr_new (int corenum, int intx, int enx, int ciu_ip) { uint64_t ciu_intr_reg_addr = OCTEON_CIU_ENABLE_BASE_ADDR; if (enx < CIU_EN_0 || enx > CIU_EN_1) { printf("%s: invalid enx value %d, should be %d or %d\n", __FUNCTION__, enx, CIU_EN_0, CIU_EN_1); return 0; } if (intx < CIU_INT_0 || intx > CIU_INT_1) { printf("%s: invalid intx value %d, should be %d or %d\n", __FUNCTION__, enx, CIU_INT_0, CIU_INT_1); return 0; } if (ciu_ip < CIU_MIPS_IP2 || ciu_ip > CIU_MIPS_IP3) { printf("%s: invalid ciu_ip value %d, should be %d or %d\n", __FUNCTION__, ciu_ip, CIU_MIPS_IP2, CIU_MIPS_IP3); return 0; } ciu_intr_reg_addr += (enx * 0x8); ciu_intr_reg_addr += (ciu_ip * 0x10); ciu_intr_reg_addr += (intx * 0x20); return (ciu_intr_reg_addr); } /* * ciu_get_int_summary */ uint64_t ciu_get_int_summary (int core_num, int intx, int enx) { uint64_t ciu_intr_sum_reg_addr; if (core_num == CIU_THIS_CORE) { core_num = octeon_get_core_num(); } ciu_intr_sum_reg_addr = ciu_get_intr_sum_reg_addr(core_num, intx, enx); return (oct_read64(ciu_intr_sum_reg_addr)); } //#define DEBUG_CIU 1 #ifdef DEBUG_CIU #define DEBUG_CIU_SUM 1 #define DEBUG_CIU_EN 1 #endif /* * ciu_clear_int_summary */ void ciu_clear_int_summary (int core_num, int intx, int enx, uint64_t write_bits) { uint32_t cpu_status_bits; uint64_t ciu_intr_sum_reg_addr; //#define DEBUG_CIU_SUM 1 #ifdef DEBUG_CIU_SUM uint64_t ciu_intr_sum_bits; #endif if (core_num == CIU_THIS_CORE) { core_num = octeon_get_core_num(); } #ifdef DEBUG_CIU_SUM printf(" CIU: core %u clear sum IntX %u Enx %u Bits: 0x%llX\n", core_num, intx, enx, write_bits); #endif cpu_status_bits = octeon_disable_interrupts(); ciu_intr_sum_reg_addr = ciu_get_intr_sum_reg_addr(core_num, intx, enx); #ifdef DEBUG_CIU_SUM ciu_intr_sum_bits = oct_read64(ciu_intr_sum_reg_addr); /* unneeded dummy read */ printf(" CIU: status: 0x%X reg_addr: 0x%llX Val: 0x%llX -> 0x%llX", cpu_status_bits, ciu_intr_sum_reg_addr, ciu_intr_sum_bits, ciu_intr_sum_bits | write_bits); #endif oct_write64(ciu_intr_sum_reg_addr, write_bits); oct_read64(OCTEON_MIO_BOOT_BIST_STAT); /* Bus Barrier */ #ifdef DEBUG_CIU_SUM printf(" Readback: 0x%llX\n\n ", (uint64_t) oct_read64(ciu_intr_sum_reg_addr)); #endif octeon_set_interrupts(cpu_status_bits); } /* * ciu_disable_intr */ void ciu_disable_intr (int core_num, int intx, int enx) { uint32_t cpu_status_bits; uint64_t ciu_intr_reg_addr; if (core_num == CIU_THIS_CORE) { core_num = octeon_get_core_num(); } cpu_status_bits = octeon_disable_interrupts(); ciu_intr_reg_addr = ciu_get_intr_en_reg_addr(core_num, intx, enx); oct_read64(ciu_intr_reg_addr); /* Dummy read */ oct_write64(ciu_intr_reg_addr, 0LL); oct_read64(OCTEON_MIO_BOOT_BIST_STAT); /* Bus Barrier */ octeon_set_interrupts(cpu_status_bits); } void ciu_dump_interrutps_enabled (int core_num, int intx, int enx, int ciu_ip); void ciu_dump_interrutps_enabled (int core_num, int intx, int enx, int ciu_ip) { uint64_t ciu_intr_reg_addr; uint64_t ciu_intr_bits; if (core_num == CIU_THIS_CORE) { core_num = octeon_get_core_num(); } #ifndef OCTEON_SMP_1 ciu_intr_reg_addr = ciu_get_intr_en_reg_addr(core_num, intx, enx); #else ciu_intr_reg_addr = ciu_get_en_reg_addr_new(core_num, intx, enx, ciu_ip); #endif if (!ciu_intr_reg_addr) { printf("Bad call to %s\n", __FUNCTION__); while(1); return; } ciu_intr_bits = oct_read64(ciu_intr_reg_addr); printf(" CIU core %d int: %d en: %d ip: %d Add: 0x%llX enabled: 0x%llX SR: %X\n", core_num, intx, enx, ciu_ip, ciu_intr_reg_addr, ciu_intr_bits, mips_rd_status()); } /* * ciu_enable_interrupts */ void ciu_enable_interrupts (int core_num, int intx, int enx, uint64_t set_these_interrupt_bits, int ciu_ip) { uint32_t cpu_status_bits; uint64_t ciu_intr_reg_addr; uint64_t ciu_intr_bits; if (core_num == CIU_THIS_CORE) { core_num = octeon_get_core_num(); } //#define DEBUG_CIU_EN 1 #ifdef DEBUG_CIU_EN printf(" CIU: core %u enabling Intx %u Enx %u IP %d Bits: 0x%llX\n", core_num, intx, enx, ciu_ip, set_these_interrupt_bits); #endif cpu_status_bits = octeon_disable_interrupts(); #ifndef OCTEON_SMP_1 ciu_intr_reg_addr = ciu_get_intr_en_reg_addr(core_num, intx, enx); #else ciu_intr_reg_addr = ciu_get_en_reg_addr_new(core_num, intx, enx, ciu_ip); #endif if (!ciu_intr_reg_addr) { printf("Bad call to %s\n", __FUNCTION__); while(1); return; } ciu_intr_bits = oct_read64(ciu_intr_reg_addr); #ifdef DEBUG_CIU_EN printf(" CIU: status: 0x%X reg_addr: 0x%llX Val: 0x%llX -> 0x%llX", cpu_status_bits, ciu_intr_reg_addr, ciu_intr_bits, ciu_intr_bits | set_these_interrupt_bits); #endif ciu_intr_bits |= set_these_interrupt_bits; oct_write64(ciu_intr_reg_addr, ciu_intr_bits); #ifdef OCTEON_SMP mips_wbflush(); #endif oct_read64(OCTEON_MIO_BOOT_BIST_STAT); /* Bus Barrier */ #ifdef DEBUG_CIU_EN printf(" Readback: 0x%llX\n\n ", (uint64_t) oct_read64(ciu_intr_reg_addr)); #endif octeon_set_interrupts(cpu_status_bits); } extern void mips_platform_init(void); void mips_platform_init (void) { octeon_ciu_reset(); octeon_uart_write_string(0, "\nPlatform Starting"); } /* **************************************************************************************** * * APP/BOOT DESCRIPTOR STUFF * **************************************************************************************** */ /* Define the struct that is initialized by the bootloader used by the * startup code. * * Copyright (c) 2004, 2005, 2006 Cavium Networks. * * The authors hereby grant permission to use, copy, modify, distribute, * and license this software and its documentation for any purpose, provided * that existing copyright notices are retained in all copies and that this * notice is included verbatim in any distributions. No written agreement, * license, or royalty fee is required for any of the authorized uses. * Modifications to this software may be copyrighted by their authors * and need not follow the licensing terms described here, provided that * the new terms are clearly indicated on the first page of each file where * they apply. */ #define OCTEON_CURRENT_DESC_VERSION 6 #define OCTEON_ARGV_MAX_ARGS (64) #define OCTOEN_SERIAL_LEN 20 typedef struct { /* Start of block referenced by assembly code - do not change! */ uint32_t desc_version; uint32_t desc_size; uint64_t stack_top; uint64_t heap_base; uint64_t heap_end; uint64_t entry_point; /* Only used by bootloader */ uint64_t desc_vaddr; /* End of This block referenced by assembly code - do not change! */ uint32_t exception_base_addr; uint32_t stack_size; uint32_t heap_size; uint32_t argc; /* Argc count for application */ uint32_t argv[OCTEON_ARGV_MAX_ARGS]; uint32_t flags; uint32_t core_mask; uint32_t dram_size; /**< DRAM size in megabyes */ uint32_t phy_mem_desc_addr; /**< physical address of free memory descriptor block*/ uint32_t debugger_flags_base_addr; /**< used to pass flags from app to debugger */ uint32_t eclock_hz; /**< CPU clock speed, in hz */ uint32_t dclock_hz; /**< DRAM clock speed, in hz */ uint32_t spi_clock_hz; /**< SPI4 clock in hz */ uint16_t board_type; uint8_t board_rev_major; uint8_t board_rev_minor; uint16_t chip_type; uint8_t chip_rev_major; uint8_t chip_rev_minor; char board_serial_number[OCTOEN_SERIAL_LEN]; uint8_t mac_addr_base[6]; uint8_t mac_addr_count; uint64_t cvmx_desc_vaddr; } octeon_boot_descriptor_t; typedef struct { uint32_t major_version; uint32_t minor_version; uint64_t stack_top; uint64_t heap_base; uint64_t heap_end; uint64_t desc_vaddr; uint32_t exception_base_addr; uint32_t stack_size; uint32_t flags; uint32_t core_mask; uint32_t dram_size; /**< DRAM size in megabyes */ uint32_t phy_mem_desc_addr; /**< physical address of free memory descriptor block*/ uint32_t debugger_flags_base_addr; /**< used to pass flags from app to debugger */ uint32_t eclock_hz; /**< CPU clock speed, in hz */ uint32_t dclock_hz; /**< DRAM clock speed, in hz */ uint32_t spi_clock_hz; /**< SPI4 clock in hz */ uint16_t board_type; uint8_t board_rev_major; uint8_t board_rev_minor; uint16_t chip_type; uint8_t chip_rev_major; uint8_t chip_rev_minor; char board_serial_number[OCTOEN_SERIAL_LEN]; uint8_t mac_addr_base[6]; uint8_t mac_addr_count; } cvmx_bootinfo_t; uint32_t octeon_cpu_clock; uint64_t octeon_dram; uint32_t octeon_bd_ver = 0, octeon_cvmx_bd_ver = 0, octeon_board_rev_major, octeon_board_rev_minor, octeon_board_type; uint8_t octeon_mac_addr[6] = { 0 }; int octeon_core_mask, octeon_mac_addr_count; int octeon_chip_rev_major = 0, octeon_chip_rev_minor = 0, octeon_chip_type = 0; #if defined(__mips_n64) extern uint64_t app_descriptor_addr; #else extern uint32_t app_descriptor_addr; #endif static octeon_boot_descriptor_t *app_desc_ptr; static cvmx_bootinfo_t *cvmx_desc_ptr; #define OCTEON_BOARD_TYPE_NONE 0 #define OCTEON_BOARD_TYPE_SIM 1 #define OCTEON_CLOCK_MIN (100 * 1000 * 1000) #define OCTEON_CLOCK_MAX (800 * 1000 * 1000) #define OCTEON_DRAM_DEFAULT (256 * 1024 * 1024) #define OCTEON_DRAM_MIN 30 #define OCTEON_DRAM_MAX 3000 int octeon_board_real (void) { if ((octeon_board_type == OCTEON_BOARD_TYPE_NONE) || (octeon_board_type == OCTEON_BOARD_TYPE_SIM) || !octeon_board_rev_major) { return 0; } return 1; } static void octeon_process_app_desc_ver_unknown (void) { printf(" Unknown Boot-Descriptor: Using Defaults\n"); octeon_cpu_clock = OCTEON_CLOCK_DEFAULT; octeon_dram = OCTEON_DRAM_DEFAULT; octeon_board_rev_major = octeon_board_rev_minor = octeon_board_type = 0; octeon_core_mask = 1; octeon_cpu_clock = OCTEON_CLOCK_DEFAULT; octeon_chip_type = octeon_chip_rev_major = octeon_chip_rev_minor = 0; octeon_mac_addr[0] = 0x00; octeon_mac_addr[1] = 0x0f; octeon_mac_addr[2] = 0xb7; octeon_mac_addr[3] = 0x10; octeon_mac_addr[4] = 0x09; octeon_mac_addr[5] = 0x06; octeon_mac_addr_count = 1; } static int octeon_process_app_desc_ver_6 (void) { cvmx_desc_ptr = (cvmx_bootinfo_t *) ((long) app_desc_ptr->cvmx_desc_vaddr); if ((cvmx_desc_ptr == NULL) || (cvmx_desc_ptr == (cvmx_bootinfo_t *)0xffffffff)) { printf ("Bad cvmx_desc_ptr 0x%X\n", cvmx_desc_ptr); return 1; } cvmx_desc_ptr = (cvmx_bootinfo_t *) (((long) cvmx_desc_ptr) | MIPS_KSEG0_START); octeon_cvmx_bd_ver = (cvmx_desc_ptr->major_version * 100) + cvmx_desc_ptr->minor_version; if (cvmx_desc_ptr->major_version != 1) { printf("Incompatible CVMX descriptor from bootloader: %d.%d 0x%X\n", (int) cvmx_desc_ptr->major_version, (int) cvmx_desc_ptr->minor_version, cvmx_desc_ptr); while (1); /* Never return */ return 1; /* Satisfy the compiler */ } octeon_core_mask = cvmx_desc_ptr->core_mask; octeon_cpu_clock = cvmx_desc_ptr->eclock_hz; octeon_board_type = cvmx_desc_ptr->board_type; octeon_board_rev_major = cvmx_desc_ptr->board_rev_major; octeon_board_rev_minor = cvmx_desc_ptr->board_rev_minor; octeon_chip_type = cvmx_desc_ptr->chip_type; octeon_chip_rev_major = cvmx_desc_ptr->chip_rev_major; octeon_chip_rev_minor = cvmx_desc_ptr->chip_rev_minor; octeon_mac_addr[0] = cvmx_desc_ptr->mac_addr_base[0]; octeon_mac_addr[1] = cvmx_desc_ptr->mac_addr_base[1]; octeon_mac_addr[2] = cvmx_desc_ptr->mac_addr_base[2]; octeon_mac_addr[3] = cvmx_desc_ptr->mac_addr_base[3]; octeon_mac_addr[4] = cvmx_desc_ptr->mac_addr_base[4]; octeon_mac_addr[5] = cvmx_desc_ptr->mac_addr_base[5]; octeon_mac_addr_count = cvmx_desc_ptr->mac_addr_count; if (app_desc_ptr->dram_size > 16*1024*1024) { octeon_dram = (uint64_t)app_desc_ptr->dram_size; } else { octeon_dram = (uint64_t)app_desc_ptr->dram_size * 1024 * 1024; } return 0; } static int octeon_process_app_desc_ver_3_4_5 (void) { octeon_cvmx_bd_ver = octeon_bd_ver; octeon_core_mask = app_desc_ptr->core_mask; if (app_desc_ptr->desc_version > 3) { octeon_cpu_clock = app_desc_ptr->eclock_hz; } else { octeon_cpu_clock = OCTEON_CLOCK_DEFAULT; } if (app_desc_ptr->dram_size > 16*1024*1024) { octeon_dram = (uint64_t)app_desc_ptr->dram_size; } else { octeon_dram = (uint64_t)app_desc_ptr->dram_size * 1024 * 1024; } if (app_desc_ptr->desc_version > 4) { octeon_board_type = app_desc_ptr->board_type; octeon_board_rev_major = app_desc_ptr->board_rev_major; octeon_board_rev_minor = app_desc_ptr->board_rev_minor; octeon_chip_type = app_desc_ptr->chip_type; octeon_chip_rev_major = app_desc_ptr->chip_rev_major; octeon_chip_rev_minor = app_desc_ptr->chip_rev_minor; octeon_mac_addr[0] = app_desc_ptr->mac_addr_base[0]; octeon_mac_addr[1] = app_desc_ptr->mac_addr_base[1]; octeon_mac_addr[2] = app_desc_ptr->mac_addr_base[2]; octeon_mac_addr[3] = app_desc_ptr->mac_addr_base[3]; octeon_mac_addr[4] = app_desc_ptr->mac_addr_base[4]; octeon_mac_addr[5] = app_desc_ptr->mac_addr_base[5]; octeon_mac_addr_count = app_desc_ptr->mac_addr_count; } return 0; } void mips_boot_params_init(void); void mips_boot_params_init (void) { int descriptor_not_parsed = 1; if ((app_descriptor_addr == 0) || (app_descriptor_addr >= MAX_APP_DESC_ADDR)) { } else { app_desc_ptr = (octeon_boot_descriptor_t *) app_descriptor_addr; octeon_bd_ver = app_desc_ptr->desc_version; if ((octeon_bd_ver >= 3) && (octeon_bd_ver <= 5)) { descriptor_not_parsed = octeon_process_app_desc_ver_3_4_5(); } else if (app_desc_ptr->desc_version == 6) { descriptor_not_parsed = octeon_process_app_desc_ver_6(); } } if (descriptor_not_parsed) { octeon_process_app_desc_ver_unknown(); } printf("Boot Descriptor Ver: %u -> %u/%u", octeon_bd_ver, octeon_cvmx_bd_ver/100, octeon_cvmx_bd_ver%100); printf(" CPU clock: %uMHz\n", octeon_cpu_clock/1000000); printf(" Dram: %u MB", (uint32_t)(octeon_dram >> 20)); printf(" Board Type: %u Revision: %u/%u\n", octeon_board_type, octeon_board_rev_major, octeon_board_rev_minor); printf(" Octeon Chip: %u Rev %u/%u", octeon_chip_type, octeon_chip_rev_major, octeon_chip_rev_minor); printf(" Mac Address %02X.%02X.%02X.%02X.%02X.%02X\n", octeon_mac_addr[0], octeon_mac_addr[1], octeon_mac_addr[2], octeon_mac_addr[3], octeon_mac_addr[4], octeon_mac_addr[5]); }