/*- * Copyright (c) 1999 The NetBSD Foundation, Inc. * Copyright (c) 2001-2003 Thomas Moestl . * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Paul Kranenburg. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * from: NetBSD: hme.c,v 1.20 2000/12/14 06:27:25 thorpej Exp */ #include __FBSDID("$FreeBSD$"); /* * HME Ethernet module driver. * * The HME is e.g. part of the PCIO PCI multi function device. * It supports TX gathering and TX and RX checksum offloading. * RX buffers must be aligned at a programmable offset modulo 16. We choose 2 * for this offset: mbuf clusters are usually on about 2^11 boundaries, 2 bytes * are skipped to make sure the header after the ethernet header is aligned on a * natural boundary, so this ensures minimal wastage in the most common case. * * Also, apparently, the buffers must extend to a DMA burst boundary beyond the * maximum packet size (this is not verified). Buffers starting on odd * boundaries must be mapped so that the burst can start on a natural boundary. * * Checksumming is not yet supported. */ #define HMEDEBUG #define KTR_HME KTR_CT2 /* XXX */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void hme_start(struct ifnet *); static void hme_stop(struct hme_softc *); static int hme_ioctl(struct ifnet *, u_long, caddr_t); static void hme_tick(void *); static void hme_watchdog(struct ifnet *); static void hme_init(void *); static int hme_add_rxbuf(struct hme_softc *, unsigned int, int); static int hme_meminit(struct hme_softc *); static int hme_mac_bitflip(struct hme_softc *, u_int32_t, u_int32_t, u_int32_t, u_int32_t); static void hme_mifinit(struct hme_softc *); static void hme_reset(struct hme_softc *); static void hme_setladrf(struct hme_softc *, int); static int hme_mediachange(struct ifnet *); static void hme_mediastatus(struct ifnet *, struct ifmediareq *); static int hme_load_txmbuf(struct hme_softc *, struct mbuf *); static void hme_read(struct hme_softc *, int, int); static void hme_eint(struct hme_softc *, u_int); static void hme_rint(struct hme_softc *); static void hme_tint(struct hme_softc *); static void hme_cdma_callback(void *, bus_dma_segment_t *, int, int); static void hme_rxdma_callback(void *, bus_dma_segment_t *, int, bus_size_t, int); static void hme_txdma_callback(void *, bus_dma_segment_t *, int, bus_size_t, int); devclass_t hme_devclass; static int hme_nerr; DRIVER_MODULE(miibus, hme, miibus_driver, miibus_devclass, 0, 0); MODULE_DEPEND(hme, miibus, 1, 1, 1); #define HME_SPC_READ_4(spc, sc, offs) \ bus_space_read_4((sc)->sc_ ## spc ## t, (sc)->sc_ ## spc ## h, \ (sc)->sc_ ## spc ## o + (offs)) #define HME_SPC_WRITE_4(spc, sc, offs, v) \ bus_space_write_4((sc)->sc_ ## spc ## t, (sc)->sc_ ## spc ## h, \ (sc)->sc_ ## spc ## o + (offs), (v)) #define HME_SEB_READ_4(sc, offs) HME_SPC_READ_4(seb, (sc), (offs)) #define HME_SEB_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(seb, (sc), (offs), (v)) #define HME_ERX_READ_4(sc, offs) HME_SPC_READ_4(erx, (sc), (offs)) #define HME_ERX_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(erx, (sc), (offs), (v)) #define HME_ETX_READ_4(sc, offs) HME_SPC_READ_4(etx, (sc), (offs)) #define HME_ETX_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(etx, (sc), (offs), (v)) #define HME_MAC_READ_4(sc, offs) HME_SPC_READ_4(mac, (sc), (offs)) #define HME_MAC_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(mac, (sc), (offs), (v)) #define HME_MIF_READ_4(sc, offs) HME_SPC_READ_4(mif, (sc), (offs)) #define HME_MIF_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(mif, (sc), (offs), (v)) #define HME_MAXERR 5 #define HME_WHINE(dev, ...) do { \ if (hme_nerr++ < HME_MAXERR) \ device_printf(dev, __VA_ARGS__); \ if (hme_nerr == HME_MAXERR) { \ device_printf(dev, "too may errors; not reporting any " \ "more\n"); \ } \ } while(0) int hme_config(struct hme_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct mii_softc *child; bus_size_t size; int error, rdesc, tdesc, i; /* * HME common initialization. * * hme_softc fields that must be initialized by the front-end: * * the dma bus tag: * sc_dmatag * * the bus handles, tags and offsets (splitted for SBus compatability): * sc_seb{t,h,o} (Shared Ethernet Block registers) * sc_erx{t,h,o} (Receiver Unit registers) * sc_etx{t,h,o} (Transmitter Unit registers) * sc_mac{t,h,o} (MAC registers) * sc_mif{t,h,o} (Managment Interface registers) * * the maximum bus burst size: * sc_burst * */ /* Make sure the chip is stopped. */ hme_stop(sc); /* * Allocate DMA capable memory * Buffer descriptors must be aligned on a 2048 byte boundary; * take this into account when calculating the size. Note that * the maximum number of descriptors (256) occupies 2048 bytes, * so we allocate that much regardless of HME_N*DESC. */ size = 4096; error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, HME_NTXDESC + HME_NRXDESC + 1, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->sc_pdmatag); if (error) return (error); error = bus_dma_tag_create(sc->sc_pdmatag, 2048, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW, busdma_lock_mutex, &Giant, &sc->sc_cdmatag); if (error) goto fail_ptag; error = bus_dma_tag_create(sc->sc_pdmatag, max(0x10, sc->sc_burst), 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, HME_NRXDESC, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_rdmatag); if (error) goto fail_ctag; error = bus_dma_tag_create(sc->sc_pdmatag, max(0x10, sc->sc_burst), 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, HME_NTXDESC, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdmatag); if (error) goto fail_rtag; /* Allocate control/TX DMA buffer */ error = bus_dmamem_alloc(sc->sc_cdmatag, (void **)&sc->sc_rb.rb_membase, 0, &sc->sc_cdmamap); if (error != 0) { device_printf(sc->sc_dev, "DMA buffer alloc error %d\n", error); goto fail_ttag; } /* Load the buffer */ sc->sc_rb.rb_dmabase = 0; if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cdmamap, sc->sc_rb.rb_membase, size, hme_cdma_callback, sc, 0)) != 0 || sc->sc_rb.rb_dmabase == 0) { device_printf(sc->sc_dev, "DMA buffer map load error %d\n", error); goto fail_free; } CTR2(KTR_HME, "hme_config: dma va %p, pa %#lx", sc->sc_rb.rb_membase, sc->sc_rb.rb_dmabase); /* * Prepare the RX descriptors. rdesc serves as marker for the last * processed descriptor and may be used later on. */ for (rdesc = 0; rdesc < HME_NRXDESC; rdesc++) { sc->sc_rb.rb_rxdesc[rdesc].hrx_m = NULL; error = bus_dmamap_create(sc->sc_rdmatag, 0, &sc->sc_rb.rb_rxdesc[rdesc].hrx_dmamap); if (error != 0) goto fail_rxdesc; } error = bus_dmamap_create(sc->sc_rdmatag, 0, &sc->sc_rb.rb_spare_dmamap); if (error != 0) goto fail_rxdesc; /* Same for the TX descs. */ for (tdesc = 0; tdesc < HME_NTXQ; tdesc++) { sc->sc_rb.rb_txdesc[tdesc].htx_m = NULL; error = bus_dmamap_create(sc->sc_tdmatag, 0, &sc->sc_rb.rb_txdesc[tdesc].htx_dmamap); if (error != 0) goto fail_txdesc; } device_printf(sc->sc_dev, "Ethernet address:"); for (i = 0; i < 6; i++) printf("%c%02x", i > 0 ? ':' : ' ', sc->sc_arpcom.ac_enaddr[i]); printf("\n"); /* Initialize ifnet structure. */ ifp->if_softc = sc; ifp->if_unit = device_get_unit(sc->sc_dev); ifp->if_name = "hme"; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX |IFF_MULTICAST; ifp->if_start = hme_start; ifp->if_ioctl = hme_ioctl; ifp->if_init = hme_init; ifp->if_output = ether_output; ifp->if_watchdog = hme_watchdog; ifp->if_snd.ifq_maxlen = HME_NTXQ; hme_mifinit(sc); if ((error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, hme_mediachange, hme_mediastatus)) != 0) { device_printf(sc->sc_dev, "phy probe failed: %d\n", error); goto fail_rxdesc; } sc->sc_mii = device_get_softc(sc->sc_miibus); /* * Walk along the list of attached MII devices and * establish an `MII instance' to `phy number' * mapping. We'll use this mapping in media change * requests to determine which phy to use to program * the MIF configuration register. */ for (child = LIST_FIRST(&sc->sc_mii->mii_phys); child != NULL; child = LIST_NEXT(child, mii_list)) { /* * Note: we support just two PHYs: the built-in * internal device and an external on the MII * connector. */ if (child->mii_phy > 1 || child->mii_inst > 1) { device_printf(sc->sc_dev, "cannot accomodate " "MII device %s at phy %d, instance %d\n", device_get_name(child->mii_dev), child->mii_phy, child->mii_inst); continue; } sc->sc_phys[child->mii_inst] = child->mii_phy; } /* Attach the interface. */ ether_ifattach(ifp, sc->sc_arpcom.ac_enaddr); callout_init(&sc->sc_tick_ch, 0); return (0); fail_txdesc: for (i = 0; i < tdesc; i++) { bus_dmamap_destroy(sc->sc_tdmatag, sc->sc_rb.rb_txdesc[i].htx_dmamap); } bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap); fail_rxdesc: for (i = 0; i < rdesc; i++) { bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rb.rb_rxdesc[i].hrx_dmamap); } bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cdmamap); fail_free: bus_dmamem_free(sc->sc_cdmatag, sc->sc_rb.rb_membase, sc->sc_cdmamap); fail_ttag: bus_dma_tag_destroy(sc->sc_tdmatag); fail_rtag: bus_dma_tag_destroy(sc->sc_rdmatag); fail_ctag: bus_dma_tag_destroy(sc->sc_cdmatag); fail_ptag: bus_dma_tag_destroy(sc->sc_pdmatag); return (error); } void hme_detach(struct hme_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; int i; ether_ifdetach(ifp); hme_stop(sc); device_delete_child(sc->sc_dev, sc->sc_miibus); for (i = 0; i < HME_NTXQ; i++) { bus_dmamap_destroy(sc->sc_tdmatag, sc->sc_rb.rb_txdesc[i].htx_dmamap); } bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap); for (i = 0; i < HME_NRXDESC; i++) { bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rb.rb_rxdesc[i].hrx_dmamap); } bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cdmamap); bus_dmamem_free(sc->sc_cdmatag, sc->sc_rb.rb_membase, sc->sc_cdmamap); bus_dma_tag_destroy(sc->sc_tdmatag); bus_dma_tag_destroy(sc->sc_rdmatag); bus_dma_tag_destroy(sc->sc_cdmatag); bus_dma_tag_destroy(sc->sc_pdmatag); } void hme_suspend(struct hme_softc *sc) { hme_stop(sc); } void hme_resume(struct hme_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; if ((ifp->if_flags & IFF_UP) != 0) hme_init(ifp); } static void hme_cdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error) { struct hme_softc *sc = (struct hme_softc *)xsc; if (error != 0) return; KASSERT(nsegs == 1, ("hme_cdma_callback: bad dma segment count")); sc->sc_rb.rb_dmabase = segs[0].ds_addr; } static void hme_tick(void *arg) { struct hme_softc *sc = arg; int s; s = splnet(); mii_tick(sc->sc_mii); splx(s); callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc); } static void hme_reset(struct hme_softc *sc) { int s; s = splnet(); hme_init(sc); splx(s); } static void hme_stop(struct hme_softc *sc) { u_int32_t v; int n; callout_stop(&sc->sc_tick_ch); /* Reset transmitter and receiver */ HME_SEB_WRITE_4(sc, HME_SEBI_RESET, HME_SEB_RESET_ETX | HME_SEB_RESET_ERX); for (n = 0; n < 20; n++) { v = HME_SEB_READ_4(sc, HME_SEBI_RESET); if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0) return; DELAY(20); } device_printf(sc->sc_dev, "hme_stop: reset failed\n"); } static void hme_rxdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, bus_size_t totsize, int error) { bus_addr_t *a = xsc; KASSERT(nsegs == 1, ("hme_rxdma_callback: multiple segments!")); if (error != 0) return; *a = segs[0].ds_addr; } /* * Discard the contents of an mbuf in the RX ring, freeing the buffer in the * ring for subsequent use. */ static __inline void hme_discard_rxbuf(struct hme_softc *sc, int ix) { /* * Dropped a packet, reinitialize the descriptor and turn the * ownership back to the hardware. */ HME_XD_SETFLAGS(sc->sc_pci, sc->sc_rb.rb_rxd, ix, HME_XD_OWN | HME_XD_ENCODE_RSIZE(HME_DESC_RXLEN(sc, &sc->sc_rb.rb_rxdesc[ix]))); } static int hme_add_rxbuf(struct hme_softc *sc, unsigned int ri, int keepold) { struct hme_rxdesc *rd; struct mbuf *m; bus_addr_t ba; bus_dmamap_t map; uintptr_t b; int a, unmap; rd = &sc->sc_rb.rb_rxdesc[ri]; unmap = rd->hrx_m != NULL; if (unmap && keepold) { /* * Reinitialize the descriptor flags, as they may have been * altered by the hardware. */ hme_discard_rxbuf(sc, ri); return (0); } if ((m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR)) == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; b = mtod(m, uintptr_t); /* * Required alignment boundary. At least 16 is needed, but since * the mapping must be done in a way that a burst can start on a * natural boundary we might need to extend this. */ a = max(HME_MINRXALIGN, sc->sc_burst); /* * Make sure the buffer suitably aligned. The 2 byte offset is removed * when the mbuf is handed up. XXX: this ensures at least 16 byte * alignment of the header adjacent to the ethernet header, which * should be sufficient in all cases. Nevertheless, this second-guesses * ALIGN(). */ m_adj(m, roundup2(b, a) - b); if (bus_dmamap_load_mbuf(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap, m, hme_rxdma_callback, &ba, 0) != 0) { m_freem(m); return (ENOBUFS); } if (unmap) { bus_dmamap_sync(sc->sc_rdmatag, rd->hrx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_rdmatag, rd->hrx_dmamap); } map = rd->hrx_dmamap; rd->hrx_dmamap = sc->sc_rb.rb_spare_dmamap; sc->sc_rb.rb_spare_dmamap = map; bus_dmamap_sync(sc->sc_rdmatag, rd->hrx_dmamap, BUS_DMASYNC_PREREAD); HME_XD_SETADDR(sc->sc_pci, sc->sc_rb.rb_rxd, ri, ba); rd->hrx_m = m; HME_XD_SETFLAGS(sc->sc_pci, sc->sc_rb.rb_rxd, ri, HME_XD_OWN | HME_XD_ENCODE_RSIZE(HME_DESC_RXLEN(sc, rd))); return (0); } static int hme_meminit(struct hme_softc *sc) { struct hme_ring *hr = &sc->sc_rb; struct hme_txdesc *td; bus_addr_t dma; caddr_t p; unsigned int i; int error; p = hr->rb_membase; dma = hr->rb_dmabase; /* * Allocate transmit descriptors */ hr->rb_txd = p; hr->rb_txddma = dma; p += HME_NTXDESC * HME_XD_SIZE; dma += HME_NTXDESC * HME_XD_SIZE; /* We have reserved descriptor space until the next 2048 byte boundary.*/ dma = (bus_addr_t)roundup((u_long)dma, 2048); p = (caddr_t)roundup((u_long)p, 2048); /* * Allocate receive descriptors */ hr->rb_rxd = p; hr->rb_rxddma = dma; p += HME_NRXDESC * HME_XD_SIZE; dma += HME_NRXDESC * HME_XD_SIZE; /* Again move forward to the next 2048 byte boundary.*/ dma = (bus_addr_t)roundup((u_long)dma, 2048); p = (caddr_t)roundup((u_long)p, 2048); /* * Initialize transmit buffer descriptors */ for (i = 0; i < HME_NTXDESC; i++) { HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, 0); HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0); } STAILQ_INIT(&sc->sc_rb.rb_txfreeq); STAILQ_INIT(&sc->sc_rb.rb_txbusyq); for (i = 0; i < HME_NTXQ; i++) { td = &sc->sc_rb.rb_txdesc[i]; if (td->htx_m != NULL) { m_freem(td->htx_m); bus_dmamap_sync(sc->sc_tdmatag, td->htx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_tdmatag, td->htx_dmamap); td->htx_m = NULL; } STAILQ_INSERT_TAIL(&sc->sc_rb.rb_txfreeq, td, htx_q); } /* * Initialize receive buffer descriptors */ for (i = 0; i < HME_NRXDESC; i++) { error = hme_add_rxbuf(sc, i, 1); if (error != 0) return (error); } bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_PREREAD); bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_PREWRITE); hr->rb_tdhead = hr->rb_tdtail = 0; hr->rb_td_nbusy = 0; hr->rb_rdtail = 0; CTR2(KTR_HME, "hme_meminit: tx ring va %p, pa %#lx", hr->rb_txd, hr->rb_txddma); CTR2(KTR_HME, "hme_meminit: rx ring va %p, pa %#lx", hr->rb_rxd, hr->rb_rxddma); CTR2(KTR_HME, "rx entry 1: flags %x, address %x", *(u_int32_t *)hr->rb_rxd, *(u_int32_t *)(hr->rb_rxd + 4)); CTR2(KTR_HME, "tx entry 1: flags %x, address %x", *(u_int32_t *)hr->rb_txd, *(u_int32_t *)(hr->rb_txd + 4)); return (0); } static int hme_mac_bitflip(struct hme_softc *sc, u_int32_t reg, u_int32_t val, u_int32_t clr, u_int32_t set) { int i = 0; val &= ~clr; val |= set; HME_MAC_WRITE_4(sc, reg, val); if (clr == 0 && set == 0) return (1); /* just write, no bits to wait for */ do { DELAY(100); i++; val = HME_MAC_READ_4(sc, reg); if (i > 40) { /* After 3.5ms, we should have been done. */ device_printf(sc->sc_dev, "timeout while writing to " "MAC configuration register\n"); return (0); } } while ((val & clr) != 0 && (val & set) != set); return (1); } /* * Initialization of interface; set up initialization block * and transmit/receive descriptor rings. */ static void hme_init(void *xsc) { struct hme_softc *sc = (struct hme_softc *)xsc; struct ifnet *ifp = &sc->sc_arpcom.ac_if; u_int8_t *ea; u_int32_t v; /* * Initialization sequence. The numbered steps below correspond * to the sequence outlined in section 6.3.5.1 in the Ethernet * Channel Engine manual (part of the PCIO manual). * See also the STP2002-STQ document from Sun Microsystems. */ /* step 1 & 2. Reset the Ethernet Channel */ hme_stop(sc); /* Re-initialize the MIF */ hme_mifinit(sc); #if 0 /* Mask all MIF interrupts, just in case */ HME_MIF_WRITE_4(sc, HME_MIFI_IMASK, 0xffff); #endif /* step 3. Setup data structures in host memory */ if (hme_meminit(sc) != 0) { device_printf(sc->sc_dev, "out of buffers; init aborted."); return; } /* step 4. TX MAC registers & counters */ HME_MAC_WRITE_4(sc, HME_MACI_NCCNT, 0); HME_MAC_WRITE_4(sc, HME_MACI_FCCNT, 0); HME_MAC_WRITE_4(sc, HME_MACI_EXCNT, 0); HME_MAC_WRITE_4(sc, HME_MACI_LTCNT, 0); HME_MAC_WRITE_4(sc, HME_MACI_TXSIZE, ETHER_MAX_LEN); /* Load station MAC address */ ea = sc->sc_arpcom.ac_enaddr; HME_MAC_WRITE_4(sc, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]); HME_MAC_WRITE_4(sc, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]); HME_MAC_WRITE_4(sc, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]); /* * Init seed for backoff * (source suggested by manual: low 10 bits of MAC address) */ v = ((ea[4] << 8) | ea[5]) & 0x3fff; HME_MAC_WRITE_4(sc, HME_MACI_RANDSEED, v); /* Note: Accepting power-on default for other MAC registers here.. */ /* step 5. RX MAC registers & counters */ hme_setladrf(sc, 0); /* step 6 & 7. Program Descriptor Ring Base Addresses */ HME_ETX_WRITE_4(sc, HME_ETXI_RING, sc->sc_rb.rb_txddma); /* Transmit Descriptor ring size: in increments of 16 */ HME_ETX_WRITE_4(sc, HME_ETXI_RSIZE, HME_NTXDESC / 16 - 1); HME_ERX_WRITE_4(sc, HME_ERXI_RING, sc->sc_rb.rb_rxddma); HME_MAC_WRITE_4(sc, HME_MACI_RXSIZE, ETHER_MAX_LEN); /* step 8. Global Configuration & Interrupt Mask */ HME_SEB_WRITE_4(sc, HME_SEBI_IMASK, ~(/*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/ HME_SEB_STAT_HOSTTOTX | HME_SEB_STAT_RXTOHOST | HME_SEB_STAT_TXALL | HME_SEB_STAT_TXPERR | HME_SEB_STAT_RCNTEXP | HME_SEB_STAT_ALL_ERRORS )); switch (sc->sc_burst) { default: v = 0; break; case 16: v = HME_SEB_CFG_BURST16; break; case 32: v = HME_SEB_CFG_BURST32; break; case 64: v = HME_SEB_CFG_BURST64; break; } HME_SEB_WRITE_4(sc, HME_SEBI_CFG, v); /* step 9. ETX Configuration: use mostly default values */ /* Enable DMA */ v = HME_ETX_READ_4(sc, HME_ETXI_CFG); v |= HME_ETX_CFG_DMAENABLE; HME_ETX_WRITE_4(sc, HME_ETXI_CFG, v); /* step 10. ERX Configuration */ v = HME_ERX_READ_4(sc, HME_ERXI_CFG); /* Encode Receive Descriptor ring size: four possible values */ v &= ~HME_ERX_CFG_RINGSIZEMSK; switch (HME_NRXDESC) { case 32: v |= HME_ERX_CFG_RINGSIZE32; break; case 64: v |= HME_ERX_CFG_RINGSIZE64; break; case 128: v |= HME_ERX_CFG_RINGSIZE128; break; case 256: v |= HME_ERX_CFG_RINGSIZE256; break; default: printf("hme: invalid Receive Descriptor ring size\n"); break; } /* Enable DMA, fix RX first byte offset. */ v &= ~HME_ERX_CFG_FBO_MASK; v |= HME_ERX_CFG_DMAENABLE | (HME_RXOFFS << HME_ERX_CFG_FBO_SHIFT); CTR1(KTR_HME, "hme_init: programming ERX_CFG to %x", (u_int)v); HME_ERX_WRITE_4(sc, HME_ERXI_CFG, v); /* step 11. XIF Configuration */ v = HME_MAC_READ_4(sc, HME_MACI_XIF); v |= HME_MAC_XIF_OE; /* If an external transceiver is connected, enable its MII drivers */ if ((HME_MIF_READ_4(sc, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0) v |= HME_MAC_XIF_MIIENABLE; CTR1(KTR_HME, "hme_init: programming XIF to %x", (u_int)v); HME_MAC_WRITE_4(sc, HME_MACI_XIF, v); /* step 12. RX_MAC Configuration Register */ v = HME_MAC_READ_4(sc, HME_MACI_RXCFG); v |= HME_MAC_RXCFG_ENABLE; v &= ~(HME_MAC_RXCFG_DCRCS); CTR1(KTR_HME, "hme_init: programming RX_MAC to %x", (u_int)v); HME_MAC_WRITE_4(sc, HME_MACI_RXCFG, v); /* step 13. TX_MAC Configuration Register */ v = HME_MAC_READ_4(sc, HME_MACI_TXCFG); v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP); CTR1(KTR_HME, "hme_init: programming TX_MAC to %x", (u_int)v); HME_MAC_WRITE_4(sc, HME_MACI_TXCFG, v); /* step 14. Issue Transmit Pending command */ #ifdef HMEDEBUG /* Debug: double-check. */ CTR4(KTR_HME, "hme_init: tx ring %#x, rsz %#x, rx ring %#x, " "rxsize %#x", HME_ETX_READ_4(sc, HME_ETXI_RING), HME_ETX_READ_4(sc, HME_ETXI_RSIZE), HME_ERX_READ_4(sc, HME_ERXI_RING), HME_MAC_READ_4(sc, HME_MACI_RXSIZE)); CTR3(KTR_HME, "hme_init: intr mask %#x, erx cfg %#x, etx cfg %#x", HME_SEB_READ_4(sc, HME_SEBI_IMASK), HME_ERX_READ_4(sc, HME_ERXI_CFG), HME_ETX_READ_4(sc, HME_ETXI_CFG)); CTR2(KTR_HME, "hme_init: mac rxcfg %#x, maci txcfg %#x", HME_MAC_READ_4(sc, HME_MACI_RXCFG), HME_MAC_READ_4(sc, HME_MACI_TXCFG)); #endif /* Start the one second timer. */ callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; ifp->if_timer = 0; hme_start(ifp); } struct hme_txdma_arg { struct hme_softc *hta_sc; struct hme_txdesc *hta_htx; int hta_ndescs; }; /* * XXX: this relies on the fact that segments returned by bus_dmamap_load_mbuf() * are readable from the nearest burst boundary on (i.e. potentially before * ds_addr) to the first boundary beyond the end. This is usually a safe * assumption to make, but is not documented. */ static void hme_txdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, bus_size_t totsz, int error) { struct hme_txdma_arg *ta = xsc; struct hme_txdesc *htx; bus_size_t len = 0; caddr_t txd; u_int32_t flags = 0; int i, tdhead, pci; if (error != 0) return; tdhead = ta->hta_sc->sc_rb.rb_tdhead; pci = ta->hta_sc->sc_pci; txd = ta->hta_sc->sc_rb.rb_txd; htx = ta->hta_htx; if (ta->hta_sc->sc_rb.rb_td_nbusy + nsegs >= HME_NTXDESC) { ta->hta_ndescs = -1; return; } ta->hta_ndescs = nsegs; for (i = 0; i < nsegs; i++) { if (segs[i].ds_len == 0) continue; /* Fill the ring entry. */ flags = HME_XD_ENCODE_TSIZE(segs[i].ds_len); if (len == 0) flags |= HME_XD_SOP; if (len + segs[i].ds_len == totsz) flags |= HME_XD_EOP; CTR5(KTR_HME, "hme_txdma_callback: seg %d/%d, ri %d, " "flags %#x, addr %#x", i + 1, nsegs, tdhead, (u_int)flags, (u_int)segs[i].ds_addr); HME_XD_SETFLAGS(pci, txd, tdhead, flags); HME_XD_SETADDR(pci, txd, tdhead, segs[i].ds_addr); ta->hta_sc->sc_rb.rb_td_nbusy++; htx->htx_lastdesc = tdhead; tdhead = (tdhead + 1) % HME_NTXDESC; len += segs[i].ds_len; } ta->hta_sc->sc_rb.rb_tdhead = tdhead; KASSERT((flags & HME_XD_EOP) != 0, ("hme_txdma_callback: missed end of packet!")); } /* * Routine to dma map an mbuf chain, set up the descriptor rings accordingly and * start the transmission. * Returns 0 on success, -1 if there were not enough free descriptors to map * the packet, or an errno otherwise. */ static int hme_load_txmbuf(struct hme_softc *sc, struct mbuf *m0) { struct hme_txdma_arg cba; struct hme_txdesc *td; int error, si, ri; u_int32_t flags; si = sc->sc_rb.rb_tdhead; if ((td = STAILQ_FIRST(&sc->sc_rb.rb_txfreeq)) == NULL) return (-1); td->htx_m = m0; cba.hta_sc = sc; cba.hta_htx = td; if ((error = bus_dmamap_load_mbuf(sc->sc_tdmatag, td->htx_dmamap, m0, hme_txdma_callback, &cba, 0)) != 0) goto fail; if (cba.hta_ndescs == -1) { error = -1; goto fail; } bus_dmamap_sync(sc->sc_tdmatag, td->htx_dmamap, BUS_DMASYNC_PREWRITE); STAILQ_REMOVE_HEAD(&sc->sc_rb.rb_txfreeq, htx_q); STAILQ_INSERT_TAIL(&sc->sc_rb.rb_txbusyq, td, htx_q); /* Turn descriptor ownership to the hme, back to forth. */ ri = sc->sc_rb.rb_tdhead; CTR2(KTR_HME, "hme_load_mbuf: next desc is %d (%#x)", ri, HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri)); do { ri = (ri + HME_NTXDESC - 1) % HME_NTXDESC; flags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri) | HME_XD_OWN; CTR3(KTR_HME, "hme_load_mbuf: activating ri %d, si %d (%#x)", ri, si, flags); HME_XD_SETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri, flags); } while (ri != si); /* start the transmission. */ HME_ETX_WRITE_4(sc, HME_ETXI_PENDING, HME_ETX_TP_DMAWAKEUP); return (0); fail: bus_dmamap_unload(sc->sc_tdmatag, td->htx_dmamap); return (error); } /* * Pass a packet to the higher levels. */ static void hme_read(struct hme_softc *sc, int ix, int len) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct mbuf *m; if (len <= sizeof(struct ether_header) || len > ETHERMTU + sizeof(struct ether_header)) { #ifdef HMEDEBUG HME_WHINE(sc->sc_dev, "invalid packet size %d; dropping\n", len); #endif ifp->if_ierrors++; hme_discard_rxbuf(sc, ix); return; } m = sc->sc_rb.rb_rxdesc[ix].hrx_m; CTR1(KTR_HME, "hme_read: len %d", len); if (hme_add_rxbuf(sc, ix, 0) != 0) { /* * hme_add_rxbuf will leave the old buffer in the ring until * it is sure that a new buffer can be mapped. If it can not, * drop the packet, but leave the interface up. */ ifp->if_iqdrops++; hme_discard_rxbuf(sc, ix); return; } ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = len + HME_RXOFFS; m_adj(m, HME_RXOFFS); /* Pass the packet up. */ (*ifp->if_input)(ifp, m); } static void hme_start(struct ifnet *ifp) { struct hme_softc *sc = (struct hme_softc *)ifp->if_softc; struct mbuf *m; int error, enq = 0; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; error = 0; for (;;) { IF_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; error = hme_load_txmbuf(sc, m); if (error == -1) { ifp->if_flags |= IFF_OACTIVE; IF_PREPEND(&ifp->if_snd, m); break; } else if (error > 0) { printf("hme_start: error %d while loading mbuf\n", error); } else { enq = 1; BPF_MTAP(ifp, m); } } if (sc->sc_rb.rb_td_nbusy == HME_NTXDESC || error == -1) ifp->if_flags |= IFF_OACTIVE; /* Set watchdog timer if a packet was queued */ if (enq) { bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_PREWRITE); ifp->if_timer = 5; } } /* * Transmit interrupt. */ static void hme_tint(struct hme_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct hme_txdesc *htx; unsigned int ri, txflags; /* * Unload collision counters */ ifp->if_collisions += HME_MAC_READ_4(sc, HME_MACI_NCCNT) + HME_MAC_READ_4(sc, HME_MACI_FCCNT) + HME_MAC_READ_4(sc, HME_MACI_EXCNT) + HME_MAC_READ_4(sc, HME_MACI_LTCNT); /* * then clear the hardware counters. */ HME_MAC_WRITE_4(sc, HME_MACI_NCCNT, 0); HME_MAC_WRITE_4(sc, HME_MACI_FCCNT, 0); HME_MAC_WRITE_4(sc, HME_MACI_EXCNT, 0); HME_MAC_WRITE_4(sc, HME_MACI_LTCNT, 0); htx = STAILQ_FIRST(&sc->sc_rb.rb_txbusyq); bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_POSTREAD); /* Fetch current position in the transmit ring */ for (ri = sc->sc_rb.rb_tdtail;; ri = (ri + 1) % HME_NTXDESC) { if (sc->sc_rb.rb_td_nbusy <= 0) { CTR0(KTR_HME, "hme_tint: not busy!"); break; } txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri); CTR2(KTR_HME, "hme_tint: index %d, flags %#x", ri, txflags); if ((txflags & HME_XD_OWN) != 0) break; CTR0(KTR_HME, "hme_tint: not owned"); --sc->sc_rb.rb_td_nbusy; ifp->if_flags &= ~IFF_OACTIVE; /* Complete packet transmitted? */ if ((txflags & HME_XD_EOP) == 0) continue; KASSERT(htx->htx_lastdesc == ri, ("hme_tint: ring indices skewed: %d != %d!", htx->htx_lastdesc, ri)); bus_dmamap_sync(sc->sc_tdmatag, htx->htx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_tdmatag, htx->htx_dmamap); ifp->if_opackets++; m_freem(htx->htx_m); htx->htx_m = NULL; STAILQ_REMOVE_HEAD(&sc->sc_rb.rb_txbusyq, htx_q); STAILQ_INSERT_TAIL(&sc->sc_rb.rb_txfreeq, htx, htx_q); htx = STAILQ_FIRST(&sc->sc_rb.rb_txbusyq); } /* Turn off watchdog */ if (sc->sc_rb.rb_td_nbusy == 0) ifp->if_timer = 0; /* Update ring */ sc->sc_rb.rb_tdtail = ri; hme_start(ifp); if (sc->sc_rb.rb_td_nbusy == 0) ifp->if_timer = 0; } /* * Receive interrupt. */ static void hme_rint(struct hme_softc *sc) { caddr_t xdr = sc->sc_rb.rb_rxd; struct ifnet *ifp = &sc->sc_arpcom.ac_if; unsigned int ri, len; int progress = 0; u_int32_t flags; /* * Process all buffers with valid data. */ bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_POSTREAD); for (ri = sc->sc_rb.rb_rdtail;; ri = (ri + 1) % HME_NRXDESC) { flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri); CTR2(KTR_HME, "hme_rint: index %d, flags %#x", ri, flags); if ((flags & HME_XD_OWN) != 0) break; progress++; if ((flags & HME_XD_OFL) != 0) { device_printf(sc->sc_dev, "buffer overflow, ri=%d; " "flags=0x%x\n", ri, flags); ifp->if_ierrors++; hme_discard_rxbuf(sc, ri); } else { len = HME_XD_DECODE_RSIZE(flags); hme_read(sc, ri, len); } } if (progress) { bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_PREWRITE); } sc->sc_rb.rb_rdtail = ri; } static void hme_eint(struct hme_softc *sc, u_int status) { if ((status & HME_SEB_STAT_MIFIRQ) != 0) { device_printf(sc->sc_dev, "XXXlink status changed\n"); return; } HME_WHINE(sc->sc_dev, "error signaled, status=%#x\n", status); } void hme_intr(void *v) { struct hme_softc *sc = (struct hme_softc *)v; u_int32_t status; status = HME_SEB_READ_4(sc, HME_SEBI_STAT); CTR1(KTR_HME, "hme_intr: status %#x", (u_int)status); if ((status & HME_SEB_STAT_ALL_ERRORS) != 0) hme_eint(sc, status); if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0) hme_tint(sc); if ((status & HME_SEB_STAT_RXTOHOST) != 0) hme_rint(sc); } static void hme_watchdog(struct ifnet *ifp) { struct hme_softc *sc = ifp->if_softc; #ifdef HMEDEBUG u_int32_t status; status = HME_SEB_READ_4(sc, HME_SEBI_STAT); CTR1(KTR_HME, "hme_watchdog: status %x", (u_int)status); #endif device_printf(sc->sc_dev, "device timeout\n"); ++ifp->if_oerrors; hme_reset(sc); } /* * Initialize the MII Management Interface */ static void hme_mifinit(struct hme_softc *sc) { u_int32_t v; /* Configure the MIF in frame mode */ v = HME_MIF_READ_4(sc, HME_MIFI_CFG); v &= ~HME_MIF_CFG_BBMODE; HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v); } /* * MII interface */ int hme_mii_readreg(device_t dev, int phy, int reg) { struct hme_softc *sc = device_get_softc(dev); int n; u_int32_t v; /* Select the desired PHY in the MIF configuration register */ v = HME_MIF_READ_4(sc, HME_MIFI_CFG); /* Clear PHY select bit */ v &= ~HME_MIF_CFG_PHY; if (phy == HME_PHYAD_EXTERNAL) /* Set PHY select bit to get at external device */ v |= HME_MIF_CFG_PHY; HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v); /* Construct the frame command */ v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) | HME_MIF_FO_TAMSB | (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) | (phy << HME_MIF_FO_PHYAD_SHIFT) | (reg << HME_MIF_FO_REGAD_SHIFT); HME_MIF_WRITE_4(sc, HME_MIFI_FO, v); for (n = 0; n < 100; n++) { DELAY(1); v = HME_MIF_READ_4(sc, HME_MIFI_FO); if (v & HME_MIF_FO_TALSB) return (v & HME_MIF_FO_DATA); } device_printf(sc->sc_dev, "mii_read timeout\n"); return (0); } int hme_mii_writereg(device_t dev, int phy, int reg, int val) { struct hme_softc *sc = device_get_softc(dev); int n; u_int32_t v; /* Select the desired PHY in the MIF configuration register */ v = HME_MIF_READ_4(sc, HME_MIFI_CFG); /* Clear PHY select bit */ v &= ~HME_MIF_CFG_PHY; if (phy == HME_PHYAD_EXTERNAL) /* Set PHY select bit to get at external device */ v |= HME_MIF_CFG_PHY; HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v); /* Construct the frame command */ v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) | HME_MIF_FO_TAMSB | (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) | (phy << HME_MIF_FO_PHYAD_SHIFT) | (reg << HME_MIF_FO_REGAD_SHIFT) | (val & HME_MIF_FO_DATA); HME_MIF_WRITE_4(sc, HME_MIFI_FO, v); for (n = 0; n < 100; n++) { DELAY(1); v = HME_MIF_READ_4(sc, HME_MIFI_FO); if (v & HME_MIF_FO_TALSB) return (1); } device_printf(sc->sc_dev, "mii_write timeout\n"); return (0); } void hme_mii_statchg(device_t dev) { struct hme_softc *sc = device_get_softc(dev); int instance = IFM_INST(sc->sc_mii->mii_media.ifm_cur->ifm_media); int phy = sc->sc_phys[instance]; u_int32_t v; #ifdef HMEDEBUG if (sc->sc_debug) printf("hme_mii_statchg: status change: phy = %d\n", phy); #endif /* Select the current PHY in the MIF configuration register */ v = HME_MIF_READ_4(sc, HME_MIFI_CFG); v &= ~HME_MIF_CFG_PHY; if (phy == HME_PHYAD_EXTERNAL) v |= HME_MIF_CFG_PHY; HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v); /* Set the MAC Full Duplex bit appropriately */ v = HME_MAC_READ_4(sc, HME_MACI_TXCFG); if (!hme_mac_bitflip(sc, HME_MACI_TXCFG, v, HME_MAC_TXCFG_ENABLE, 0)) return; if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0) v |= HME_MAC_TXCFG_FULLDPLX; else v &= ~HME_MAC_TXCFG_FULLDPLX; HME_MAC_WRITE_4(sc, HME_MACI_TXCFG, v); if (!hme_mac_bitflip(sc, HME_MACI_TXCFG, v, 0, HME_MAC_TXCFG_ENABLE)) return; } static int hme_mediachange(struct ifnet *ifp) { struct hme_softc *sc = ifp->if_softc; return (mii_mediachg(sc->sc_mii)); } static void hme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct hme_softc *sc = ifp->if_softc; if ((ifp->if_flags & IFF_UP) == 0) return; mii_pollstat(sc->sc_mii); ifmr->ifm_active = sc->sc_mii->mii_media_active; ifmr->ifm_status = sc->sc_mii->mii_media_status; } /* * Process an ioctl request. */ static int hme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct hme_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFFLAGS: if ((ifp->if_flags & IFF_UP) == 0 && (ifp->if_flags & IFF_RUNNING) != 0) { /* * If interface is marked down and it is running, then * stop it. */ hme_stop(sc); ifp->if_flags &= ~IFF_RUNNING; } else if ((ifp->if_flags & IFF_UP) != 0 && (ifp->if_flags & IFF_RUNNING) == 0) { /* * If interface is marked up and it is stopped, then * start it. */ hme_init(sc); } else if ((ifp->if_flags & IFF_UP) != 0) { /* * Reset the interface to pick up changes in any other * flags that affect hardware registers. */ hme_init(sc); } #ifdef HMEDEBUG sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0; #endif break; case SIOCADDMULTI: case SIOCDELMULTI: hme_setladrf(sc, 1); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd); break; default: error = ether_ioctl(ifp, cmd, data); break; } splx(s); return (error); } /* * Set up the logical address filter. */ static void hme_setladrf(struct hme_softc *sc, int reenable) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct ifmultiaddr *inm; struct sockaddr_dl *sdl; u_char *cp; u_int32_t crc; u_int32_t hash[4]; u_int32_t macc; int len; /* Clear hash table */ hash[3] = hash[2] = hash[1] = hash[0] = 0; /* Get current RX configuration */ macc = HME_MAC_READ_4(sc, HME_MACI_RXCFG); /* * Disable the receiver while changing it's state as the documentation * mandates. * We then must wait until the bit clears in the register. This should * take at most 3.5ms. */ if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, macc, HME_MAC_RXCFG_ENABLE, 0)) return; /* Disable the hash filter before writing to the filter registers. */ if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, macc, HME_MAC_RXCFG_HENABLE, 0)) return; if (reenable) macc |= HME_MAC_RXCFG_ENABLE; else macc &= ~HME_MAC_RXCFG_ENABLE; if ((ifp->if_flags & IFF_PROMISC) != 0) { /* Turn on promiscuous mode; turn off the hash filter */ macc |= HME_MAC_RXCFG_PMISC; macc &= ~HME_MAC_RXCFG_HENABLE; ifp->if_flags |= IFF_ALLMULTI; goto chipit; } /* Turn off promiscuous mode; turn on the hash filter */ macc &= ~HME_MAC_RXCFG_PMISC; macc |= HME_MAC_RXCFG_HENABLE; /* * Set up multicast address filter by passing all multicast addresses * through a crc generator, and then using the high order 6 bits as an * index into the 64 bit logical address filter. The high order bit * selects the word, while the rest of the bits select the bit within * the word. */ TAILQ_FOREACH(inm, &sc->sc_arpcom.ac_if.if_multiaddrs, ifma_link) { if (inm->ifma_addr->sa_family != AF_LINK) continue; sdl = (struct sockaddr_dl *)inm->ifma_addr; cp = LLADDR(sdl); crc = 0xffffffff; for (len = sdl->sdl_alen; --len >= 0;) { int octet = *cp++; int i; #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */ for (i = 0; i < 8; i++) { if ((crc & 1) ^ (octet & 1)) { crc >>= 1; crc ^= MC_POLY_LE; } else { crc >>= 1; } octet >>= 1; } } /* Just want the 6 most significant bits. */ crc >>= 26; /* Set the corresponding bit in the filter. */ hash[crc >> 4] |= 1 << (crc & 0xf); } ifp->if_flags &= ~IFF_ALLMULTI; chipit: /* Now load the hash table into the chip */ HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB0, hash[0]); HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB1, hash[1]); HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB2, hash[2]); HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB3, hash[3]); hme_mac_bitflip(sc, HME_MACI_RXCFG, macc, 0, macc & (HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_HENABLE)); }