/*- * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * From: @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_callout_profiling.h" #if defined(__arm__) #include "opt_timer.h" #endif #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SMP #include #endif #ifndef NO_EVENTTIMERS DPCPU_DECLARE(sbintime_t, hardclocktime); #endif SDT_PROVIDER_DEFINE(callout_execute); SDT_PROBE_DEFINE1(callout_execute, kernel, , callout__start, "struct callout *"); SDT_PROBE_DEFINE1(callout_execute, kernel, , callout__end, "struct callout *"); #ifdef CALLOUT_PROFILING static int avg_depth; SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0, "Average number of items examined per softclock call. Units = 1/1000"); static int avg_gcalls; SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0, "Average number of Giant callouts made per softclock call. Units = 1/1000"); static int avg_lockcalls; SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0, "Average number of lock callouts made per softclock call. Units = 1/1000"); static int avg_mpcalls; SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0, "Average number of MP callouts made per softclock call. Units = 1/1000"); static int avg_depth_dir; SYSCTL_INT(_debug, OID_AUTO, to_avg_depth_dir, CTLFLAG_RD, &avg_depth_dir, 0, "Average number of direct callouts examined per callout_process call. " "Units = 1/1000"); static int avg_lockcalls_dir; SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls_dir, CTLFLAG_RD, &avg_lockcalls_dir, 0, "Average number of lock direct callouts made per " "callout_process call. Units = 1/1000"); static int avg_mpcalls_dir; SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls_dir, CTLFLAG_RD, &avg_mpcalls_dir, 0, "Average number of MP direct callouts made per callout_process call. " "Units = 1/1000"); #endif static int ncallout; SYSCTL_INT(_kern, OID_AUTO, ncallout, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &ncallout, 0, "Number of entries in callwheel and size of timeout() preallocation"); #ifdef RSS static int pin_default_swi = 1; static int pin_pcpu_swi = 1; #else static int pin_default_swi = 0; static int pin_pcpu_swi = 0; #endif SYSCTL_INT(_kern, OID_AUTO, pin_default_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_default_swi, 0, "Pin the default (non-per-cpu) swi (shared with PCPU 0 swi)"); SYSCTL_INT(_kern, OID_AUTO, pin_pcpu_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_pcpu_swi, 0, "Pin the per-CPU swis (except PCPU 0, which is also default"); /* * TODO: * allocate more timeout table slots when table overflows. */ u_int callwheelsize, callwheelmask; /* * The callout cpu exec entities represent informations necessary for * describing the state of callouts currently running on the CPU and the ones * necessary for migrating callouts to the new callout cpu. In particular, * the first entry of the array cc_exec_entity holds informations for callout * running in SWI thread context, while the second one holds informations * for callout running directly from hardware interrupt context. * The cached informations are very important for deferring migration when * the migrating callout is already running. */ struct cc_exec { struct callout *cc_next; struct callout *cc_curr; #ifdef SMP void (*ce_migration_func)(void *); void *ce_migration_arg; int ce_migration_cpu; sbintime_t ce_migration_time; sbintime_t ce_migration_prec; #endif bool cc_cancel; bool cc_waiting; }; /* * There is one struct callout_cpu per cpu, holding all relevant * state for the callout processing thread on the individual CPU. */ struct callout_cpu { struct mtx_padalign cc_lock; struct cc_exec cc_exec_entity[2]; struct callout *cc_callout; struct callout_list *cc_callwheel; struct callout_tailq cc_expireq; struct callout_slist cc_callfree; sbintime_t cc_firstevent; sbintime_t cc_lastscan; void *cc_cookie; u_int cc_bucket; char cc_ktr_event_name[20]; }; #define cc_exec_curr cc_exec_entity[0].cc_curr #define cc_exec_next cc_exec_entity[0].cc_next #define cc_exec_cancel cc_exec_entity[0].cc_cancel #define cc_exec_waiting cc_exec_entity[0].cc_waiting #define cc_exec_curr_dir cc_exec_entity[1].cc_curr #define cc_exec_next_dir cc_exec_entity[1].cc_next #define cc_exec_cancel_dir cc_exec_entity[1].cc_cancel #define cc_exec_waiting_dir cc_exec_entity[1].cc_waiting #ifdef SMP #define cc_migration_func cc_exec_entity[0].ce_migration_func #define cc_migration_arg cc_exec_entity[0].ce_migration_arg #define cc_migration_cpu cc_exec_entity[0].ce_migration_cpu #define cc_migration_time cc_exec_entity[0].ce_migration_time #define cc_migration_prec cc_exec_entity[0].ce_migration_prec #define cc_migration_func_dir cc_exec_entity[1].ce_migration_func #define cc_migration_arg_dir cc_exec_entity[1].ce_migration_arg #define cc_migration_cpu_dir cc_exec_entity[1].ce_migration_cpu #define cc_migration_time_dir cc_exec_entity[1].ce_migration_time #define cc_migration_prec_dir cc_exec_entity[1].ce_migration_prec struct callout_cpu cc_cpu[MAXCPU]; #define CPUBLOCK MAXCPU #define CC_CPU(cpu) (&cc_cpu[(cpu)]) #define CC_SELF() CC_CPU(PCPU_GET(cpuid)) #else struct callout_cpu cc_cpu; #define CC_CPU(cpu) &cc_cpu #define CC_SELF() &cc_cpu #endif #define CC_LOCK(cc) mtx_lock_spin(&(cc)->cc_lock) #define CC_UNLOCK(cc) mtx_unlock_spin(&(cc)->cc_lock) #define CC_LOCK_ASSERT(cc) mtx_assert(&(cc)->cc_lock, MA_OWNED) static int timeout_cpu; static void callout_cpu_init(struct callout_cpu *cc, int cpu); static void softclock_call_cc(struct callout *c, struct callout_cpu *cc, #ifdef CALLOUT_PROFILING int *mpcalls, int *lockcalls, int *gcalls, #endif int direct); static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures"); /** * Locked by cc_lock: * cc_curr - If a callout is in progress, it is cc_curr. * If cc_curr is non-NULL, threads waiting in * callout_drain() will be woken up as soon as the * relevant callout completes. * cc_cancel - Changing to 1 with both callout_lock and cc_lock held * guarantees that the current callout will not run. * The softclock() function sets this to 0 before it * drops callout_lock to acquire c_lock, and it calls * the handler only if curr_cancelled is still 0 after * cc_lock is successfully acquired. * cc_waiting - If a thread is waiting in callout_drain(), then * callout_wait is nonzero. Set only when * cc_curr is non-NULL. */ /* * Resets the execution entity tied to a specific callout cpu. */ static void cc_cce_cleanup(struct callout_cpu *cc, int direct) { cc->cc_exec_entity[direct].cc_curr = NULL; cc->cc_exec_entity[direct].cc_next = NULL; cc->cc_exec_entity[direct].cc_cancel = false; cc->cc_exec_entity[direct].cc_waiting = false; #ifdef SMP cc->cc_exec_entity[direct].ce_migration_cpu = CPUBLOCK; cc->cc_exec_entity[direct].ce_migration_time = 0; cc->cc_exec_entity[direct].ce_migration_prec = 0; cc->cc_exec_entity[direct].ce_migration_func = NULL; cc->cc_exec_entity[direct].ce_migration_arg = NULL; #endif } /* * Checks if migration is requested by a specific callout cpu. */ static int cc_cce_migrating(struct callout_cpu *cc, int direct) { #ifdef SMP return (cc->cc_exec_entity[direct].ce_migration_cpu != CPUBLOCK); #else return (0); #endif } /* * Kernel low level callwheel initialization * called on cpu0 during kernel startup. */ static void callout_callwheel_init(void *dummy) { struct callout_cpu *cc; /* * Calculate the size of the callout wheel and the preallocated * timeout() structures. * XXX: Clip callout to result of previous function of maxusers * maximum 384. This is still huge, but acceptable. */ ncallout = imin(16 + maxproc + maxfiles, 18508); TUNABLE_INT_FETCH("kern.ncallout", &ncallout); /* * Calculate callout wheel size, should be next power of two higher * than 'ncallout'. */ callwheelsize = 1 << fls(ncallout); callwheelmask = callwheelsize - 1; /* * Fetch whether we're pinning the swi's or not. */ TUNABLE_INT_FETCH("kern.pin_default_swi", &pin_default_swi); TUNABLE_INT_FETCH("kern.pin_pcpu_swi", &pin_pcpu_swi); /* * Only cpu0 handles timeout(9) and receives a preallocation. * * XXX: Once all timeout(9) consumers are converted this can * be removed. */ timeout_cpu = PCPU_GET(cpuid); cc = CC_CPU(timeout_cpu); cc->cc_callout = malloc(ncallout * sizeof(struct callout), M_CALLOUT, M_WAITOK); callout_cpu_init(cc, timeout_cpu); } SYSINIT(callwheel_init, SI_SUB_CPU, SI_ORDER_ANY, callout_callwheel_init, NULL); /* * Initialize the per-cpu callout structures. */ static void callout_cpu_init(struct callout_cpu *cc, int cpu) { struct callout *c; int i; mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE); SLIST_INIT(&cc->cc_callfree); cc->cc_callwheel = malloc(sizeof(struct callout_list) * callwheelsize, M_CALLOUT, M_WAITOK); for (i = 0; i < callwheelsize; i++) LIST_INIT(&cc->cc_callwheel[i]); TAILQ_INIT(&cc->cc_expireq); cc->cc_firstevent = SBT_MAX; for (i = 0; i < 2; i++) cc_cce_cleanup(cc, i); snprintf(cc->cc_ktr_event_name, sizeof(cc->cc_ktr_event_name), "callwheel cpu %d", cpu); if (cc->cc_callout == NULL) /* Only cpu0 handles timeout(9) */ return; for (i = 0; i < ncallout; i++) { c = &cc->cc_callout[i]; callout_init(c, 0); c->c_flags = CALLOUT_LOCAL_ALLOC; SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle); } } #ifdef SMP /* * Switches the cpu tied to a specific callout. * The function expects a locked incoming callout cpu and returns with * locked outcoming callout cpu. */ static struct callout_cpu * callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu) { struct callout_cpu *new_cc; MPASS(c != NULL && cc != NULL); CC_LOCK_ASSERT(cc); /* * Avoid interrupts and preemption firing after the callout cpu * is blocked in order to avoid deadlocks as the new thread * may be willing to acquire the callout cpu lock. */ c->c_cpu = CPUBLOCK; spinlock_enter(); CC_UNLOCK(cc); new_cc = CC_CPU(new_cpu); CC_LOCK(new_cc); spinlock_exit(); c->c_cpu = new_cpu; return (new_cc); } #endif /* * Start standard softclock thread. */ static void start_softclock(void *dummy) { struct callout_cpu *cc; char name[MAXCOMLEN]; #ifdef SMP int cpu; struct intr_event *ie; #endif cc = CC_CPU(timeout_cpu); snprintf(name, sizeof(name), "clock (%d)", timeout_cpu); if (swi_add(&clk_intr_event, name, softclock, cc, SWI_CLOCK, INTR_MPSAFE, &cc->cc_cookie)) panic("died while creating standard software ithreads"); if (pin_default_swi && (intr_event_bind(clk_intr_event, timeout_cpu) != 0)) { printf("%s: timeout clock couldn't be pinned to cpu %d\n", __func__, timeout_cpu); } #ifdef SMP CPU_FOREACH(cpu) { if (cpu == timeout_cpu) continue; cc = CC_CPU(cpu); cc->cc_callout = NULL; /* Only cpu0 handles timeout(9). */ callout_cpu_init(cc, cpu); snprintf(name, sizeof(name), "clock (%d)", cpu); ie = NULL; if (swi_add(&ie, name, softclock, cc, SWI_CLOCK, INTR_MPSAFE, &cc->cc_cookie)) panic("died while creating standard software ithreads"); if (pin_pcpu_swi && (intr_event_bind(ie, cpu) != 0)) { printf("%s: per-cpu clock couldn't be pinned to " "cpu %d\n", __func__, cpu); } } #endif } SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL); #define CC_HASH_SHIFT 8 static inline u_int callout_hash(sbintime_t sbt) { return (sbt >> (32 - CC_HASH_SHIFT)); } static inline u_int callout_get_bucket(sbintime_t sbt) { return (callout_hash(sbt) & callwheelmask); } void callout_process(sbintime_t now) { struct callout *tmp, *tmpn; struct callout_cpu *cc; struct callout_list *sc; sbintime_t first, last, max, tmp_max; uint32_t lookahead; u_int firstb, lastb, nowb; #ifdef CALLOUT_PROFILING int depth_dir = 0, mpcalls_dir = 0, lockcalls_dir = 0; #endif cc = CC_SELF(); mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET); /* Compute the buckets of the last scan and present times. */ firstb = callout_hash(cc->cc_lastscan); cc->cc_lastscan = now; nowb = callout_hash(now); /* Compute the last bucket and minimum time of the bucket after it. */ if (nowb == firstb) lookahead = (SBT_1S / 16); else if (nowb - firstb == 1) lookahead = (SBT_1S / 8); else lookahead = (SBT_1S / 2); first = last = now; first += (lookahead / 2); last += lookahead; last &= (0xffffffffffffffffLLU << (32 - CC_HASH_SHIFT)); lastb = callout_hash(last) - 1; max = last; /* * Check if we wrapped around the entire wheel from the last scan. * In case, we need to scan entirely the wheel for pending callouts. */ if (lastb - firstb >= callwheelsize) { lastb = firstb + callwheelsize - 1; if (nowb - firstb >= callwheelsize) nowb = lastb; } /* Iterate callwheel from firstb to nowb and then up to lastb. */ do { sc = &cc->cc_callwheel[firstb & callwheelmask]; tmp = LIST_FIRST(sc); while (tmp != NULL) { /* Run the callout if present time within allowed. */ if (tmp->c_time <= now) { /* * Consumer told us the callout may be run * directly from hardware interrupt context. */ if (tmp->c_flags & CALLOUT_DIRECT) { #ifdef CALLOUT_PROFILING ++depth_dir; #endif cc->cc_exec_next_dir = LIST_NEXT(tmp, c_links.le); cc->cc_bucket = firstb & callwheelmask; LIST_REMOVE(tmp, c_links.le); softclock_call_cc(tmp, cc, #ifdef CALLOUT_PROFILING &mpcalls_dir, &lockcalls_dir, NULL, #endif 1); tmp = cc->cc_exec_next_dir; } else { tmpn = LIST_NEXT(tmp, c_links.le); LIST_REMOVE(tmp, c_links.le); TAILQ_INSERT_TAIL(&cc->cc_expireq, tmp, c_links.tqe); tmp->c_flags |= CALLOUT_PROCESSED; tmp = tmpn; } continue; } /* Skip events from distant future. */ if (tmp->c_time >= max) goto next; /* * Event minimal time is bigger than present maximal * time, so it cannot be aggregated. */ if (tmp->c_time > last) { lastb = nowb; goto next; } /* Update first and last time, respecting this event. */ if (tmp->c_time < first) first = tmp->c_time; tmp_max = tmp->c_time + tmp->c_precision; if (tmp_max < last) last = tmp_max; next: tmp = LIST_NEXT(tmp, c_links.le); } /* Proceed with the next bucket. */ firstb++; /* * Stop if we looked after present time and found * some event we can't execute at now. * Stop if we looked far enough into the future. */ } while (((int)(firstb - lastb)) <= 0); cc->cc_firstevent = last; #ifndef NO_EVENTTIMERS cpu_new_callout(curcpu, last, first); #endif #ifdef CALLOUT_PROFILING avg_depth_dir += (depth_dir * 1000 - avg_depth_dir) >> 8; avg_mpcalls_dir += (mpcalls_dir * 1000 - avg_mpcalls_dir) >> 8; avg_lockcalls_dir += (lockcalls_dir * 1000 - avg_lockcalls_dir) >> 8; #endif mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET); /* * swi_sched acquires the thread lock, so we don't want to call it * with cc_lock held; incorrect locking order. */ if (!TAILQ_EMPTY(&cc->cc_expireq)) swi_sched(cc->cc_cookie, 0); } static struct callout_cpu * callout_lock(struct callout *c) { struct callout_cpu *cc; int cpu; for (;;) { cpu = c->c_cpu; #ifdef SMP if (cpu == CPUBLOCK) { while (c->c_cpu == CPUBLOCK) cpu_spinwait(); continue; } #endif cc = CC_CPU(cpu); CC_LOCK(cc); if (cpu == c->c_cpu) break; CC_UNLOCK(cc); } return (cc); } static void callout_cc_add(struct callout *c, struct callout_cpu *cc, sbintime_t sbt, sbintime_t precision, void (*func)(void *), void *arg, int cpu, int flags) { int bucket; CC_LOCK_ASSERT(cc); if (sbt < cc->cc_lastscan) sbt = cc->cc_lastscan; c->c_arg = arg; c->c_flags |= (CALLOUT_ACTIVE | CALLOUT_PENDING); if (flags & C_DIRECT_EXEC) c->c_flags |= CALLOUT_DIRECT; c->c_flags &= ~CALLOUT_PROCESSED; c->c_func = func; c->c_time = sbt; c->c_precision = precision; bucket = callout_get_bucket(c->c_time); CTR3(KTR_CALLOUT, "precision set for %p: %d.%08x", c, (int)(c->c_precision >> 32), (u_int)(c->c_precision & 0xffffffff)); LIST_INSERT_HEAD(&cc->cc_callwheel[bucket], c, c_links.le); if (cc->cc_bucket == bucket) cc->cc_exec_next_dir = c; #ifndef NO_EVENTTIMERS /* * Inform the eventtimers(4) subsystem there's a new callout * that has been inserted, but only if really required. */ if (SBT_MAX - c->c_time < c->c_precision) c->c_precision = SBT_MAX - c->c_time; sbt = c->c_time + c->c_precision; if (sbt < cc->cc_firstevent) { cc->cc_firstevent = sbt; cpu_new_callout(cpu, sbt, c->c_time); } #endif } static void callout_cc_del(struct callout *c, struct callout_cpu *cc) { if ((c->c_flags & CALLOUT_LOCAL_ALLOC) == 0) return; c->c_func = NULL; SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle); } static void softclock_call_cc(struct callout *c, struct callout_cpu *cc, #ifdef CALLOUT_PROFILING int *mpcalls, int *lockcalls, int *gcalls, #endif int direct) { struct rm_priotracker tracker; void (*c_func)(void *); void *c_arg; struct lock_class *class; struct lock_object *c_lock; uintptr_t lock_status; int c_flags; #ifdef SMP struct callout_cpu *new_cc; void (*new_func)(void *); void *new_arg; int flags, new_cpu; sbintime_t new_prec, new_time; #endif #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING) sbintime_t sbt1, sbt2; struct timespec ts2; static sbintime_t maxdt = 2 * SBT_1MS; /* 2 msec */ static timeout_t *lastfunc; #endif KASSERT((c->c_flags & (CALLOUT_PENDING | CALLOUT_ACTIVE)) == (CALLOUT_PENDING | CALLOUT_ACTIVE), ("softclock_call_cc: pend|act %p %x", c, c->c_flags)); class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL; lock_status = 0; if (c->c_flags & CALLOUT_SHAREDLOCK) { if (class == &lock_class_rm) lock_status = (uintptr_t)&tracker; else lock_status = 1; } c_lock = c->c_lock; c_func = c->c_func; c_arg = c->c_arg; c_flags = c->c_flags; if (c->c_flags & CALLOUT_LOCAL_ALLOC) c->c_flags = CALLOUT_LOCAL_ALLOC; else c->c_flags &= ~CALLOUT_PENDING; cc->cc_exec_entity[direct].cc_curr = c; cc->cc_exec_entity[direct].cc_cancel = false; CC_UNLOCK(cc); if (c_lock != NULL) { class->lc_lock(c_lock, lock_status); /* * The callout may have been cancelled * while we switched locks. */ if (cc->cc_exec_entity[direct].cc_cancel) { class->lc_unlock(c_lock); goto skip; } /* The callout cannot be stopped now. */ cc->cc_exec_entity[direct].cc_cancel = true; if (c_lock == &Giant.lock_object) { #ifdef CALLOUT_PROFILING (*gcalls)++; #endif CTR3(KTR_CALLOUT, "callout giant %p func %p arg %p", c, c_func, c_arg); } else { #ifdef CALLOUT_PROFILING (*lockcalls)++; #endif CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p", c, c_func, c_arg); } } else { #ifdef CALLOUT_PROFILING (*mpcalls)++; #endif CTR3(KTR_CALLOUT, "callout %p func %p arg %p", c, c_func, c_arg); } KTR_STATE3(KTR_SCHED, "callout", cc->cc_ktr_event_name, "running", "func:%p", c_func, "arg:%p", c_arg, "direct:%d", direct); #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING) sbt1 = sbinuptime(); #endif THREAD_NO_SLEEPING(); SDT_PROBE(callout_execute, kernel, , callout__start, c, 0, 0, 0, 0); c_func(c_arg); SDT_PROBE(callout_execute, kernel, , callout__end, c, 0, 0, 0, 0); THREAD_SLEEPING_OK(); #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING) sbt2 = sbinuptime(); sbt2 -= sbt1; if (sbt2 > maxdt) { if (lastfunc != c_func || sbt2 > maxdt * 2) { ts2 = sbttots(sbt2); printf( "Expensive timeout(9) function: %p(%p) %jd.%09ld s\n", c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec); } maxdt = sbt2; lastfunc = c_func; } #endif KTR_STATE0(KTR_SCHED, "callout", cc->cc_ktr_event_name, "idle"); CTR1(KTR_CALLOUT, "callout %p finished", c); if ((c_flags & CALLOUT_RETURNUNLOCKED) == 0) class->lc_unlock(c_lock); skip: CC_LOCK(cc); KASSERT(cc->cc_exec_entity[direct].cc_curr == c, ("mishandled cc_curr")); cc->cc_exec_entity[direct].cc_curr = NULL; if (cc->cc_exec_entity[direct].cc_waiting) { /* * There is someone waiting for the * callout to complete. * If the callout was scheduled for * migration just cancel it. */ if (cc_cce_migrating(cc, direct)) { cc_cce_cleanup(cc, direct); /* * It should be assert here that the callout is not * destroyed but that is not easy. */ c->c_flags &= ~CALLOUT_DFRMIGRATION; } cc->cc_exec_entity[direct].cc_waiting = false; CC_UNLOCK(cc); wakeup(&cc->cc_exec_entity[direct].cc_waiting); CC_LOCK(cc); } else if (cc_cce_migrating(cc, direct)) { KASSERT((c_flags & CALLOUT_LOCAL_ALLOC) == 0, ("Migrating legacy callout %p", c)); #ifdef SMP /* * If the callout was scheduled for * migration just perform it now. */ new_cpu = cc->cc_exec_entity[direct].ce_migration_cpu; new_time = cc->cc_exec_entity[direct].ce_migration_time; new_prec = cc->cc_exec_entity[direct].ce_migration_prec; new_func = cc->cc_exec_entity[direct].ce_migration_func; new_arg = cc->cc_exec_entity[direct].ce_migration_arg; cc_cce_cleanup(cc, direct); /* * It should be assert here that the callout is not destroyed * but that is not easy. * * As first thing, handle deferred callout stops. */ if ((c->c_flags & CALLOUT_DFRMIGRATION) == 0) { CTR3(KTR_CALLOUT, "deferred cancelled %p func %p arg %p", c, new_func, new_arg); callout_cc_del(c, cc); return; } c->c_flags &= ~CALLOUT_DFRMIGRATION; new_cc = callout_cpu_switch(c, cc, new_cpu); flags = (direct) ? C_DIRECT_EXEC : 0; callout_cc_add(c, new_cc, new_time, new_prec, new_func, new_arg, new_cpu, flags); CC_UNLOCK(new_cc); CC_LOCK(cc); #else panic("migration should not happen"); #endif } /* * If the current callout is locally allocated (from * timeout(9)) then put it on the freelist. * * Note: we need to check the cached copy of c_flags because * if it was not local, then it's not safe to deref the * callout pointer. */ KASSERT((c_flags & CALLOUT_LOCAL_ALLOC) == 0 || c->c_flags == CALLOUT_LOCAL_ALLOC, ("corrupted callout")); if (c_flags & CALLOUT_LOCAL_ALLOC) callout_cc_del(c, cc); } /* * The callout mechanism is based on the work of Adam M. Costello and * George Varghese, published in a technical report entitled "Redesigning * the BSD Callout and Timer Facilities" and modified slightly for inclusion * in FreeBSD by Justin T. Gibbs. The original work on the data structures * used in this implementation was published by G. Varghese and T. Lauck in * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for * the Efficient Implementation of a Timer Facility" in the Proceedings of * the 11th ACM Annual Symposium on Operating Systems Principles, * Austin, Texas Nov 1987. */ /* * Software (low priority) clock interrupt. * Run periodic events from timeout queue. */ void softclock(void *arg) { struct callout_cpu *cc; struct callout *c; #ifdef CALLOUT_PROFILING int depth = 0, gcalls = 0, lockcalls = 0, mpcalls = 0; #endif cc = (struct callout_cpu *)arg; CC_LOCK(cc); while ((c = TAILQ_FIRST(&cc->cc_expireq)) != NULL) { TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe); softclock_call_cc(c, cc, #ifdef CALLOUT_PROFILING &mpcalls, &lockcalls, &gcalls, #endif 0); #ifdef CALLOUT_PROFILING ++depth; #endif } #ifdef CALLOUT_PROFILING avg_depth += (depth * 1000 - avg_depth) >> 8; avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8; avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8; avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8; #endif CC_UNLOCK(cc); } /* * timeout -- * Execute a function after a specified length of time. * * untimeout -- * Cancel previous timeout function call. * * callout_handle_init -- * Initialize a handle so that using it with untimeout is benign. * * See AT&T BCI Driver Reference Manual for specification. This * implementation differs from that one in that although an * identification value is returned from timeout, the original * arguments to timeout as well as the identifier are used to * identify entries for untimeout. */ struct callout_handle timeout(timeout_t *ftn, void *arg, int to_ticks) { struct callout_cpu *cc; struct callout *new; struct callout_handle handle; cc = CC_CPU(timeout_cpu); CC_LOCK(cc); /* Fill in the next free callout structure. */ new = SLIST_FIRST(&cc->cc_callfree); if (new == NULL) /* XXX Attempt to malloc first */ panic("timeout table full"); SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle); callout_reset(new, to_ticks, ftn, arg); handle.callout = new; CC_UNLOCK(cc); return (handle); } void untimeout(timeout_t *ftn, void *arg, struct callout_handle handle) { struct callout_cpu *cc; /* * Check for a handle that was initialized * by callout_handle_init, but never used * for a real timeout. */ if (handle.callout == NULL) return; cc = callout_lock(handle.callout); if (handle.callout->c_func == ftn && handle.callout->c_arg == arg) callout_stop(handle.callout); CC_UNLOCK(cc); } void callout_handle_init(struct callout_handle *handle) { handle->callout = NULL; } /* * New interface; clients allocate their own callout structures. * * callout_reset() - establish or change a timeout * callout_stop() - disestablish a timeout * callout_init() - initialize a callout structure so that it can * safely be passed to callout_reset() and callout_stop() * * defines three convenience macros: * * callout_active() - returns truth if callout has not been stopped, * drained, or deactivated since the last time the callout was * reset. * callout_pending() - returns truth if callout is still waiting for timeout * callout_deactivate() - marks the callout as having been serviced */ int callout_reset_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t precision, void (*ftn)(void *), void *arg, int cpu, int flags) { sbintime_t to_sbt, pr; struct callout_cpu *cc; int cancelled, direct; cancelled = 0; if (flags & C_ABSOLUTE) { to_sbt = sbt; } else { if ((flags & C_HARDCLOCK) && (sbt < tick_sbt)) sbt = tick_sbt; if ((flags & C_HARDCLOCK) || #ifdef NO_EVENTTIMERS sbt >= sbt_timethreshold) { to_sbt = getsbinuptime(); /* Add safety belt for the case of hz > 1000. */ to_sbt += tc_tick_sbt - tick_sbt; #else sbt >= sbt_tickthreshold) { /* * Obtain the time of the last hardclock() call on * this CPU directly from the kern_clocksource.c. * This value is per-CPU, but it is equal for all * active ones. */ #ifdef __LP64__ to_sbt = DPCPU_GET(hardclocktime); #else spinlock_enter(); to_sbt = DPCPU_GET(hardclocktime); spinlock_exit(); #endif #endif if ((flags & C_HARDCLOCK) == 0) to_sbt += tick_sbt; } else to_sbt = sbinuptime(); if (SBT_MAX - to_sbt < sbt) to_sbt = SBT_MAX; else to_sbt += sbt; pr = ((C_PRELGET(flags) < 0) ? sbt >> tc_precexp : sbt >> C_PRELGET(flags)); if (pr > precision) precision = pr; } /* * Don't allow migration of pre-allocated callouts lest they * become unbalanced. */ if (c->c_flags & CALLOUT_LOCAL_ALLOC) cpu = c->c_cpu; direct = (c->c_flags & CALLOUT_DIRECT) != 0; KASSERT(!direct || c->c_lock == NULL, ("%s: direct callout %p has lock", __func__, c)); cc = callout_lock(c); if (cc->cc_exec_entity[direct].cc_curr == c) { /* * We're being asked to reschedule a callout which is * currently in progress. If there is a lock then we * can cancel the callout if it has not really started. */ if (c->c_lock != NULL && !cc->cc_exec_entity[direct].cc_cancel) cancelled = cc->cc_exec_entity[direct].cc_cancel = true; if (cc->cc_exec_entity[direct].cc_waiting) { /* * Someone has called callout_drain to kill this * callout. Don't reschedule. */ CTR4(KTR_CALLOUT, "%s %p func %p arg %p", cancelled ? "cancelled" : "failed to cancel", c, c->c_func, c->c_arg); CC_UNLOCK(cc); return (cancelled); } } if (c->c_flags & CALLOUT_PENDING) { if ((c->c_flags & CALLOUT_PROCESSED) == 0) { if (cc->cc_exec_next_dir == c) cc->cc_exec_next_dir = LIST_NEXT(c, c_links.le); LIST_REMOVE(c, c_links.le); } else TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe); cancelled = 1; c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING); } #ifdef SMP /* * If the callout must migrate try to perform it immediately. * If the callout is currently running, just defer the migration * to a more appropriate moment. */ if (c->c_cpu != cpu) { if (cc->cc_exec_entity[direct].cc_curr == c) { cc->cc_exec_entity[direct].ce_migration_cpu = cpu; cc->cc_exec_entity[direct].ce_migration_time = to_sbt; cc->cc_exec_entity[direct].ce_migration_prec = precision; cc->cc_exec_entity[direct].ce_migration_func = ftn; cc->cc_exec_entity[direct].ce_migration_arg = arg; c->c_flags |= CALLOUT_DFRMIGRATION; CTR6(KTR_CALLOUT, "migration of %p func %p arg %p in %d.%08x to %u deferred", c, c->c_func, c->c_arg, (int)(to_sbt >> 32), (u_int)(to_sbt & 0xffffffff), cpu); CC_UNLOCK(cc); return (cancelled); } cc = callout_cpu_switch(c, cc, cpu); } #endif callout_cc_add(c, cc, to_sbt, precision, ftn, arg, cpu, flags); CTR6(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d.%08x", cancelled ? "re" : "", c, c->c_func, c->c_arg, (int)(to_sbt >> 32), (u_int)(to_sbt & 0xffffffff)); CC_UNLOCK(cc); return (cancelled); } /* * Common idioms that can be optimized in the future. */ int callout_schedule_on(struct callout *c, int to_ticks, int cpu) { return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu); } int callout_schedule(struct callout *c, int to_ticks) { return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu); } int _callout_stop_safe(struct callout *c, int safe) { struct callout_cpu *cc, *old_cc; struct lock_class *class; int direct, sq_locked, use_lock; if (safe) WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, c->c_lock, "calling %s", __func__); /* * Some old subsystems don't hold Giant while running a callout_stop(), * so just discard this check for the moment. */ if (!safe && c->c_lock != NULL) { if (c->c_lock == &Giant.lock_object) use_lock = mtx_owned(&Giant); else { use_lock = 1; class = LOCK_CLASS(c->c_lock); class->lc_assert(c->c_lock, LA_XLOCKED); } } else use_lock = 0; direct = (c->c_flags & CALLOUT_DIRECT) != 0; sq_locked = 0; old_cc = NULL; again: cc = callout_lock(c); /* * If the callout was migrating while the callout cpu lock was * dropped, just drop the sleepqueue lock and check the states * again. */ if (sq_locked != 0 && cc != old_cc) { #ifdef SMP CC_UNLOCK(cc); sleepq_release(&old_cc->cc_exec_entity[direct].cc_waiting); sq_locked = 0; old_cc = NULL; goto again; #else panic("migration should not happen"); #endif } /* * If the callout isn't pending, it's not on the queue, so * don't attempt to remove it from the queue. We can try to * stop it by other means however. */ if (!(c->c_flags & CALLOUT_PENDING)) { c->c_flags &= ~CALLOUT_ACTIVE; /* * If it wasn't on the queue and it isn't the current * callout, then we can't stop it, so just bail. */ if (cc->cc_exec_entity[direct].cc_curr != c) { CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p", c, c->c_func, c->c_arg); CC_UNLOCK(cc); if (sq_locked) sleepq_release( &cc->cc_exec_entity[direct].cc_waiting); return (0); } if (safe) { /* * The current callout is running (or just * about to run) and blocking is allowed, so * just wait for the current invocation to * finish. */ while (cc->cc_exec_entity[direct].cc_curr == c) { /* * Use direct calls to sleepqueue interface * instead of cv/msleep in order to avoid * a LOR between cc_lock and sleepqueue * chain spinlocks. This piece of code * emulates a msleep_spin() call actually. * * If we already have the sleepqueue chain * locked, then we can safely block. If we * don't already have it locked, however, * we have to drop the cc_lock to lock * it. This opens several races, so we * restart at the beginning once we have * both locks. If nothing has changed, then * we will end up back here with sq_locked * set. */ if (!sq_locked) { CC_UNLOCK(cc); sleepq_lock( &cc->cc_exec_entity[direct].cc_waiting); sq_locked = 1; old_cc = cc; goto again; } /* * Migration could be cancelled here, but * as long as it is still not sure when it * will be packed up, just let softclock() * take care of it. */ cc->cc_exec_entity[direct].cc_waiting = true; DROP_GIANT(); CC_UNLOCK(cc); sleepq_add( &cc->cc_exec_entity[direct].cc_waiting, &cc->cc_lock.lock_object, "codrain", SLEEPQ_SLEEP, 0); sleepq_wait( &cc->cc_exec_entity[direct].cc_waiting, 0); sq_locked = 0; old_cc = NULL; /* Reacquire locks previously released. */ PICKUP_GIANT(); CC_LOCK(cc); } } else if (use_lock && !cc->cc_exec_entity[direct].cc_cancel) { /* * The current callout is waiting for its * lock which we hold. Cancel the callout * and return. After our caller drops the * lock, the callout will be skipped in * softclock(). */ cc->cc_exec_entity[direct].cc_cancel = true; CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p", c, c->c_func, c->c_arg); KASSERT(!cc_cce_migrating(cc, direct), ("callout wrongly scheduled for migration")); CC_UNLOCK(cc); KASSERT(!sq_locked, ("sleepqueue chain locked")); return (1); } else if ((c->c_flags & CALLOUT_DFRMIGRATION) != 0) { c->c_flags &= ~CALLOUT_DFRMIGRATION; CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p", c, c->c_func, c->c_arg); CC_UNLOCK(cc); return (1); } CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p", c, c->c_func, c->c_arg); CC_UNLOCK(cc); KASSERT(!sq_locked, ("sleepqueue chain still locked")); return (0); } if (sq_locked) sleepq_release(&cc->cc_exec_entity[direct].cc_waiting); c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING); CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p", c, c->c_func, c->c_arg); if ((c->c_flags & CALLOUT_PROCESSED) == 0) { if (cc->cc_exec_next_dir == c) cc->cc_exec_next_dir = LIST_NEXT(c, c_links.le); LIST_REMOVE(c, c_links.le); } else TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe); callout_cc_del(c, cc); CC_UNLOCK(cc); return (1); } void callout_init(struct callout *c, int mpsafe) { bzero(c, sizeof *c); if (mpsafe) { c->c_lock = NULL; c->c_flags = CALLOUT_RETURNUNLOCKED; } else { c->c_lock = &Giant.lock_object; c->c_flags = 0; } c->c_cpu = timeout_cpu; } void _callout_init_lock(struct callout *c, struct lock_object *lock, int flags) { bzero(c, sizeof *c); c->c_lock = lock; KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0, ("callout_init_lock: bad flags %d", flags)); KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0, ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock")); KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags & (LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class", __func__)); c->c_flags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK); c->c_cpu = timeout_cpu; } #ifdef APM_FIXUP_CALLTODO /* * Adjust the kernel calltodo timeout list. This routine is used after * an APM resume to recalculate the calltodo timer list values with the * number of hz's we have been sleeping. The next hardclock() will detect * that there are fired timers and run softclock() to execute them. * * Please note, I have not done an exhaustive analysis of what code this * might break. I am motivated to have my select()'s and alarm()'s that * have expired during suspend firing upon resume so that the applications * which set the timer can do the maintanence the timer was for as close * as possible to the originally intended time. Testing this code for a * week showed that resuming from a suspend resulted in 22 to 25 timers * firing, which seemed independant on whether the suspend was 2 hours or * 2 days. Your milage may vary. - Ken Key */ void adjust_timeout_calltodo(struct timeval *time_change) { register struct callout *p; unsigned long delta_ticks; /* * How many ticks were we asleep? * (stolen from tvtohz()). */ /* Don't do anything */ if (time_change->tv_sec < 0) return; else if (time_change->tv_sec <= LONG_MAX / 1000000) delta_ticks = (time_change->tv_sec * 1000000 + time_change->tv_usec + (tick - 1)) / tick + 1; else if (time_change->tv_sec <= LONG_MAX / hz) delta_ticks = time_change->tv_sec * hz + (time_change->tv_usec + (tick - 1)) / tick + 1; else delta_ticks = LONG_MAX; if (delta_ticks > INT_MAX) delta_ticks = INT_MAX; /* * Now rip through the timer calltodo list looking for timers * to expire. */ /* don't collide with softclock() */ CC_LOCK(cc); for (p = calltodo.c_next; p != NULL; p = p->c_next) { p->c_time -= delta_ticks; /* Break if the timer had more time on it than delta_ticks */ if (p->c_time > 0) break; /* take back the ticks the timer didn't use (p->c_time <= 0) */ delta_ticks = -p->c_time; } CC_UNLOCK(cc); return; } #endif /* APM_FIXUP_CALLTODO */ static int flssbt(sbintime_t sbt) { sbt += (uint64_t)sbt >> 1; if (sizeof(long) >= sizeof(sbintime_t)) return (flsl(sbt)); if (sbt >= SBT_1S) return (flsl(((uint64_t)sbt) >> 32) + 32); return (flsl(sbt)); } /* * Dump immediate statistic snapshot of the scheduled callouts. */ static int sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS) { struct callout *tmp; struct callout_cpu *cc; struct callout_list *sc; sbintime_t maxpr, maxt, medpr, medt, now, spr, st, t; int ct[64], cpr[64], ccpbk[32]; int error, val, i, count, tcum, pcum, maxc, c, medc; #ifdef SMP int cpu; #endif val = 0; error = sysctl_handle_int(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); count = maxc = 0; st = spr = maxt = maxpr = 0; bzero(ccpbk, sizeof(ccpbk)); bzero(ct, sizeof(ct)); bzero(cpr, sizeof(cpr)); now = sbinuptime(); #ifdef SMP CPU_FOREACH(cpu) { cc = CC_CPU(cpu); #else cc = CC_CPU(timeout_cpu); #endif CC_LOCK(cc); for (i = 0; i < callwheelsize; i++) { sc = &cc->cc_callwheel[i]; c = 0; LIST_FOREACH(tmp, sc, c_links.le) { c++; t = tmp->c_time - now; if (t < 0) t = 0; st += t / SBT_1US; spr += tmp->c_precision / SBT_1US; if (t > maxt) maxt = t; if (tmp->c_precision > maxpr) maxpr = tmp->c_precision; ct[flssbt(t)]++; cpr[flssbt(tmp->c_precision)]++; } if (c > maxc) maxc = c; ccpbk[fls(c + c / 2)]++; count += c; } CC_UNLOCK(cc); #ifdef SMP } #endif for (i = 0, tcum = 0; i < 64 && tcum < count / 2; i++) tcum += ct[i]; medt = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0; for (i = 0, pcum = 0; i < 64 && pcum < count / 2; i++) pcum += cpr[i]; medpr = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0; for (i = 0, c = 0; i < 32 && c < count / 2; i++) c += ccpbk[i]; medc = (i >= 2) ? (1 << (i - 2)) : 0; printf("Scheduled callouts statistic snapshot:\n"); printf(" Callouts: %6d Buckets: %6d*%-3d Bucket size: 0.%06ds\n", count, callwheelsize, mp_ncpus, 1000000 >> CC_HASH_SHIFT); printf(" C/Bk: med %5d avg %6d.%06jd max %6d\n", medc, count / callwheelsize / mp_ncpus, (uint64_t)count * 1000000 / callwheelsize / mp_ncpus % 1000000, maxc); printf(" Time: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n", medt / SBT_1S, (medt & 0xffffffff) * 1000000 >> 32, (st / count) / 1000000, (st / count) % 1000000, maxt / SBT_1S, (maxt & 0xffffffff) * 1000000 >> 32); printf(" Prec: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n", medpr / SBT_1S, (medpr & 0xffffffff) * 1000000 >> 32, (spr / count) / 1000000, (spr / count) % 1000000, maxpr / SBT_1S, (maxpr & 0xffffffff) * 1000000 >> 32); printf(" Distribution: \tbuckets\t time\t tcum\t" " prec\t pcum\n"); for (i = 0, tcum = pcum = 0; i < 64; i++) { if (ct[i] == 0 && cpr[i] == 0) continue; t = (i != 0) ? (((sbintime_t)1) << (i - 1)) : 0; tcum += ct[i]; pcum += cpr[i]; printf(" %10jd.%06jds\t 2**%d\t%7d\t%7d\t%7d\t%7d\n", t / SBT_1S, (t & 0xffffffff) * 1000000 >> 32, i - 1 - (32 - CC_HASH_SHIFT), ct[i], tcum, cpr[i], pcum); } return (error); } SYSCTL_PROC(_kern, OID_AUTO, callout_stat, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, sysctl_kern_callout_stat, "I", "Dump immediate statistic snapshot of the scheduled callouts");