/*- * Copyright (c) 2013 Ganbold Tsagaankhuu * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* Simple clock driver for Allwinner A10 */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include "a10_clk.h" #define TCON_PLL_WORST 1000000 #define TCON_PLL_N_MIN 1 #define TCON_PLL_N_MAX 15 #define TCON_PLL_M_MIN 9 #define TCON_PLL_M_MAX 127 #define TCON_PLLREF_SINGLE 3000 /* kHz */ #define TCON_PLLREF_DOUBLE 6000 /* kHz */ #define TCON_RATE_KHZ(rate_hz) ((rate_hz) / 1000) #define TCON_RATE_HZ(rate_khz) ((rate_khz) * 1000) #define HDMI_DEFAULT_RATE 297000000 #define DEBE_DEFAULT_RATE 300000000 struct a10_ccm_softc { struct resource *res; bus_space_tag_t bst; bus_space_handle_t bsh; int pll6_enabled; }; static struct a10_ccm_softc *a10_ccm_sc = NULL; #define ccm_read_4(sc, reg) \ bus_space_read_4((sc)->bst, (sc)->bsh, (reg)) #define ccm_write_4(sc, reg, val) \ bus_space_write_4((sc)->bst, (sc)->bsh, (reg), (val)) static int a10_ccm_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (ofw_bus_is_compatible(dev, "allwinner,sun4i-ccm")) { device_set_desc(dev, "Allwinner Clock Control Module"); return(BUS_PROBE_DEFAULT); } return (ENXIO); } static int a10_ccm_attach(device_t dev) { struct a10_ccm_softc *sc = device_get_softc(dev); int rid = 0; if (a10_ccm_sc) return (ENXIO); sc->res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (!sc->res) { device_printf(dev, "could not allocate resource\n"); return (ENXIO); } sc->bst = rman_get_bustag(sc->res); sc->bsh = rman_get_bushandle(sc->res); a10_ccm_sc = sc; return (0); } static device_method_t a10_ccm_methods[] = { DEVMETHOD(device_probe, a10_ccm_probe), DEVMETHOD(device_attach, a10_ccm_attach), { 0, 0 } }; static driver_t a10_ccm_driver = { "a10_ccm", a10_ccm_methods, sizeof(struct a10_ccm_softc), }; static devclass_t a10_ccm_devclass; EARLY_DRIVER_MODULE(a10_ccm, simplebus, a10_ccm_driver, a10_ccm_devclass, 0, 0, BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE); int a10_clk_usb_activate(void) { struct a10_ccm_softc *sc = a10_ccm_sc; uint32_t reg_value; if (sc == NULL) return (ENXIO); /* Gating AHB clock for USB */ reg_value = ccm_read_4(sc, CCM_AHB_GATING0); reg_value |= CCM_AHB_GATING_USB0; /* AHB clock gate usb0 */ reg_value |= CCM_AHB_GATING_EHCI0; /* AHB clock gate ehci0 */ reg_value |= CCM_AHB_GATING_EHCI1; /* AHB clock gate ehci1 */ ccm_write_4(sc, CCM_AHB_GATING0, reg_value); /* Enable clock for USB */ reg_value = ccm_read_4(sc, CCM_USB_CLK); reg_value |= CCM_USB_PHY; /* USBPHY */ reg_value |= CCM_USB0_RESET; /* disable reset for USB0 */ reg_value |= CCM_USB1_RESET; /* disable reset for USB1 */ reg_value |= CCM_USB2_RESET; /* disable reset for USB2 */ ccm_write_4(sc, CCM_USB_CLK, reg_value); return (0); } int a10_clk_usb_deactivate(void) { struct a10_ccm_softc *sc = a10_ccm_sc; uint32_t reg_value; if (sc == NULL) return (ENXIO); /* Disable clock for USB */ reg_value = ccm_read_4(sc, CCM_USB_CLK); reg_value &= ~CCM_USB_PHY; /* USBPHY */ reg_value &= ~CCM_USB0_RESET; /* reset for USB0 */ reg_value &= ~CCM_USB1_RESET; /* reset for USB1 */ reg_value &= ~CCM_USB2_RESET; /* reset for USB2 */ ccm_write_4(sc, CCM_USB_CLK, reg_value); /* Disable gating AHB clock for USB */ reg_value = ccm_read_4(sc, CCM_AHB_GATING0); reg_value &= ~CCM_AHB_GATING_USB0; /* disable AHB clock gate usb0 */ reg_value &= ~CCM_AHB_GATING_EHCI0; /* disable AHB clock gate ehci0 */ reg_value &= ~CCM_AHB_GATING_EHCI1; /* disable AHB clock gate ehci1 */ ccm_write_4(sc, CCM_AHB_GATING0, reg_value); return (0); } int a10_clk_emac_activate(void) { struct a10_ccm_softc *sc = a10_ccm_sc; uint32_t reg_value; if (sc == NULL) return (ENXIO); /* Gating AHB clock for EMAC */ reg_value = ccm_read_4(sc, CCM_AHB_GATING0); reg_value |= CCM_AHB_GATING_EMAC; ccm_write_4(sc, CCM_AHB_GATING0, reg_value); return (0); } int a10_clk_gmac_activate(phandle_t node) { char *phy_type; struct a10_ccm_softc *sc; uint32_t reg_value; sc = a10_ccm_sc; if (sc == NULL) return (ENXIO); /* Gating AHB clock for GMAC */ reg_value = ccm_read_4(sc, CCM_AHB_GATING1); reg_value |= CCM_AHB_GATING_GMAC; ccm_write_4(sc, CCM_AHB_GATING1, reg_value); /* Set GMAC mode. */ reg_value = CCM_GMAC_CLK_MII; if (OF_getprop_alloc(node, "phy-mode", 1, (void **)&phy_type) > 0) { if (strcasecmp(phy_type, "rgmii") == 0) reg_value = CCM_GMAC_CLK_RGMII | CCM_GMAC_MODE_RGMII; else if (strcasecmp(phy_type, "rgmii-bpi") == 0) { reg_value = CCM_GMAC_CLK_RGMII | CCM_GMAC_MODE_RGMII; reg_value |= (3 << CCM_GMAC_CLK_DELAY_SHIFT); } free(phy_type, M_OFWPROP); } ccm_write_4(sc, CCM_GMAC_CLK, reg_value); return (0); } static void a10_clk_pll6_enable(void) { struct a10_ccm_softc *sc; uint32_t reg_value; /* * SATA needs PLL6 to be a 100MHz clock. * The SATA output frequency is 24MHz * n * k / m / 6. * To get to 100MHz, k & m must be equal and n must be 25. * For other uses the output frequency is 24MHz * n * k / 2. */ sc = a10_ccm_sc; if (sc->pll6_enabled) return; reg_value = ccm_read_4(sc, CCM_PLL6_CFG); reg_value &= ~CCM_PLL_CFG_BYPASS; reg_value &= ~(CCM_PLL_CFG_FACTOR_K | CCM_PLL_CFG_FACTOR_M | CCM_PLL_CFG_FACTOR_N); reg_value |= (25 << CCM_PLL_CFG_FACTOR_N_SHIFT); reg_value |= CCM_PLL6_CFG_SATA_CLKEN; reg_value |= CCM_PLL_CFG_ENABLE; ccm_write_4(sc, CCM_PLL6_CFG, reg_value); sc->pll6_enabled = 1; } static unsigned int a10_clk_pll6_get_rate(void) { struct a10_ccm_softc *sc; uint32_t k, n, reg_value; sc = a10_ccm_sc; reg_value = ccm_read_4(sc, CCM_PLL6_CFG); n = ((reg_value & CCM_PLL_CFG_FACTOR_N) >> CCM_PLL_CFG_FACTOR_N_SHIFT); k = ((reg_value & CCM_PLL_CFG_FACTOR_K) >> CCM_PLL_CFG_FACTOR_K_SHIFT) + 1; return ((CCM_CLK_REF_FREQ * n * k) / 2); } static int a10_clk_pll2_set_rate(unsigned int freq) { struct a10_ccm_softc *sc; uint32_t reg_value; unsigned int prediv, postdiv, n; sc = a10_ccm_sc; if (sc == NULL) return (ENXIO); reg_value = ccm_read_4(sc, CCM_PLL2_CFG); reg_value &= ~(CCM_PLL2_CFG_PREDIV | CCM_PLL2_CFG_POSTDIV | CCM_PLL_CFG_FACTOR_N); /* * Audio Codec needs PLL2 to be either 24576000 Hz or 22579200 Hz * * PLL2 output frequency is 24MHz * n / prediv / postdiv. * To get as close as possible to the desired rate, we use a * pre-divider of 21 and a post-divider of 4. With these values, * a multiplier of 86 or 79 gets us close to the target rates. */ prediv = 21; postdiv = 4; switch (freq) { case 24576000: n = 86; reg_value |= CCM_PLL_CFG_ENABLE; break; case 22579200: n = 79; reg_value |= CCM_PLL_CFG_ENABLE; break; case 0: n = 1; reg_value &= ~CCM_PLL_CFG_ENABLE; break; default: return (EINVAL); } reg_value |= (prediv << CCM_PLL2_CFG_PREDIV_SHIFT); reg_value |= (postdiv << CCM_PLL2_CFG_POSTDIV_SHIFT); reg_value |= (n << CCM_PLL_CFG_FACTOR_N_SHIFT); ccm_write_4(sc, CCM_PLL2_CFG, reg_value); return (0); } static int a10_clk_pll3_set_rate(unsigned int freq) { struct a10_ccm_softc *sc; uint32_t reg_value; int m; sc = a10_ccm_sc; if (sc == NULL) return (ENXIO); if (freq == 0) { /* Disable PLL3 */ ccm_write_4(sc, CCM_PLL3_CFG, 0); return (0); } m = freq / TCON_RATE_HZ(TCON_PLLREF_SINGLE); reg_value = CCM_PLL_CFG_ENABLE | CCM_PLL3_CFG_MODE_SEL_INT | m; ccm_write_4(sc, CCM_PLL3_CFG, reg_value); return (0); } static unsigned int a10_clk_pll5x_get_rate(void) { struct a10_ccm_softc *sc; uint32_t k, n, p, reg_value; sc = a10_ccm_sc; reg_value = ccm_read_4(sc, CCM_PLL5_CFG); n = ((reg_value & CCM_PLL_CFG_FACTOR_N) >> CCM_PLL_CFG_FACTOR_N_SHIFT); k = ((reg_value & CCM_PLL_CFG_FACTOR_K) >> CCM_PLL_CFG_FACTOR_K_SHIFT) + 1; p = ((reg_value & CCM_PLL5_CFG_OUT_EXT_DIV_P) >> CCM_PLL5_CFG_OUT_EXT_DIV_P_SHIFT); return ((CCM_CLK_REF_FREQ * n * k) >> p); } int a10_clk_ahci_activate(void) { struct a10_ccm_softc *sc; uint32_t reg_value; sc = a10_ccm_sc; if (sc == NULL) return (ENXIO); a10_clk_pll6_enable(); /* Gating AHB clock for SATA */ reg_value = ccm_read_4(sc, CCM_AHB_GATING0); reg_value |= CCM_AHB_GATING_SATA; ccm_write_4(sc, CCM_AHB_GATING0, reg_value); DELAY(1000); ccm_write_4(sc, CCM_SATA_CLK, CCM_PLL_CFG_ENABLE); return (0); } int a10_clk_mmc_activate(int devid) { struct a10_ccm_softc *sc; uint32_t reg_value; sc = a10_ccm_sc; if (sc == NULL) return (ENXIO); a10_clk_pll6_enable(); /* Gating AHB clock for SD/MMC */ reg_value = ccm_read_4(sc, CCM_AHB_GATING0); reg_value |= CCM_AHB_GATING_SDMMC0 << devid; ccm_write_4(sc, CCM_AHB_GATING0, reg_value); return (0); } int a10_clk_mmc_cfg(int devid, int freq) { struct a10_ccm_softc *sc; uint32_t clksrc, m, n, ophase, phase, reg_value; unsigned int pll_freq; sc = a10_ccm_sc; if (sc == NULL) return (ENXIO); freq /= 1000; if (freq <= 400) { pll_freq = CCM_CLK_REF_FREQ / 1000; clksrc = CCM_SD_CLK_SRC_SEL_OSC24M; ophase = 0; phase = 0; n = 2; } else if (freq <= 25000) { pll_freq = a10_clk_pll6_get_rate() / 1000; clksrc = CCM_SD_CLK_SRC_SEL_PLL6; ophase = 0; phase = 5; n = 2; } else if (freq <= 50000) { pll_freq = a10_clk_pll6_get_rate() / 1000; clksrc = CCM_SD_CLK_SRC_SEL_PLL6; ophase = 3; phase = 5; n = 0; } else return (EINVAL); m = ((pll_freq / (1 << n)) / (freq)) - 1; reg_value = ccm_read_4(sc, CCM_MMC0_SCLK_CFG + (devid * 4)); reg_value &= ~CCM_SD_CLK_SRC_SEL; reg_value |= (clksrc << CCM_SD_CLK_SRC_SEL_SHIFT); reg_value &= ~CCM_SD_CLK_PHASE_CTR; reg_value |= (phase << CCM_SD_CLK_PHASE_CTR_SHIFT); reg_value &= ~CCM_SD_CLK_DIV_RATIO_N; reg_value |= (n << CCM_SD_CLK_DIV_RATIO_N_SHIFT); reg_value &= ~CCM_SD_CLK_OPHASE_CTR; reg_value |= (ophase << CCM_SD_CLK_OPHASE_CTR_SHIFT); reg_value &= ~CCM_SD_CLK_DIV_RATIO_M; reg_value |= m; reg_value |= CCM_PLL_CFG_ENABLE; ccm_write_4(sc, CCM_MMC0_SCLK_CFG + (devid * 4), reg_value); return (0); } int a10_clk_i2c_activate(int devid) { struct a10_ccm_softc *sc; uint32_t reg_value; sc = a10_ccm_sc; if (sc == NULL) return (ENXIO); a10_clk_pll6_enable(); /* Gating APB clock for I2C/TWI */ reg_value = ccm_read_4(sc, CCM_APB1_GATING); if (devid == 4) reg_value |= CCM_APB1_GATING_TWI << 15; else reg_value |= CCM_APB1_GATING_TWI << devid; ccm_write_4(sc, CCM_APB1_GATING, reg_value); return (0); } int a10_clk_dmac_activate(void) { struct a10_ccm_softc *sc; uint32_t reg_value; sc = a10_ccm_sc; if (sc == NULL) return (ENXIO); /* Gating AHB clock for DMA controller */ reg_value = ccm_read_4(sc, CCM_AHB_GATING0); reg_value |= CCM_AHB_GATING_DMA; ccm_write_4(sc, CCM_AHB_GATING0, reg_value); return (0); } int a10_clk_codec_activate(unsigned int freq) { struct a10_ccm_softc *sc; uint32_t reg_value; sc = a10_ccm_sc; if (sc == NULL) return (ENXIO); a10_clk_pll2_set_rate(freq); /* Gating APB clock for ADDA */ reg_value = ccm_read_4(sc, CCM_APB0_GATING); reg_value |= CCM_APB0_GATING_ADDA; ccm_write_4(sc, CCM_APB0_GATING, reg_value); /* Enable audio codec clock */ reg_value = ccm_read_4(sc, CCM_AUDIO_CODEC_CLK); reg_value |= CCM_AUDIO_CODEC_ENABLE; ccm_write_4(sc, CCM_AUDIO_CODEC_CLK, reg_value); return (0); } static void calc_tcon_pll(int f_ref, int f_out, int *pm, int *pn) { int best, m, n, f_cur, diff; best = TCON_PLL_WORST; for (n = TCON_PLL_N_MIN; n <= TCON_PLL_N_MAX; n++) { for (m = TCON_PLL_M_MIN; m <= TCON_PLL_M_MAX; m++) { f_cur = (m * f_ref) / n; diff = f_out - f_cur; if (diff > 0 && diff < best) { best = diff; *pm = m; *pn = n; } } } } int a10_clk_debe_activate(void) { struct a10_ccm_softc *sc; int pll_rate, clk_div; uint32_t reg_value; sc = a10_ccm_sc; if (sc == NULL) return (ENXIO); /* Leave reset */ reg_value = ccm_read_4(sc, CCM_BE0_SCLK); reg_value |= CCM_BE_CLK_RESET; ccm_write_4(sc, CCM_BE0_SCLK, reg_value); pll_rate = a10_clk_pll5x_get_rate(); clk_div = howmany(pll_rate, DEBE_DEFAULT_RATE); /* Set BE0 source to PLL5 (DDR external peripheral clock) */ reg_value = CCM_BE_CLK_RESET; reg_value |= (CCM_BE_CLK_SRC_SEL_PLL5 << CCM_BE_CLK_SRC_SEL_SHIFT); reg_value |= (clk_div - 1); ccm_write_4(sc, CCM_BE0_SCLK, reg_value); /* Gating AHB clock for BE0 */ reg_value = ccm_read_4(sc, CCM_AHB_GATING1); reg_value |= CCM_AHB_GATING_DE_BE0; ccm_write_4(sc, CCM_AHB_GATING1, reg_value); /* Enable DRAM clock to BE0 */ reg_value = ccm_read_4(sc, CCM_DRAM_CLK); reg_value |= CCM_DRAM_CLK_BE0_CLK_ENABLE; ccm_write_4(sc, CCM_DRAM_CLK, reg_value); /* Enable BE0 clock */ reg_value = ccm_read_4(sc, CCM_BE0_SCLK); reg_value |= CCM_BE_CLK_SCLK_GATING; ccm_write_4(sc, CCM_BE0_SCLK, reg_value); return (0); } int a10_clk_lcd_activate(void) { struct a10_ccm_softc *sc; uint32_t reg_value; sc = a10_ccm_sc; if (sc == NULL) return (ENXIO); /* Clear LCD0 reset */ reg_value = ccm_read_4(sc, CCM_LCD0_CH0_CLK); reg_value |= CCM_LCD_CH0_RESET; ccm_write_4(sc, CCM_LCD0_CH0_CLK, reg_value); /* Gating AHB clock for LCD0 */ reg_value = ccm_read_4(sc, CCM_AHB_GATING1); reg_value |= CCM_AHB_GATING_LCD0; ccm_write_4(sc, CCM_AHB_GATING1, reg_value); return (0); } int a10_clk_tcon_activate(unsigned int freq) { struct a10_ccm_softc *sc; int m, n, m2, n2, f_single, f_double, dbl, src_sel; sc = a10_ccm_sc; if (sc == NULL) return (ENXIO); m = n = m2 = n2 = 0; dbl = 0; calc_tcon_pll(TCON_PLLREF_SINGLE, TCON_RATE_KHZ(freq), &m, &n); calc_tcon_pll(TCON_PLLREF_DOUBLE, TCON_RATE_KHZ(freq), &m2, &n2); f_single = n ? (m * TCON_PLLREF_SINGLE) / n : 0; f_double = n2 ? (m2 * TCON_PLLREF_DOUBLE) / n2 : 0; if (f_double > f_single) { dbl = 1; m = m2; n = n2; } src_sel = dbl ? CCM_LCD_CH1_SRC_SEL_PLL3_2X : CCM_LCD_CH1_SRC_SEL_PLL3; if (n == 0 || m == 0) return (EINVAL); /* Set PLL3 to the closest possible rate */ a10_clk_pll3_set_rate(TCON_RATE_HZ(m * TCON_PLLREF_SINGLE)); /* Enable LCD0 CH1 clock */ ccm_write_4(sc, CCM_LCD0_CH1_CLK, CCM_LCD_CH1_SCLK2_GATING | CCM_LCD_CH1_SCLK1_GATING | (src_sel << CCM_LCD_CH1_SRC_SEL_SHIFT) | (n - 1)); return (0); } int a10_clk_tcon_get_config(int *pdiv, int *pdbl) { struct a10_ccm_softc *sc; uint32_t reg_value; int src; sc = a10_ccm_sc; if (sc == NULL) return (ENXIO); reg_value = ccm_read_4(sc, CCM_LCD0_CH1_CLK); *pdiv = (reg_value & CCM_LCD_CH1_CLK_DIV_RATIO_M) + 1; src = (reg_value & CCM_LCD_CH1_SRC_SEL) >> CCM_LCD_CH1_SRC_SEL_SHIFT; switch (src) { case CCM_LCD_CH1_SRC_SEL_PLL3: case CCM_LCD_CH1_SRC_SEL_PLL7: *pdbl = 0; break; case CCM_LCD_CH1_SRC_SEL_PLL3_2X: case CCM_LCD_CH1_SRC_SEL_PLL7_2X: *pdbl = 1; break; } return (0); } int a10_clk_hdmi_activate(void) { struct a10_ccm_softc *sc; uint32_t reg_value; int error; sc = a10_ccm_sc; if (sc == NULL) return (ENXIO); /* Set PLL3 to 297MHz */ error = a10_clk_pll3_set_rate(HDMI_DEFAULT_RATE); if (error != 0) return (error); /* Enable HDMI clock, source PLL3 */ reg_value = ccm_read_4(sc, CCM_HDMI_CLK); reg_value |= CCM_HDMI_CLK_SCLK_GATING; reg_value &= ~CCM_HDMI_CLK_SRC_SEL; reg_value |= (CCM_HDMI_CLK_SRC_SEL_PLL3 << CCM_HDMI_CLK_SRC_SEL_SHIFT); ccm_write_4(sc, CCM_HDMI_CLK, reg_value); /* Gating AHB clock for HDMI */ reg_value = ccm_read_4(sc, CCM_AHB_GATING1); reg_value |= CCM_AHB_GATING_HDMI; ccm_write_4(sc, CCM_AHB_GATING1, reg_value); return (0); }